JPH0641618A - Method and device for continuously producing active metal powder - Google Patents

Method and device for continuously producing active metal powder

Info

Publication number
JPH0641618A
JPH0641618A JP3271691A JP3271691A JPH0641618A JP H0641618 A JPH0641618 A JP H0641618A JP 3271691 A JP3271691 A JP 3271691A JP 3271691 A JP3271691 A JP 3271691A JP H0641618 A JPH0641618 A JP H0641618A
Authority
JP
Japan
Prior art keywords
active metal
powder
rod
melting
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3271691A
Other languages
Japanese (ja)
Inventor
Shigeru Mori
盛 森
Hiroaki Shiraishi
博章 白石
Satoru Yamauchi
哲 山内
Koji Yamazaki
考二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP3271691A priority Critical patent/JPH0641618A/en
Publication of JPH0641618A publication Critical patent/JPH0641618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously produce the powder of an active metal without contaminating the powder. CONSTITUTION:A coarse-grain or small-piece active metal (e.g. Ti and Ti alloy) is melted as raw material M1, a rod-shaped solidified material M3 is formed and continuously withdrawn, the tip is melted, and the falling molten metal M4 is atomized to produce an active metal powder M5 (e.g. Ti powder).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、TiおよびTi合金などの
活性金属粉末の製造方法および装置、詳しくは、溶融、
流下する活性金属に噴霧流体を作用させて噴霧すること
により、微細で、かつ高純度の粉末を製造する方法およ
び装置に関する。
FIELD OF THE INVENTION The present invention relates to a method and apparatus for producing active metal powders such as Ti and Ti alloys, more specifically, melting,
The present invention relates to a method and a device for producing a fine and high-purity powder by causing a flowing active metal to spray a flowing active metal.

【0002】[0002]

【従来の技術】粉末冶金などに用いられる金属粉末の製
造方法の一つとして溶融状態の金属を流下させ、これに
空気や水などの流体を作用させて粉化するアトマイズ粉
末製造方法が用いられている。従来のアトマイズ粉末製
造方法は、ジルコニア、アルミナ、カーボン等の耐火物
製の受け皿やルツボの底部に設けられた滴下孔、あるい
は溶湯ノズルから溶融した金属を流下させ、これに高速
で流体を吹付け噴霧する方法である。
2. Description of the Related Art As one of the methods for producing metal powders used in powder metallurgy and the like, an atomized powder production method is used in which a molten metal is made to flow down, and a fluid such as air or water is caused to act on the metal to be powdered. ing. The conventional atomized powder manufacturing method is to use a refractory pan such as zirconia, alumina, or carbon, a drip hole provided at the bottom of the crucible, or a molten metal to flow down the molten metal and spray the fluid at high speed. It is a method of spraying.

【0003】しかしながら、TiやTi合金のような活性金
属の粉化に上記の耐火物製の受け皿や溶湯ノズルなどを
用いるアトマイズ粉末製造方法を適用しようとすると、
溶融状態の活性金属が直接耐火物に接触するので、耐火
物中の酸素、炭素などの元素が活性金属と反応し、ある
いは活性金属中に混入し、製造される粉末製品が汚染さ
れたり、あるいは耐火物の寿命が低下するなどの問題が
あって、高純度の活性金属粉末の製造は困難であった。
However, when applying the atomized powder manufacturing method using the above-mentioned refractory saucer, molten metal nozzle, etc. to the powdering of active metals such as Ti and Ti alloys,
Since the active metal in the molten state comes into direct contact with the refractory, elements such as oxygen and carbon in the refractory react with the active metal, or are mixed into the active metal, and the produced powder product is contaminated, or It is difficult to manufacture high-purity active metal powder due to problems such as shortening the life of refractory materials.

【0004】そのため、活性金属のアトマイズ粉末製造
方法としては、耐火物製の受け皿や溶湯ノズルなどを用
いず、冷却された金属ルツボに設けられた滴下孔から直
接溶融した金属を落下させアトマイズする方法、あるい
は棒材を原料としてその先端を高周波加熱溶解し、滴下
する溶融金属を不活性ガスによりアトマイズする方法が
検討されている。
Therefore, as a method for producing atomized powder of an active metal, a molten metal is directly dropped from a dropping hole provided in a cooled metal crucible without using a refractory pan or a molten metal nozzle. Alternatively, a method has been studied in which a rod material is used as a raw material and the tip is melted by high-frequency heating and the dropping molten metal is atomized with an inert gas.

