JPS58177403A - Method and device for manufacturing ceramic-free high purity metal powder - Google Patents

Method and device for manufacturing ceramic-free high purity metal powder

Info

Publication number
JPS58177403A
JPS58177403A JP5170383A JP5170383A JPS58177403A JP S58177403 A JPS58177403 A JP S58177403A JP 5170383 A JP5170383 A JP 5170383A JP 5170383 A JP5170383 A JP 5170383A JP S58177403 A JPS58177403 A JP S58177403A
Authority
JP
Japan
Prior art keywords
melting
metal
melting vessel
molten metal
atomization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5170383A
Other languages
Japanese (ja)
Inventor
フランツ−ゲオルク・クネル
オツト−・ステンツエル
ロルフ・ル−トハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold Heraeus GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Heraeus GmbH filed Critical Leybold Heraeus GmbH
Publication of JPS58177403A publication Critical patent/JPS58177403A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は溶解容器から自由に流出する溶融金属をガス流
によって霧化し、続いて凝固させる・セラミックを含ま
ない高純度金属粉末を製造する方法および装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing ceramic-free high-purity metal powders in which molten metal flowing freely from a melting vessel is atomized by a gas stream and subsequently solidified.

上記概念の方法はしげしげ金属5噴霧法とも称される。The method based on the above concept is also referred to as the 5-metal spray method.

この場合溶融金属をセラミックライニングを有する誘導
炉から霧化装置の多くは同様。
In this case, many of the devices atomize the molten metal from induction furnaces with ceramic lining.

セラミックのタンデイツシに供給することは技術水準に
属する。誘導炉のセラミックライニングもセラミノクタ
ンデイッシも形成する粉末のセラミック粒子による汚染
の原因となり、したがって金属粉末の品質が著しく低下
される。
Providing ceramic tantalizers belongs to the state of the art. Both the ceramic lining of the induction furnace and the ceramic lining cause contamination of the forming powder with ceramic particles, thus significantly reducing the quality of the metal powder.

それゆえセラミンクを含まない金属粉末を製造するため
現在まで溶融金属分割に遠心投射法が使用された。この
場合使用材料としては真空子−り炉、電子ビーム炉また
はエレクトロスラグ再溶解装置で再溶解によってセラミ
ック分を除去′したインゴットが使用される。それぞれ
のインゴットを新たに溶解し、滴下または流出する°溶
融金属をいわゆる遠心・モノ上に導き、この上で溶融金
属を遠心力の作用下に微細な滴に分割した(西独公開特
許公報第25 28 999号参照)。
Therefore, to date centrifugal projection methods have been used to split molten metal in order to produce ceramic-free metal powders. In this case, the material used is an ingot whose ceramic content has been removed by remelting in a vacuum furnace, an electron beam furnace, or an electroslag remelter. Each ingot was newly melted and the dripping or flowing molten metal was guided onto a so-called centrifuge, on which the molten metal was divided into fine droplets under the action of centrifugal force (German Published Patent Application No. 25 28 999).

このような方法によって高純度の金属粉末を製造しうる
けれど、実際にはガス霧化法に比して粒度スペクトルが
粗ぐなるとともに装置の処理能力が小さいのが欠点であ
る。
Although high-purity metal powder can be produced by such a method, the drawbacks are that the particle size spectrum is coarser and the processing capacity of the equipment is smaller than in the gas atomization method.

インゴットを消耗電極として使用し、この電極と回転す
る水冷Pラムの間にアークを発生させ、このアークによ
ってインゴットを溶解することもすでに公知である。こ
の方法の場合も粒度スペクトルが広くなり、装置の処理
能力は著しく低い。
It is also already known to use an ingot as a consumable electrode and to generate an arc between this electrode and a rotating water-cooled P ram, which melts the ingot. In this method as well, the particle size spectrum is broad and the throughput of the equipment is significantly low.

電子ビーム溶解法と金属噴霧法の組合せは金属噴霧の際
霧化ガスを連続的に供給するため、経済的費用によって
十分高い真空を得ることが実際には不可能であるので役
立たない。電子ビームを使用するためにはできるだけ良
好な真空が必要である。
The combination of electron beam melting and metal atomization is of no use since it is practically impossible to obtain a sufficiently high vacuum due to economical costs, since the atomizing gas is continuously supplied during metal atomization. The use of an electron beam requires a vacuum as good as possible.

