JPS63210206A - Apparatus for producing metal powder - Google Patents

Apparatus for producing metal powder

Info

Publication number
JPS63210206A
JPS63210206A JP4132187A JP4132187A JPS63210206A JP S63210206 A JPS63210206 A JP S63210206A JP 4132187 A JP4132187 A JP 4132187A JP 4132187 A JP4132187 A JP 4132187A JP S63210206 A JPS63210206 A JP S63210206A
Authority
JP
Japan
Prior art keywords
powder
chamber
disk
melting material
plasma gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4132187A
Other languages
Japanese (ja)
Inventor
Hideaki Mizukami
秀昭 水上
Kentaro Mori
健太郎 森
Akiya Ozeki
尾関 昭矢
Masakazu Niikura
新倉 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4132187A priority Critical patent/JPS63210206A/en
Publication of JPS63210206A publication Critical patent/JPS63210206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To provide the titled apparatus which permits easy production of high-purity powder by providing a plasma gun which melts the end of a hung and held melting material to form liquid drops and a rotary disk for splashing and cooling the falling liquid drops, etc., into a chamber in which a cooling gas is filled. CONSTITUTION:The end of the hung and held melting material 11 is melted by an arc jet 16 of the plasma gun 12 and the liquid drops 13 of the molten metal formed in such a manner are dropped onto the disk 4. The disk 14 is kept rotating at a high speed, for example, 30,000rpm by a rotating device 15 during this time. The falling liquid drops 13 are, therefore, splashed and are quickly cooled by the cooling gas 17 filled in the chamber 19, by which powder 18 is formed. Since the plasma gun is used for melting of the melting material with the apparatus for producing the metal powder of this invention, the high-pressure atmosphere of the cooling gas can be formed in the chamber. An increase in the size of the melting material is thereby permitted and the productivity is improved. In addition, the high-purity powder is produced by installing the chamber to a required size.

Description

【発明の詳細な説明】 「産業上の利用分野] この発明は、粉末冶金等に使用する金属粉末又は合金粉
末を製造する金属粉末製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal powder manufacturing apparatus for manufacturing metal powder or alloy powder used in powder metallurgy and the like.

[従来の技術] 粉末冶金は、金属又は合金の粉末を型に装入して加圧成
形し、次いでこの成形体を焼結させることにより、金属
製品又は金属塊を製造する技術である。粉末冶金におい
ては、成分元素の偏析が起らないこと、難加工材料の製
品化が可能なこと、極めて微細な結晶組織を有する部材
か得られること、非平衡相を現出させることが可能等、
溶製材では得ることができない種々の利点があり、また
、二次的な切削加工を省略できるという利点がある。
[Prior Art] Powder metallurgy is a technology for producing metal products or metal ingots by charging metal or alloy powder into a mold, press-molding it, and then sintering the molded body. In powder metallurgy, segregation of component elements does not occur, it is possible to commercialize materials that are difficult to process, it is possible to obtain parts with extremely fine crystal structures, it is possible to make non-equilibrium phases appear, etc. ,
There are various advantages that cannot be obtained with melt-sawn lumber, and there is also the advantage that secondary cutting can be omitted.

このため、粉末冶金に適用される種々の粉末製造技術が
開発されている。
For this reason, various powder manufacturing techniques applied to powder metallurgy have been developed.

この中で工業生産規模で組織が微細で均一な粉末を製造
することができる方法の一つとして急速凝固法がある。
Among these methods, the rapid solidification method is one of the methods that can produce powder with a fine and uniform structure on an industrial production scale.

第2図は急速凝固法を示す模式図である。この急速凝固
法においては、高周波コイル1に高周波電流を付与する
ことにより容器2内で金属塊を溶解して生成した溶湯3
をノズル4を介して高速回転するディスク5−にに落下
させ、このディスク5の回転により溶湯3を飛散させる
FIG. 2 is a schematic diagram showing the rapid solidification method. In this rapid solidification method, a molten metal 3 is produced by melting a metal lump in a container 2 by applying a high frequency current to a high frequency coil 1.
is dropped through a nozzle 4 onto a disk 5- which rotates at high speed, and the rotation of this disk 5 scatters the molten metal 3.