【0005】しかし、冷却された金属ルツボの滴下孔か
ら直接溶融金属を落下させる方法では、滴下孔で溶融金
属が冷却されるために溶融金属の温度が低下し、あるい
は凝固したりするため、滴下孔から落下する溶湯の流れ
が不安定となり、また、アトマイズされる直前の溶湯の
温度が低いために溶湯の粘性が増大し、耐火物製の受け
皿や溶湯ノズルなどを用いる場合に較べて、アトマイズ
時により大きな圧力で噴霧流体を噴射しなければなら
ず、噴霧効率を向上させるのは困難である。
However, in the method of directly dropping the molten metal from the dropping hole of the cooled metal crucible, the temperature of the molten metal is lowered or solidified because the molten metal is cooled in the dropping hole. The flow of molten metal falling from the hole becomes unstable, and the temperature of the molten metal immediately before being atomized is low, so the viscosity of the molten metal increases, and compared with the case of using a refractory pan or a molten metal nozzle, atomization Sometimes it is necessary to inject the atomizing fluid with a larger pressure, and it is difficult to improve the atomizing efficiency.

【0006】棒材の先端を溶解する方法では、原料棒材
の交換作業が必要で生産性の向上が困難であり、さら
に、交換のつど各棒材の保持部が残材として残るために
歩留りの低下を招く。
In the method of melting the tips of the rods, it is difficult to improve the productivity because it is necessary to replace the raw rods, and the holding portion of each rod remains as a residual material after each exchange, so that the yield is increased. Cause a decrease in

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、主として粉末冶金などに用いられる清浄で
微細な活性金属粉末を連続的に製造する方法および装置
を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide a method and apparatus for continuously producing a clean and fine active metal powder mainly used in powder metallurgy and the like. And

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、下記
の活性金属粉末の連続製造方法、およびの連続製造装
置にある。
The gist of the present invention resides in the following continuous production method of active metal powder and continuous production apparatus thereof.

【0009】 活性金属を溶解し、棒状の凝固物に成
形しながら連続的に引き抜き、引き抜かれた先端部を溶
解し、流下する溶湯に噴霧流体を作用させて噴霧するこ
とを特徴とする活性金属粉末の連続製造方法。
[0009] The active metal is characterized in that the active metal is melted and continuously drawn while being formed into a rod-shaped solidified product, the withdrawn tip portion is melted, and a spray fluid is made to act on the flowing molten metal to spray it. Continuous production method of powder.

【0010】 活性金属を溶解する一次溶解装置と、
溶融状態の活性金属を棒状に凝固させるモールドと、凝
固した棒状体を連続的に引き抜く引き抜き機構と、引き
抜かれた棒状体の先端部を溶解する再溶解装置と、溶解
され流下する溶湯を噴霧する噴霧装置からなることを特
徴とする活性金属粉末の連続製造装置。
A primary melting device for melting the active metal;
A mold for solidifying a molten active metal into a rod shape, a pulling mechanism for continuously pulling out the solidified rod-shaped body, a remelting device for melting the tip end of the pulled-out rod-shaped body, and a molten metal flowing down and sprayed. A continuous production apparatus for active metal powder, which comprises a spraying apparatus.

【0011】前記の活性金属とは、TiやTi合金の他に、
Zr、Ta、Nbなど、酸素や耐火物(SiO2、Al2O3 等)など
と反応しやすい金属をいう。なお、最初の溶解に供する
活性金属の形状としては、粗粒状あるいは小片状のもの
が比較的得られ易く、溶解性、ハンドリング性も良好で
好適であるが、溶解がそれほど困難ではなく、ハンドリ
ング性にも問題がなければ、この形状に限定されない。
In addition to Ti and Ti alloy, the above-mentioned active metals include
Zr, Ta, Nb, and other metals that easily react with oxygen and refractories (SiO 2 , Al 2 O 3, etc.). As the shape of the active metal to be subjected to the initial dissolution, coarse particles or small pieces are relatively easy to obtain, and the solubility and the handling property are good and suitable, but the dissolution is not so difficult and the handling is easy. The shape is not limited to this shape as long as there is no problem with the sex.