金属霧化法とプラズマ溶解法の組合せも低い効率および
エネルギー収支のため、不経済に高いプラズマ溶解能力
の装置を備えなければならないの〒1使用に耐えないこ
とが明らかになった0 それゆえ本発明の目的は霧化過程およびそのために必要
な溶融金属の単位時間当りの供給量が高いにもかかわら
ず、セラミック粒子を含まない粉末を製造しうる前記概
念の方法を得ることである。
It has become clear that the combination of metal atomization and plasma melting methods is not usable due to low efficiency and energy balance, requiring equipment with an uneconomically high plasma melting capacity. The object of the invention is to provide a method of the above concept which makes it possible to produce a powder free of ceramic particles, despite the atomization process and the high feed rate of molten metal required for it per unit time.

この目的は本発明により溶融金属をアーク電極により溶
解容器内に公知法で製造して保持し、溶解容器の熱収支
の制御によってこの中に凝固した金属のj−をつくり、
溶融金属を溶解容器の溢流口から流出させ、溢、流口の
下を霧化することによって解決される。
The purpose of this invention is to produce and hold molten metal in a melting vessel using an arc electrode using a known method, and to create a solidified metal j- in the melting vessel by controlling the heat balance of the melting vessel.
The solution is to allow the molten metal to flow out of the overflow of the melting vessel and atomize the area below the overflow.

電子ビーム溶解と異なりアーク電極による溶解は大気圧
中で実施することもできるの〒、溶解過程はかなりの量
の霧化ガスの供給によっても妨害されない。溶解容器の
内壁に凝固金属層をつくることによって溶融金属と溶解
容器の間の相互作用が有効に防止される。凝固金属層は
しばしばスカルとも称される。この種の溶解法は原理的
には公知であるけれど、現在まで真空中の精密鋳造部材
の製造にしか使用されなかった0 凝固金属層の厚さは溶解容器の熱収支すなわちアーク法
によって供給する熱量と冷却媒体によって導出する熱量
に関係する。それゆえ供給および導出熱量の制御によっ
て凝固金属層の厚さを制御することがfきる。
Unlike electron beam melting, arc electrode melting can also be carried out at atmospheric pressure, and the melting process is not hindered by the supply of significant amounts of atomizing gas. By creating a solidified metal layer on the inner wall of the melting vessel, interaction between the molten metal and the melting vessel is effectively prevented. The solidified metal layer is often also referred to as the skull. Although this type of melting method is known in principle, until now it has only been used for the production of precision casting parts in vacuum.The thickness of the solidified metal layer is determined by the heat balance of the melting vessel, i.e. by the arc method It is related to the amount of heat and the amount of heat extracted by the cooling medium. It is therefore possible to control the thickness of the solidified metal layer by controlling the amount of heat supplied and extracted.

この場合溶融金属があらかじめ溶解容器の材料と接触す
ることなく、溢流口からすなわち溶融金属浴の最高位置
から流出し、溢流口の下で霧化されることがきわめて重
要である。溶解速度をも決定する供給熱量は広い範囲に
変化することができるので、高い処理能力に必要な溶解
能力は本発明の方法によって容易に達成することができ
る。金属噴霧法も高い霧化速度を達成しつる方法である
。この場合粒度スペクトルの大きい変化幅が可能になる
。粒度スペクトルは方法・ξラメータに応じて狭くまた
は広くなり、さらじ粒度スペクトルの最大を移動するこ
とができる。さらに金属霧化に伴って溶融金属の著しく
早い凝固を生ずる好ましい冷却特性が得られる。
In this case, it is very important that the molten metal flows out of the overflow opening, ie from the highest point of the molten metal bath, without first coming into contact with the material of the melting vessel and is atomized below the overflow opening. Since the amount of heat supplied, which also determines the rate of dissolution, can be varied within a wide range, the dissolution capacity required for high throughput can be easily achieved by the method of the invention. Metal atomization is also a method that achieves high atomization rates. In this case, a large range of variations in the particle size spectrum is possible. The particle size spectrum becomes narrower or wider depending on the method and the ξ parameter, and the maximum of the Saraji particle size spectrum can be moved. Furthermore, favorable cooling properties are obtained with metal atomization resulting in significantly faster solidification of the molten metal.