そして、この飛散した溶湯3を水素ガス又はヘリウムガ
ス等の熱導率の高い冷却媒体により急速凝固させる。し
かし容器2.ノズル4から不純物の混入する虞れがある
。このような不純物等の汚染を防止する方法として、第
3図に示すような遠心造粒法がある。ここでは図示しな
いチャンバー内のAr雰囲気中で回転るつぼ(水冷電極
)6と消耗電極(垂直)7との間にアーク8を発生させ
、消耗電極7の端部を溶解して回転るつぼ6内に滴下し
だ液滴を回転るつぼ6の高速回転により飛散させて粉末
9を形成させるものである。
Then, this scattered molten metal 3 is rapidly solidified using a cooling medium with high thermal conductivity such as hydrogen gas or helium gas. However, container 2. There is a risk that impurities may enter from the nozzle 4. As a method for preventing such contamination with impurities, there is a centrifugal granulation method as shown in FIG. Here, an arc 8 is generated between the rotating crucible (water-cooled electrode) 6 and the consumable electrode (vertical) 7 in an Ar atmosphere in a chamber (not shown), and the end of the consumable electrode 7 is melted into the rotating crucible 6. The dropped liquid droplets are scattered by high-speed rotation of the rotating crucible 6 to form powder 9.

[発明が解決しようとする問題点] しかしながら、前記のような遠心造粒法は、回転るつぼ
からの汚染の虞れがあり、また回転るつぼを高速に回転
しな(自立径の小さい粉末を得られないので、回転るつ
ぼの高速回転が不可欠である。
[Problems to be Solved by the Invention] However, the above-mentioned centrifugal granulation method has the risk of contamination from the rotating crucible, and also requires the rotating crucible to be rotated at high speed (to obtain powder with a small free-standing diameter). Therefore, high-speed rotation of the rotating crucible is essential.

そのため回転るつぼの取り付は精度、回転機構等水冷装
置等が複雑で設備の大型化が困難であり、生産性が低い
という問題かある。
Therefore, there are problems in mounting the rotating crucible with accuracy, the rotation mechanism, water cooling device, etc. are complicated, making it difficult to increase the size of the equipment, and low productivity.

本発明の目的は、以」二のような事情に鑑みてなされた
ものてTi、Ti合金、高合金、超合金等の高純度の粉
末を工業生産規模で容易に製造出来る金属粉末製造装置
を提供しようとするものである。
The object of the present invention was made in view of the following circumstances, and it is an object of the present invention to provide a metal powder manufacturing apparatus that can easily manufacture high-purity powder of Ti, Ti alloy, high alloy, superalloy, etc. on an industrial production scale. This is what we are trying to provide.

[問題点を解決するための手段] 本発明は懸垂保持された溶解材と、この溶解祠誦 のV部を溶融して溶融金属の液滴を形成するプラズマ銃
と、このプラズマ銃で形成された液滴が落下する位置に
配置されたディスクと、このディスクを回転させて落下
した液滴を飛散冷却させて粉末とする回転手段とを冷却
用ガスが充満しているチャンバー内に設けた金属粉末製
造装置を特徴とするものである。
[Means for Solving the Problems] The present invention provides a suspension-held melting material, a plasma gun for melting the V section of the melting shrine to form droplets of molten metal, and a droplet formed by the plasma gun. A metal disk is installed in a chamber filled with cooling gas, and includes a disk placed at a position where the droplets fall, and a rotating means that rotates the disk to scatter and cool the falling droplets into powder. It is characterized by a powder manufacturing device.

[作用1 このような構造によればチャンバー内で溶解材の端部は
プラズマ銃で衝撃されて加熱され、溶融金属の液滴を形
成し、その液滴は回転しているディスク上に落下して飛
散し、この液滴はチャンバー内に充満させた冷却用ガス
で冷却され粉末が形成される。
[Effect 1] According to this structure, the end of the molten metal is heated by a plasma gun in the chamber, forming droplets of molten metal, which fall onto the rotating disk. The droplets are cooled by the cooling gas that fills the chamber and form powder.