【0012】噴霧流体としては、Arガス、Heガス等の不
活性ガスを用いれば、製造される金属粉末の汚染を避け
ることができる。
If an inert gas such as Ar gas or He gas is used as the atomizing fluid, the produced metal powder can be prevented from being contaminated.

【0013】図1は前記の発明の方法を実施するため
の装置、すなわち前記の発明の装置の一例の構成を示
す縦断面図である。同図において、2は原料投入装置1
から一次溶解チャンバー8内に投入される原料M1を溶解
する一次溶解装置、3は一次溶解装置で溶解した一次溶
解溶湯M2を棒状の凝固物M3に成形するモールド、4はそ
の棒状凝固物M3を連続的に引き抜く引き抜き機構、5は
再溶解チャンバー9内に設けられ、棒状凝固物M3の先端
部を溶解する再溶解装置、6は溶解された棒状凝固物M3
の先端部から流下する溶湯流M4に噴霧流体を吹きつける
噴霧ノズルである。なお、モールド3は金属製で、水冷
式になっている。また、10はアトマイズチャンバー、7
はアトマイズチャンバー10の側方に設けられたガス排出
口で、アトマイズチャンバー10の下方部には製造された
粉末を回収する粉末回収装置12が取りつけられている。
FIG. 1 is a vertical cross-sectional view showing an arrangement of an apparatus for carrying out the method of the invention described above, that is, an example of the apparatus of the invention described above. In the figure, 2 is a raw material charging device 1
From the primary melting chamber 8 for melting the raw material M1 is melted by the primary melting device to melt the primary molten metal M2 into a rod-shaped solidified product M3, and 4 is the rod-shaped solidified product M3. A drawing mechanism 5 for continuous drawing is provided in the remelting chamber 9, a remelting device for melting the tip of the rod-shaped solidified matter M3, and 6 is a melted rod-shaped solidified matter M3.
Is a spray nozzle that sprays a spray fluid onto the molten metal flow M4 flowing down from the tip of the. The mold 3 is made of metal and is water-cooled. Also, 10 is an atomizing chamber, 7
Is a gas discharge port provided on the side of the atomizing chamber 10, and a powder collecting device 12 for collecting the manufactured powder is attached to the lower portion of the atomizing chamber 10.

【0014】一次溶解装置2としては、プラズマアーク
や電子ビームを利用する溶解装置、高周波誘導加熱装置
等を用いることができる。
As the primary melting device 2, a melting device using a plasma arc or an electron beam, a high frequency induction heating device, or the like can be used.

【0015】引き抜き機構4としては、ローラー式のも
のを用いれば連続的な引き抜きが可能である。
If the pulling mechanism 4 is of a roller type, continuous pulling can be performed.

【0016】再溶解装置としては、プラズマアークを利
用する溶解装置、高周波誘導加熱装置等を用いることが
できる。高周波誘導加熱装置を用いた場合は、棒状凝固
物M3の先端部の均一な溶解を行いやすい。
As the remelting device, a melting device utilizing a plasma arc, a high frequency induction heating device or the like can be used. When the high frequency induction heating device is used, it is easy to uniformly dissolve the tip of the rod-shaped solidified matter M3.

【0017】噴霧装置は、通常用いられる装置が適用で
きる。
As the spraying device, a commonly used device can be applied.