簡単に表現すれば本発明はス々ル溶解法と金属霧化法の
組合せ!ある。
Simply put, the present invention is a combination of the Surle melting method and the metal atomization method! be.

さらに本発明により溶解容器の溢流口を能力調節のため
、プラズマトーチによって溶融金属の流れをほぼ一定に
保持するように加熱するのがとぐに有利である。この手
段により溶融金属の2つの性質すなわち粘度および表面
張力が制御される。弱い加熱または強い加熱によって溶
融金属の留保または流出促進を達成することができる。
Furthermore, according to the invention, it is particularly advantageous to heat the overflow opening of the melting vessel for capacity adjustment by means of a plasma torch in such a way that the flow of molten metal is kept approximately constant. By this means two properties of the molten metal are controlled: viscosity and surface tension. Retention or enhanced flow of molten metal can be achieved by weak or strong heating.

これはもちろん十分な量の溶融金属が補充されること、
すなわちアーク加熱の調節によって制御しつる過程を前
提とする。しがしそれとは無関係に溶解容器内の溶融金
属量はある程度緩衝量となる。というのは溢流口の最高
点の上に1種のメニスカスが形成され、その大きさは表
面張力に関係するがら1ある。溢流口を強く加熱すれば
、この平衡はとぐに単位時間当り多量の溶融金属が流出
する方向に影響される。さらに溢流口には半凝固した溶
融金属がなくなる。
This of course requires that a sufficient amount of molten metal be replenished;
In other words, it is assumed that the process is controlled by adjusting the arc heating. However, regardless of this, the amount of molten metal in the melting container becomes a buffer amount to some extent. This is because a kind of meniscus is formed above the highest point of the overflow opening, and its size is 1, which is related to the surface tension. If the overflow opening is heated strongly, this equilibrium is immediately influenced in the direction in which a large amount of molten metal flows out per unit time. Furthermore, there is no semi-solidified molten metal at the overflow port.

本発明はさらに本発明の方法を実施する装置にも関する
。この装置は溶解容器を含む溶解および霧化室、加熱装
置、霧化ノズル、冷却区間および粉末捕集容器からなる
The invention further relates to a device for carrying out the method of the invention. The device consists of a melting and atomization chamber containing a melting vessel, a heating device, an atomization nozzle, a cooling section and a powder collection vessel.

同じ目的を解決するためさらに本発明により、溶解容器
が溢流口を有する液冷溶解ルッゼとして形成され、加熱
装置が溶解容器の上に配置したアーク電極〒あり、がっ
霧化ノズルを溢流口の下に配置した装置が提案される。
To solve the same object, it is further provided according to the invention that the melting vessel is formed as a liquid-cooled melting vessel with an overflow opening, the heating device having an arc electrode placed above the melting vessel, and a gas overflowing atomizing nozzle. A device placed under the mouth is suggested.

アーク電極としては永久電極(黒鉛電極、水冷した金属
電極)またはとくにこの方法〒製造する金属粉末と同じ
金属からなるいわゆる消耗電極が使用される! このような装置はさらに本発明の特徴によりとぐに有利
に溶解および霧化室が1部に横方向突出部を有し、この
突出部が溢流口の方向の続きとして拡がり、かつ冷却区
間を有し、突出部の端部に粉末捕集容器が配置されてい
る。
As arc electrodes, permanent electrodes (graphite electrodes, water-cooled metal electrodes) or, especially in this method, so-called consumable electrodes made of the same metal as the metal powder to be produced are used! Such a device is furthermore advantageous due to the features of the invention, in which the melting and atomization chamber has a transverse projection in one part, which extends as a continuation in the direction of the overflow opening and which has a cooling section. and a powder collection container is disposed at the end of the protrusion.