[実施例] 以下、添付図面を参照して、この発明について具体的に
説明する。第1図(a)及び(b)は本発明に係る粉末
製造装置である。第1図(a)において、懸垂保持され
た溶解材11は、プラズマ銃12のアークジェット16
でその端部を溶融され、溶融金属の液滴13を形成し、
ディスク14上に落下する。この場合ディスク14は回
転装置15により高速回転例えば3’0. 00 Or
 pm’しているので、落下しだ液滴13は飛散し、チ
ャンバー19内に充満させた冷却用ガス17て急速に冷
却されて粉末18を形成する。チャンバー19には冷却
用ガス供給口20と、ガス排出口21とが設けられてい
る。
[Example] The present invention will be specifically described below with reference to the accompanying drawings. FIGS. 1(a) and 1(b) show a powder manufacturing apparatus according to the present invention. In FIG. 1(a), the molten material 11 held suspended is connected to the arc jet 16 of the plasma gun 12.
melting its ends to form a droplet 13 of molten metal;
It falls onto the disk 14. In this case, the disk 14 is rotated at high speed by a rotating device 15, for example, 3'0. 00 or
pm', the falling droplets 13 scatter and are rapidly cooled by the cooling gas 17 filling the chamber 19 to form a powder 18. The chamber 19 is provided with a cooling gas supply port 20 and a gas discharge port 21 .

溶解材11は鉛直方向に延長する軸を中心に回転出来る
ように回転装置22を設けている。回転はゆるやかに(
例えば2rpm)を行ない、溶解Hの端部が均一に溶融
するようにしている。また溶解材にはその端部の溶融に
対応して、溶解材11を下方に送り出す送り装置23を
設けている。
A rotating device 22 is provided so that the melting material 11 can rotate around an axis extending in the vertical direction. The rotation is gentle (
For example, at 2 rpm), the end portion of the melt H is melted uniformly. Further, the melting material is provided with a feeding device 23 for feeding the melting material 11 downward in response to the melting of the end portion thereof.

これによって溶解材11の端部を常に一定に保持するこ
とが出来る。第1図(b)はプラズマ銃12の拡大詳細
図である。プラズマ銃は市販のものが使用出来る。
This makes it possible to keep the end of the melting material 11 constant at all times. FIG. 1(b) is an enlarged detailed view of the plasma gun 12. Commercially available plasma guns can be used.

ここでは、陰極24と陽極25との間に作動ガス26を
流しアークジェット16を形成している。
Here, a working gas 26 is flowed between the cathode 24 and the anode 25 to form an arc jet 16.

本発明においては、溶解材の端部の溶融にプラズマ銃を
用いる。この理由は、プラズマ銃が電子銃のようにチャ
ンバー内の高い真空度(例えば10−’ Torr以下
)を必要としなく、1 atmでの操業も可能であり、
チャンバー内を圧力の高い冷却用ガス(例えばヘリウム
ガス)の雰囲気に保持することが出来ることによる。そ
のため形成された液滴はディスク上に落下飛散して冷却
用ガスに接して急速に粉体を形成する。この場合液滴が
チャンバー内壁に衝突する前に完全凝固させることがで
きるのでそれに付着することがない。そのため電子銃を
用いた場合のように冷却用ガスが使用出来ない場合と比
べて、ディスクからチャンバー内壁までの距離を短く出
来、チャンバ自体の径を約l/10程度にすることが出
来る。
In the present invention, a plasma gun is used to melt the ends of the melting material. The reason for this is that unlike an electron gun, a plasma gun does not require a high degree of vacuum in the chamber (e.g., 10-' Torr or less) and can operate at 1 atm.
This is because the inside of the chamber can be maintained in an atmosphere of high-pressure cooling gas (for example, helium gas). Therefore, the formed droplets fall onto the disk and are scattered, contacting the cooling gas and rapidly forming powder. In this case, the droplet can be completely solidified before colliding with the inner wall of the chamber, so that it will not adhere to the inner wall of the chamber. Therefore, compared to the case where a cooling gas cannot be used, such as when an electron gun is used, the distance from the disk to the inner wall of the chamber can be shortened, and the diameter of the chamber itself can be reduced to about 1/10.