【0018】[0018]

【作用】前記図1の装置を用いて活性金属の粉末を製造
するには、まず、スポンジチタンのような粗粒状または
小片状の活性金属原料M1を原料投入装置1から一次溶解
チャンバー8内のモールド3に連続的に供給する。な
お、チャンバー8内の雰囲気は、電子ビーム溶解の場合
は高真空雰囲気、プラズマアーク溶解あるいは高周波誘
導溶解の場合はArガス雰囲気またはArガスの減圧雰囲気
(20〜200Torr)とする。
In order to produce an active metal powder using the apparatus shown in FIG. 1, first, a coarse-grained or small-piece active metal raw material M1 such as titanium sponge is fed from the raw material charging device 1 into the primary melting chamber 8. Is continuously supplied to the mold 3. The atmosphere in the chamber 8 is a high vacuum atmosphere for electron beam melting, and an Ar gas atmosphere or a reduced pressure atmosphere of Ar gas (20 to 200 Torr) for plasma arc melting or high frequency induction melting.

【0019】供給された原料M1は一次溶解装置2により
溶解され一次溶解溶湯M2となる。その一次溶解溶湯M2は
金属モールド3の壁面で冷却され棒状凝固物M3となり、
引き抜き機構4により引き下げられる。この引き抜き機
構4は棒状凝固物M3に長手方向の垂線を軸とした回転を
与えることができ、再溶解時に棒状凝固物M3を均一に溶
解することができる。引き下げられた棒状凝固物M3の下
端は再溶解装置5により溶解され、溶湯は溶湯流M4とな
って流下する。流下した溶湯流M4は噴霧ノズル6から高
速で噴霧されるArガスやHeガス等の不活性な噴霧流体に
より粉化されるとともに冷却され、落下して粉末M5とし
て粉末回収装置12(捕集ビンなど)で回収される。な
お、微粉については、ガス排出口7に設けられたサイク
ロン(図示せず)で回収される。
The supplied raw material M1 is melted by the primary melting device 2 to become a primary molten metal M2. The primary molten metal M2 is cooled by the wall surface of the metal mold 3 to become a rod-shaped solidified substance M3,
It is pulled down by the pulling-out mechanism 4. The pulling-out mechanism 4 can give rotation to the rod-shaped solidified matter M3 about the vertical line in the longitudinal direction, and can uniformly dissolve the rod-shaped solidified matter M3 at the time of re-melting. The lower end of the rod-shaped solidified material M3 that has been pulled down is melted by the remelting device 5, and the molten metal flows down as a molten metal flow M4. The molten metal flow M4 that has flowed down is pulverized and cooled by an inert atomizing fluid such as Ar gas or He gas that is atomized at a high speed from the atomizing nozzle 6, and then falls and falls as powder M5 as a powder recovery device 12 (collection bottle). Etc.). The fine powder is collected by a cyclone (not shown) provided at the gas outlet 7.

【0020】上記のように、本発明の方法ないし装置で
は粗粒状あるいは小片状等の比較的得られ易い形状の活
性金属を原料とし、溶解、凝固、引き抜き、再溶解およ
び粉化を連続的に行い、清浄で微細な活性金属の粉末を
得ることができる。
As described above, in the method or apparatus of the present invention, the active metal having a relatively easily obtained shape such as coarse particles or small pieces is used as a raw material, and melting, solidification, drawing, remelting and pulverization are continuously performed. Then, a clean and fine active metal powder can be obtained.

【0021】[0021]

【実施例】原料M1として表1に示す組成のスポンジTi
(粒径1〜8mm)を用い、図1に示した構成を有する装
置によりTi粉末の製造試験を行った。
Example: Sponge Ti having the composition shown in Table 1 as a raw material M1
A Ti powder production test was conducted using an apparatus having the configuration shown in FIG.

【0022】一次溶解装置2としては、出力を50kWに調
整したプラズマトーチを使用し、再溶解装置5として
は、出力が40kWで周波数が360kHzの高周波誘導加熱装置
を用いた。また、噴霧流体には圧力0.98MPa のArガスを
用い、噴霧ノズルとしては、各ノズルの内径が 0.9mm
で、これらのノズルが直径25mmの円の周上に等間隔で20
個配列されたノズルを用いた。
A plasma torch having an output adjusted to 50 kW was used as the primary melting device 2, and a high frequency induction heating device having an output of 40 kW and a frequency of 360 kHz was used as the remelting device 5. Ar gas with a pressure of 0.98MPa was used as the atomizing fluid, and the inner diameter of each nozzle was 0.9mm.
And these nozzles are evenly spaced on the circumference of a circle with a diameter of 25 mm.
Individually arranged nozzles were used.