溶解過程が不活性ガス中〒実施されるいわゆる閉鎖アー
ク炉は一般に主軸が垂直方向に走る構造の炉が常用され
る。それゆえ本発明は主として垂直方向に拡がるこのよ
うな炉に横方向すなわち水平方向に拡がる突出部を付加
することからなる。この水平方向突出部には金属粉末の
冷却区間もあり、金属粉末は高いガス圧のため比較的迅
速に凝固する。
A so-called closed arc furnace in which the melting process is carried out in an inert gas is generally a furnace having a structure in which the main axis runs vertically. The invention therefore consists in adding to such a furnace, which extends primarily in the vertical direction, a laterally or horizontally extending projection. This horizontal projection also has a cooling section for the metal powder, which solidifies relatively quickly due to the high gas pressure.

金属粉末はこの冷却区間内fはぼ水平方向に、しかしき
わめて強い横方向成分を有する放物線の形〒拡がる。こ
め横方向成分は本発明の装置の機能に重要〒ある。とい
うのはこの構造特徴によって全装置の構造高さを拡大す
る必要がなくなるからである。この場合リングスリット
ノズルから高速をもって流出するガスが金属粒子をほぼ
下向きに噴射する公知金属霧化法によればいわゆる落丁
シャフトが必要になり、そのためこのような装置の構造
高さが著しく大きくなることに注意しなければならない
The metal powder spreads out in this cooling zone f almost horizontally, but in the form of a parabola with a very strong transverse component. The transverse component is important to the functioning of the device of the present invention. This construction feature eliminates the need to increase the construction height of the entire device. In this case, the known metal atomization method, in which the gas flowing out at high speed from a ring-slit nozzle injects metal particles almost downward, requires a so-called drop shaft, which significantly increases the structural height of such a device. You must be careful.

次に本発明の装置の実施例を図面により説明する。Next, embodiments of the apparatus of the present invention will be described with reference to the drawings.

装置は溶解および霧化室1からなり、この室は上部およ
び中間部にほぼ円筒形のシャフト2を有する。室は室上
部3および室上部4からなり、この2つの部分は装入の
ため取りはずし可能のフランジ結合5で互いに結合され
る。室上部および室上部は図示のように2重壁に形成さ
れ、冷却媒体流入管6または7および冷却媒体流出管8
または9を備える。室上部は図示されていない旋回支柱
に固定され、それによって横に旋回可能である。
The device consists of a dissolution and atomization chamber 1, which has an approximately cylindrical shaft 2 in its upper and middle parts. The chamber consists of a chamber upper part 3 and a chamber upper part 4, the two parts being connected to each other by a removable flange connection 5 for charging. The upper part of the chamber and the upper part of the chamber are formed with double walls as shown in the figure, and have a coolant inlet pipe 6 or 7 and a coolant outlet pipe 8.
or 9. The upper part of the chamber is fixed to a pivoting column (not shown), by means of which it can be pivoted laterally.

室上部のスライドシール10をt極ロッドが貫通し、こ
のロンドは導線12を介して電源装置と結合している。
A t-pole rod passes through a slide seal 10 in the upper part of the chamber, and this rod is connected to a power supply device via a conductive wire 12.

電極ロンド11の下端に支持装置13が固定され、この
装置へ電極短片14が形状閉鎖的かつ解除可能に挿入さ
れる。電極短片14は消耗電極として形成された電極1
5と溶接により結合される。
A supporting device 13 is fastened to the lower end of the electrode rod 11, into which an electrode strip 14 is inserted in a positive and releasable manner. The electrode strip 14 is an electrode 1 designed as a consumable electrode.
5 by welding.