次に第1図に示すような粉末製造装置を用いた場合の実
験例を示す。
Next, an experimental example using a powder manufacturing apparatus as shown in FIG. 1 will be shown.

実験例 溶解材としてTi−6AJ2−4V合金を使用した。こ
れはVAR溶解により溶製して120mmφの溶解材を
作成した。この溶解材を2 rpmで回転しながら、1
50KWのプラズマ銃により、この溶解材の端部を溶解
した。下方のディスクの径は90mmφであり、ディス
クの回転速度は30.000ppmとし、溶融しだ液滴
をディスク」二に落下させて飛散して約120μmの粉
末を得た。これはTi−6A、ff−4V合金の粉末と
して高純度のものであった。
Experimental Example A Ti-6AJ2-4V alloy was used as the melting material. This was melted by VAR melting to create a melted material with a diameter of 120 mm. While rotating this melting material at 2 rpm,
The ends of this melted material were melted using a 50KW plasma gun. The diameter of the lower disk was 90 mmφ, the rotational speed of the disk was 30,000 ppm, and the molten droplets were dropped onto the second disk and scattered to obtain a powder of about 120 μm. This was a highly pure Ti-6A, ff-4V alloy powder.

この場合、プラズマ銃の作動ガスはヘリウムガスであり
、チャンバー内は冷却用ガスとしてヘリウムガス1 a
trilを用いた。作・動ガスと冷却用ガスとはかなら
幣惰じてなくともよい。
In this case, the working gas of the plasma gun is helium gas, and the chamber contains helium gas 1a as a cooling gas.
tril was used. The operating gas and the cooling gas do not have to be used at the same time.

[発明の効果] 本発明による金属粉末製造装置では、溶解材を使用し、
その溶融にプラズマ銃を用いているのでチャンバー内で
の圧力の高い冷却用ガス雰囲気が可能である。そのため
溶解材を大型化することによる生産性の向−1xととも
に、チャンバーを必要な大きさに設置して、高純度の粉
末を製造出来るので産業」1利用価値の高い発明である
[Effect of the invention] The metal powder manufacturing apparatus according to the present invention uses a melting material,
Since a plasma gun is used for melting, a high pressure cooling gas atmosphere can be created within the chamber. Therefore, in addition to improving productivity by increasing the size of the melting material, it is also possible to manufacture high-purity powder by installing a chamber of a required size, making it an invention with high industrial utility.

【図面の簡単な説明】[Brief explanation of the drawing]

ズマ銃の詳細図、第2図及び第3図は従来の粉末製造装
置を示す模式図である。 11・・・溶解材、12・・・プラズマ銃、13・・・
液滴、14・・・ディスク、15・・・回転装置、16
・・・アークジェット、17・・・冷却用ガス、18・
・・粉末、19・・・チャンバー、20・・・ガス供給
口、21・・・ガス排出口、22・・・回転装置、23
・・・送り装置、24・・・陰極、25・・・陽極、2
6・・・作動ガス。 出願人代理人 弁理士 鈴江武彦 ヘ     ■
Detailed drawings of the Zuma gun, FIGS. 2 and 3 are schematic diagrams showing a conventional powder manufacturing apparatus. 11... Melting material, 12... Plasma gun, 13...
Droplet, 14... Disk, 15... Rotating device, 16
... Arc jet, 17... Cooling gas, 18.
...Powder, 19...Chamber, 20...Gas supply port, 21...Gas discharge port, 22...Rotating device, 23
... Feeding device, 24... Cathode, 25... Anode, 2
6... Working gas. Applicant's representative Patent attorney Takehiko Suzue ■

Claims (1)

【特許請求の範囲】[Claims] (1)懸垂保持された溶解材と この溶解材の端部を溶融して溶融金属の液滴を形成する
プラズマ銃と、 このプラズマ銃で形成された液滴が落下する位置に配置
されたディスクと、このディスクを回転させて落下した
液滴を飛散冷却させて粉末とする回転手段とを、 冷却用ガスが充満しているチャンバー内に設けたことを
特徴とする金属粉末製造装置。
(1) A plasma gun that melts a suspended melting material and the end of this melting material to form droplets of molten metal, and a disk placed at a position where the droplets formed by this plasma gun fall. A metal powder manufacturing apparatus characterized in that a chamber filled with cooling gas is provided with: and a rotating means for rotating the disk to scatter and cool the falling droplets to form a powder.
JP4132187A 1987-02-26 1987-02-26 Apparatus for producing metal powder Pending JPS63210206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4132187A JPS63210206A (en) 1987-02-26 1987-02-26 Apparatus for producing metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4132187A JPS63210206A (en) 1987-02-26 1987-02-26 Apparatus for producing metal powder