【0023】まず、原料を原料投入装置1から減圧状態
(350mmHg)に保持された一次溶解チャンバー8内に投入
し、一次溶解装置2でArプラズマアークを照射して溶解
し、一次溶解溶湯M2とした。続いて水冷式の銅モールド
3内で直径50mmの丸棒状に凝固、成形して棒状凝固物M3
とし、ローラー式の引き抜き機構4により棒状凝固物M3
を鉛直方向を軸として8rpm の回転速度で回転させなが
ら鉛直下方に引き下げて再溶解チャンバー9内に送り込
み再溶解装置5で溶解した。流下する溶湯流M4に対して
Arガスを吹付け連続6時間の運転を行ったところ、図2
に示した粒度分布を有し、平均粒径50μm の粉末180kg
が得られた。
First, the raw material is depressurized from the raw material charging device 1.
It was put into the primary melting chamber 8 held at (350 mmHg), and was irradiated with Ar plasma arc in the primary melting apparatus 2 to melt it to obtain a primary molten metal M2. Then, in a water-cooled copper mold 3, a rod-shaped solidified product M3 was obtained by solidifying and molding into a round rod shape with a diameter of 50 mm.
And the rod-shaped pull-out mechanism 4 causes the rod-shaped solidified matter M3
While being rotated at a rotation speed of 8 rpm about the vertical direction, it was pulled vertically downward and fed into the remelting chamber 9 and melted by the remelting device 5. For the flowing molten metal flow M4
When Ar gas was sprayed for 6 hours of continuous operation, Fig. 2
180kg of powder with the particle size distribution shown in and an average particle size of 50μm
was gotten.

【0024】この粉末の化学組成は表2に示すように原
料の化学組成と殆ど変わらず、粉末製造過程における汚
染は全く認められなかった。
The chemical composition of this powder was almost the same as the chemical composition of the raw material as shown in Table 2, and no contamination was observed during the powder manufacturing process.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明方法および装置を用いることによ
り、TiやTi合金のような活性金属の粉末を連続的に製造
することができる。この方法によれば、製造過程で製品
粉末が汚染されることがなく、従来の方法に較べて生産
性を高めることができる。
By using the method and apparatus of the present invention, powders of active metals such as Ti and Ti alloys can be continuously produced. According to this method, the product powder is not contaminated during the manufacturing process, and the productivity can be improved as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

図1は、本発明の装置の一例の構成を示す縦断面図であ
る。図2は、本発明方法で得られたTi粉末の粒度分布を
示すグラフである。
FIG. 1 is a vertical cross-sectional view showing the configuration of an example of the device of the present invention. FIG. 2 is a graph showing the particle size distribution of the Ti powder obtained by the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 考二 兵庫県尼崎市東浜町1番地 大阪チタニウ ム製造株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Yamazaki 1 Higashihama-cho, Amagasaki-shi, Hyogo Osaka Titanium Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活性金属を溶解し、棒状の凝固物に成形
しながら連続的に引き抜き、引き抜かれた先端部を溶解
し、流下する溶湯に噴霧流体を作用させて噴霧すること
を特徴とする活性金属粉末の連続製造方法。
1. An active metal is melted and continuously drawn out while being formed into a rod-shaped solidified material, the drawn out tip is melted, and sprayed by causing a spraying fluid to act on the flowing molten metal. Continuous production method of active metal powder.
【請求項2】 活性金属を溶解する一次溶解装置と、溶
融状態の活性金属を棒状に凝固させるモールドと、凝固
した棒状体を連続的に引き抜く引き抜き機構と、引き抜
かれた棒状体の先端部を溶解する再溶解装置と、溶解さ
れ流下する溶湯を噴霧する噴霧装置からなることを特徴
とする活性金属粉末の連続製造装置。
2. A primary melting apparatus for melting an active metal, a mold for solidifying a molten active metal into a rod shape, a pulling-out mechanism for continuously pulling out the solidified rod-shaped body, and a tip portion of the pulled-out rod-shaped body. A continuous production apparatus for active metal powder, comprising a re-melting apparatus for melting and a spraying apparatus for spraying the molten metal which is melted and flows down.
JP3271691A 1991-02-27 1991-02-27 Method and device for continuously producing active metal powder Pending JPH0641618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3271691A JPH0641618A (en) 1991-02-27 1991-02-27 Method and device for continuously producing active metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3271691A JPH0641618A (en) 1991-02-27 1991-02-27 Method and device for continuously producing active metal powder