電極15の下方には溶解容器16があり、この容器は導
線17を介して電源装置の対極と結合している。溶解容
器は2重壁の液体冷却ルツゼとして形成され、片側にい
わゆる注型ノーズの形の溢流口18を備える。溶解過程
の間、電極15と溶解容器16内の溶融金属との間にア
ークが飛び、このアークにより溶融金属は液状に保持さ
れ、連続的に電極15の新しい材料が溶解される。前記
のように溶解容器16の熱収支の制御によって溶融金属
とどの溶解容器内壁の間にスカルと称する凝固した材料
の層が形成される。この層(図には示されていない)は
溶融金属と溶解容器の接触を防止する。
Below the electrode 15 there is a melting vessel 16 which is connected via a conductor 17 to the counter electrode of the power supply. The melting vessel is constructed as a double-walled liquid-cooled vessel and is provided on one side with an overflow opening 18 in the form of a so-called pouring nose. During the melting process, an arc is struck between the electrode 15 and the molten metal in the melting vessel 16, which keeps the molten metal in liquid form and continuously melts new material in the electrode 15. By controlling the heat balance of the melting vessel 16 as described above, a layer of solidified material called a skull is formed between the molten metal and any of the inner walls of the melting vessel. This layer (not shown) prevents contact between the molten metal and the melting vessel.

潅流口から下へ流出する釡属は霧化ノズル19の前に達
し、このノズルは導管20を介して図示されていない圧
縮ガス源と結合している。
The pot flowing downward from the irrigation opening reaches an atomizing nozzle 19 which is connected via a conduit 20 to a compressed gas source, not shown.

ガス流がない場合、溢流口18から流出する金属は霧化
ノズル19の前面の前を流れ去る。しかし霧化ノズル1
9からの適当な圧縮ガスによって金属流はきわめて微細
な滴に霧化され、この霧はほぼ水平方向に右側(図面で
)へ噴射される。
In the absence of gas flow, the metal exiting from the overflow opening 18 flows away in front of the atomization nozzle 19. However, atomization nozzle 1
A suitable compressed gas from 9 atomizes the metal stream into very fine droplets, which are injected approximately horizontally to the right (in the drawing).

そのため室上部4の下部範囲に横方向突出部21が付加
され、その2重壁は冷却系へ接続され、この突出部21
に冷却区間22が形成される。突出部21がほぼ溢流口
1Bの方向および霧化ノズル19から出るガスの流れ方
向に続くことは図から明らかである。突出部21の先端
の下側仕切壁はホン・ぞ23の形に形成され、−このホ
ン・ぞの下部出口へ粉末ゲート24を介して粉末捕集容
器25が接続する。
For this purpose, a transverse projection 21 is added in the lower region of the chamber upper part 4, the double wall of which is connected to the cooling system, and this projection 21
A cooling section 22 is formed. It is clear from the figure that the projection 21 follows approximately in the direction of the overflow opening 1B and in the flow direction of the gas exiting the atomization nozzle 19. The lower partition wall at the tip of the protrusion 21 is formed in the form of a horn 23 to which a powder collection container 25 is connected via a powder gate 24 to the lower outlet of the horn.

室上部4と横方向突出部21の間の移行部の室壁にプラ
ズマトーチ26が配置され、このトーチは溢流口18へ
向いているの1、この溢流口をプラズマフレーム27に
よって加熱することがfきる。
A plasma torch 26 is arranged on the chamber wall at the transition between the chamber upper part 4 and the lateral projection 21 and is directed toward the overflow opening 18, which is heated by a plasma flame 27. Things can happen.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の装置の縦断面図である。 The drawing is a longitudinal sectional view of the device of the invention.

Claims (1)