Publications (1)

Publication Number Publication Date
JPS63210206A true JPS63210206A (en) 1988-08-31

Family

ID=12605253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4132187A Pending JPS63210206A (en) 1987-02-26 1987-02-26 Apparatus for producing metal powder

Country Status (1)

Country Link
JP (1) JPS63210206A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282463A (en) * 1989-04-24 1990-11-20 Ishikawajima Harima Heavy Ind Co Ltd Method for coating granule with thin film
CN105665730A (en) * 2016-04-11 2016-06-15 西安赛隆金属材料有限责任公司 Device and method for preparing spherical metal powder
RU2645169C2 (en) * 2016-06-15 2018-02-16 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Method and apparatus for producing metal powder by centrifugal spraying
RU2699431C1 (en) * 2018-12-10 2019-09-05 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Method of producing spherical metal powders and apparatus for its implementation
CN111872378A (en) * 2020-09-28 2020-11-03 西安赛隆金属材料有限责任公司 Core-shell structure powder preparation device and method
CN114632941A (en) * 2022-05-18 2022-06-17 西安欧中材料科技有限公司 Equipment and method for improving batch stability of nickel-based metal spherical powder components

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282463A (en) * 1989-04-24 1990-11-20 Ishikawajima Harima Heavy Ind Co Ltd Method for coating granule with thin film
CN105665730A (en) * 2016-04-11 2016-06-15 西安赛隆金属材料有限责任公司 Device and method for preparing spherical metal powder
RU2645169C2 (en) * 2016-06-15 2018-02-16 Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Method and apparatus for producing metal powder by centrifugal spraying
RU2699431C1 (en) * 2018-12-10 2019-09-05 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Method of producing spherical metal powders and apparatus for its implementation
CN111872378A (en) * 2020-09-28 2020-11-03 西安赛隆金属材料有限责任公司 Core-shell structure powder preparation device and method
CN114632941A (en) * 2022-05-18 2022-06-17 西安欧中材料科技有限公司 Equipment and method for improving batch stability of nickel-based metal spherical powder components

Similar Documents

Publication Publication Date Title
CN110405220A (en) A method of GRCop-84 spherical powder is prepared based on plasma rotating atomization
TWI221101B (en) Method for producing alloy powder by dual self-fusion rotary electrodes
JP3054193B2 (en) Induction skull spinning of reactive alloys
US3975184A (en) Method and apparatus for production of high quality powders
US5427173A (en) Induction skull melt spinning of reactive metal alloys
US4886547A (en) Powder manufacturing apparatus and method therefor
JPS63210206A (en) Apparatus for producing metal powder
JPS58177403A (en) Method and device for manufacturing ceramic-free high purity metal powder
JPH03226508A (en) Manufacture of beryllium spherical particle
JPS60255906A (en) Method and equipment for manufacturing active metallic powder
JP2653963B2 (en) Manufacturing method of metal beryllium pebble
JPS63145703A (en) Apparatus for producing powder
JPH0331405A (en) Method and apparatus for producing metallic powder
JPH01205A (en) powder manufacturing equipment
JPS5933161B2 (en) Active metal or active alloy powder manufacturing method and its manufacturing equipment
JPH0531568A (en) Plasma melting/casting method
JPS5852408A (en) Production of metallic particles
JPH06116609A (en) Production of metal powder
Aller et al. Rotating atomization processes of reactive and refractory alloys
JPH01206A (en) powder manufacturing equipment
JPH0641618A (en) Method and device for continuously producing active metal powder
JPS63199809A (en) Apparatus for producing powder
JPS63238204A (en) Apparatus for production powder
JPS63169309A (en) Apparatus for producing alloy powder
JPH03247726A (en) Plasma melting method for active metal