Publications (1)

Publication Number Publication Date
JPH0641618A true JPH0641618A (en) 1994-02-15

Family

ID=12366564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3271691A Pending JPH0641618A (en) 1991-02-27 1991-02-27 Method and device for continuously producing active metal powder

Country Status (1)

Country Link
JP (1) JPH0641618A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299302A (en) * 2005-04-15 2006-11-02 Kobe Steel Ltd Method for manufacturing long-size ingot of alloy containing active refractory metal by plasma arc melting
CN108145172A (en) * 2016-12-05 2018-06-12 无锡辛德华瑞粉末新材料科技有限公司 A kind of preparation method of 4D printings special-purpose metal powder
KR20190143534A (en) * 2018-06-11 2019-12-31 한국생산기술연구원 Ti powder manufacturing apparatus and Ti powder manufacturing method
CN112024900A (en) * 2020-08-24 2020-12-04 四川容克斯科技有限公司 Spherical metal vanadium powder and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299302A (en) * 2005-04-15 2006-11-02 Kobe Steel Ltd Method for manufacturing long-size ingot of alloy containing active refractory metal by plasma arc melting
JP4704797B2 (en) * 2005-04-15 2011-06-22 株式会社神戸製鋼所 Method for producing long ingot of active refractory metal-containing alloy by plasma arc melting
CN108145172A (en) * 2016-12-05 2018-06-12 无锡辛德华瑞粉末新材料科技有限公司 A kind of preparation method of 4D printings special-purpose metal powder
KR20190143534A (en) * 2018-06-11 2019-12-31 한국생산기술연구원 Ti powder manufacturing apparatus and Ti powder manufacturing method
CN112024900A (en) * 2020-08-24 2020-12-04 四川容克斯科技有限公司 Spherical metal vanadium powder and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP0194847B1 (en) Method for producing titanium particles
JP5328092B2 (en) Method for producing high purity and free flowing metal oxide powder
WO2019024421A1 (en) Method for preparing target material and target material
KR20140027335A (en) Low cost processing to produce spherical titanium and titanium alloy powder
KR20220100861A (en) Unique feedstock and manufacturing method for spherical powder
JP2014515792A5 (en)
TWI221101B (en) Method for producing alloy powder by dual self-fusion rotary electrodes
EP0420393B1 (en) System and method for atomizing a titanium-based material
JPH0234707A (en) Method for pulverizing a metal and apparatus for performing it
CN107052354A (en) A kind of device and method for preparing high sphericity 3D printing refractory metal powder
JPH0641618A (en) Method and device for continuously producing active metal powder
RU2413595C2 (en) Method of producing spherical granules of refractory and chemically active metals and alloys, device to this end and device to fabricate initial consumable billet to implement said method
CN112658271A (en) Efficient composite gas atomization powder preparation device and method
JPH0625716A (en) Production of metal powder
JP2002241807A (en) Method for manufacturing titanium-aluminum alloy powder
JPS63230806A (en) Gas atomizing apparatus for producing metal powder
GB2196956A (en) Process and apparatus for the production of rapidly solidified powders of high melting point ceramics
CN111014699A (en) 3D prints and makes equipment with alloy powder
JPH0331405A (en) Method and apparatus for producing metallic powder
JPS63210206A (en) Apparatus for producing metal powder
JP2001123206A (en) Rare earth metal electrode and rare earth metal powder obtained by rotary electrode atomizing method
JPH06116609A (en) Production of metal powder
JPS63199809A (en) Apparatus for producing powder
JPH03180432A (en) Melting method and melting device of metal
JPS63250401A (en) Production of spherical metal powder