【特許請求の範囲】 1、 溶解容器から自由に流出する溶融金属をガス流に
よって霧化し、次に凝固させるセラミックを含まない高
純度金属粉末の製法において、溶融金属をアーク電極に
より溶解容器内に製造して保持し、溶解容器の熱収支の
制御によって溶解容器内に凝固金属層をつくり、溶融金
属を溶解容器の溢流口から流出させ、溢流口の下1霧化
することを特徴とするセラミックを含まない高純度金属
粉末を製造する方法。 2 溢流口をプラズマトーチにより、1llF拳金属の
流れを一定に保持するように加熱して能力を制御する特
許請求の範囲第1項記載の方法。 3、 溶解容器を含む溶解および霧化室、加熱装置、霧
化ノズル、冷却区間および粉末捕集客器からなる、セラ
ミックを含まない高純度金属粉末を製造する装置におい
て、溶解容器(16)が溢流口(18)を備える液冷溶
解ルツヂとして形成され、加熱装置が溶解容器(16)
の上方に配置されたアーク電極(15)1あり、霧化ノ
ズル(19)が溢流口(18)のF方に配置されている
ことを特徴とするセラミックを含まない高純度金属を製
造する装置。 4、 溶解および霧化室(1)が下部に横方向突出部(
21)を−有し、この突出部が溢流口(18)の方向の
続きとして拡がり、かつ冷却区間(22)を有し、突出
部の端部に粉末捕集容器(25)が配置されている特許
請求の範囲第3項記載の装置。 5、 溶解および霧化室(1)に溢流口(18)に向く
プラズマトーチ(26)が配置されている特許請求の範
囲第3項記載の装置。
[Claims] 1. A method for producing ceramic-free high-purity metal powder in which molten metal freely flowing out of a melting vessel is atomized by a gas flow and then solidified, the molten metal being introduced into the melting vessel by an arc electrode. It is characterized by manufacturing and holding, creating a solidified metal layer in the melting container by controlling the heat balance of the melting container, causing the molten metal to flow out from the overflow port of the melting container, and atomizing it below the overflow port. A method for producing high-purity metal powder that does not contain ceramics. 2. The method according to claim 1, wherein the overflow port is heated with a plasma torch so as to maintain a constant flow of 111F metal to control the capacity. 3. In an apparatus for producing ceramic-free high-purity metal powder, which consists of a melting and atomization chamber including a melting vessel, a heating device, an atomization nozzle, a cooling section and a powder collection device, the melting vessel (16) is overflowing. It is configured as a liquid-cooled melting vessel with a flow opening (18) and a heating device is connected to the melting vessel (16).
To manufacture a high-purity metal that does not contain ceramics, characterized in that there is an arc electrode (15) 1 disposed above and an atomization nozzle (19) is disposed on the F side of the overflow port (18). Device. 4. The melting and atomization chamber (1) has a lateral protrusion (
21), which protrusion extends as a continuation in the direction of the overflow opening (18) and has a cooling section (22), at the end of which a powder collection container (25) is arranged. 3. The device according to claim 3. 5. Device according to claim 3, characterized in that a plasma torch (26) directed towards the overflow (18) is arranged in the melting and atomization chamber (1).
JP5170383A 1982-03-31 1983-03-29 Method and device for manufacturing ceramic-free high purity metal powder Pending JPS58177403A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823211861 DE3211861A1 (en) 1982-03-31 1982-03-31 METHOD AND DEVICE FOR PRODUCING HIGH-PURITY CERAMIC-FREE METAL POWDERS
DE32118619 1982-03-31

Publications (1)

Publication Number Publication Date
JPS58177403A true JPS58177403A (en) 1983-10-18

Family

ID=6159804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5170383A Pending JPS58177403A (en) 1982-03-31 1983-03-29 Method and device for manufacturing ceramic-free high purity metal powder

Country Status (5)

Country Link
JP (1) JPS58177403A (en)
DE (1) DE3211861A1 (en)
FR (1) FR2524356A1 (en)
GB (1) GB2117417B (en)
SE (1) SE8301165L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046305A (en) * 1983-06-23 1985-03-13 ゼネラル・エレクトリツク・カンパニイ Alloy powder manufacturing process and device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120352A (en) * 1983-06-23 1992-06-09 General Electric Company Method and apparatus for making alloy powder
US4544404A (en) * 1985-03-12 1985-10-01 Crucible Materials Corporation Method for atomizing titanium
US4732369A (en) * 1985-10-30 1988-03-22 Hitachi, Ltd. Arc apparatus for producing ultrafine particles
DE4011392B4 (en) * 1990-04-09 2004-04-15 Ald Vacuum Technologies Ag Process and device for forming a pouring jet
US5272718A (en) * 1990-04-09 1993-12-21 Leybold Aktiengesellschaft Method and apparatus for forming a stream of molten material
US5176874A (en) * 1991-11-05 1993-01-05 General Electric Company Controlled process for the production of a spray of atomized metal droplets
US5268018A (en) * 1991-11-05 1993-12-07 General Electric Company Controlled process for the production of a spray of atomized metal droplets
US5171358A (en) * 1991-11-05 1992-12-15 General Electric Company Apparatus for producing solidified metals of high cleanliness
US5198017A (en) * 1992-02-11 1993-03-30 General Electric Company Apparatus and process for controlling the flow of a metal stream

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1164810A (en) * 1966-12-19 1969-09-24 Atomic Energy Authority Uk Improvements in or relating to Production of Particulate Refractory Material
DE1921885C3 (en) * 1968-05-03 1976-01-02 National Distillers And Chemical Corp., New York, N.Y. Method and device for forming lumpy reaction metal in the form of metal scrap of various shapes and sizes
FR2084646A5 (en) * 1970-03-14 1971-12-17 Leybold Heraeus Verwaltung
FR2098951A5 (en) * 1970-07-31 1972-03-10 Anvar Spheroidal granules of refractory material prodn - by two-stage pulverization of molten raw material
GB1411076A (en) * 1971-10-27 1975-10-29 Atomic Energy Authority Uk Production of particulate material
US3829538A (en) * 1972-10-03 1974-08-13 Special Metals Corp Control method and apparatus for the production of powder metal
DE2528999C2 (en) * 1975-06-28 1984-08-23 Leybold-Heraeus GmbH, 5000 Köln Process and device for the production of high-purity metal powder by means of electron beam heating
SE425837B (en) * 1979-05-31 1982-11-15 Asea Ab PLANT FOR GASATOMIZING A MELTING, INCLUDING COOLING ORGAN

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046305A (en) * 1983-06-23 1985-03-13 ゼネラル・エレクトリツク・カンパニイ Alloy powder manufacturing process and device
JPH059482B2 (en) * 1983-06-23 1993-02-05 Gen Electric

Also Published As

Publication number Publication date
SE8301165D0 (en) 1983-03-03
GB8307970D0 (en) 1983-04-27
GB2117417A (en) 1983-10-12
GB2117417B (en) 1985-06-19
DE3211861A1 (en) 1983-10-06
SE8301165L (en) 1983-10-01
FR2524356A1 (en) 1983-10-07

Similar Documents

Publication Publication Date Title
US3829538A (en) Control method and apparatus for the production of powder metal
BR112017024489B1 (en) METHODS FOR PRODUCING A TITANIUM ALLOY POWDER, AN ALLOY POWDER, A METALLIC POWDER AND A METALLIC POWDER MATERIAL, AS WELL AS APPARATUS FOR THE PRODUCTION OF A METALLIC POWDER MATERIAL
JP2589220B2 (en) Continuous casting of ingots
JPH0135881B2 (en)
JPH03183706A (en) Manufacture of titanium particles
CN110799292A (en) Method for producing metal powder by means of gas atomization and device for producing metal powder according to said method
US4238427A (en) Atomization of molten metals
KR20210016588A (en) Method and apparatus for producing high purity spherical metal powder at high production rate from one or two wires
EP0471798B1 (en) Induction skull melt spinning of reactive metal alloys
JPS58177403A (en) Method and device for manufacturing ceramic-free high purity metal powder
EP0907756B1 (en) Processing of electroslag refined metal
RU2413595C2 (en) Method of producing spherical granules of refractory and chemically active metals and alloys, device to this end and device to fabricate initial consumable billet to implement said method
US5427173A (en) Induction skull melt spinning of reactive metal alloys
US5992503A (en) Systems and methods for maintaining effective insulation between copper segments during electroslag refining process
US4408971A (en) Granulation apparatus
RU2089633C1 (en) Device for melting and casting of metals and alloys
JPH0625716A (en) Production of metal powder
JPS60255906A (en) Method and equipment for manufacturing active metallic powder
JP2001108376A (en) Bottom casting type float melting apparatus
US3804150A (en) Apparatus for electroslag remelting
JPS63210206A (en) Apparatus for producing metal powder
KR100694333B1 (en) Consumable electrode continuous feed system and method in electroslag refining
RU2141392C1 (en) Method for making metallic powder and apparatus for performing the same
JP2914776B2 (en) Continuous dissolution and outflow control method for materials
JPH0270010A (en) Method and apparatus for manufacturing high purity metal powder