JPH0270010A - Method and apparatus for manufacturing high purity metal powder - Google Patents
Method and apparatus for manufacturing high purity metal powderInfo
- Publication number
- JPH0270010A JPH0270010A JP22001488A JP22001488A JPH0270010A JP H0270010 A JPH0270010 A JP H0270010A JP 22001488 A JP22001488 A JP 22001488A JP 22001488 A JP22001488 A JP 22001488A JP H0270010 A JPH0270010 A JP H0270010A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- metal
- melting
- crucible
- metal powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 77
- 239000002184 metal Substances 0.000 title claims abstract description 77
- 239000000843 powder Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000002844 melting Methods 0.000 claims abstract description 30
- 230000008018 melting Effects 0.000 claims abstract description 30
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 238000010298 pulverizing process Methods 0.000 claims abstract 2
- 239000007789 gas Substances 0.000 claims description 9
- 239000007921 spray Substances 0.000 claims description 6
- 238000010894 electron beam technology Methods 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 7
- 239000000956 alloy Substances 0.000 abstract description 7
- 238000011109 contamination Methods 0.000 abstract description 7
- 239000002245 particle Substances 0.000 abstract description 5
- 239000000498 cooling water Substances 0.000 abstract description 4
- 238000011084 recovery Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 238000000889 atomisation Methods 0.000 abstract 1
- 238000007664 blowing Methods 0.000 abstract 1
- 230000001678 irradiating effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 229910052802 copper Inorganic materials 0.000 description 15
- 239000010949 copper Substances 0.000 description 15
- 239000003870 refractory metal Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009689 gas atomisation Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 238000000365 skull melting Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、高純度金属粉末の製造方法および装置に関
するものであり、上記高純度金属粉末は、高純度合金粉
末および高純度金属間化合物粉末をも含むものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for producing high-purity metal powder, and the high-purity metal powder is a high-purity alloy powder and a high-purity intermetallic compound powder. It also includes.
従来、高純度の金属粉末、合金粉末および金属間化合物
粉末を製造する方法としてはガスアトマイズ法かよく用
いられてきた。この方法は、セラミックライニングされ
た誘導溶解炉からセラミック製タンディッンユに溶融金
属が注かれ、タンデイツシュ底の孔から溶融金属流を落
下せしめ、この溶融金属流に対して噴霧カスを衝突させ
て粉末化する方法である。この方法では上記ライニング
またはタンデイツシュのセラミックス粒子が溶融金属に
混入するために、上記溶融金属の汚染は避けられず、特
にチタンやジルコニウムのようなセラミックと強く反応
して新たなセラミック相を形成する金属の高純度金属粉
末を製造することは困難であった。Conventionally, gas atomization has often been used as a method for producing high-purity metal powders, alloy powders, and intermetallic compound powders. In this method, molten metal is poured from a ceramic-lined induction melting furnace into a ceramic tundish, and the molten metal flow is allowed to fall through a hole in the bottom of the tundish, and the spray scum collides with the molten metal flow to turn it into powder. It's a method. In this method, contamination of the molten metal is unavoidable because the ceramic particles of the lining or tundish mix into the molten metal, especially metals such as titanium and zirconium that react strongly with ceramics to form a new ceramic phase. It has been difficult to produce high-purity metal powder.
これら従来技術の欠点を解消する!」的で、最近新たに
特開昭01−25330[i号公報に記載の技術か提供
されている。Eliminate these drawbacks of conventional technology! Recently, a technique described in Japanese Patent Application Laid-Open No. 1-25330 [i] has been proposed.
上記特開昭61−253308号公報の技術は、アーク
スカル溶解法により溶融金属を保持し、溶解容器底にモ
リブデン、タンタル、タングステン、レニウムなとの耐
火性金属からなるノズルを設ζ)、これにより溶融金属
流を落ドし、この落下する溶融金属流に対して噴霧ガス
を衝突せしめ粉末化する方法である。The technique disclosed in JP-A No. 61-253308 holds molten metal using the arc skull melting method, and a nozzle made of a refractory metal such as molybdenum, tantalum, tungsten, or rhenium is installed at the bottom of the melting vessel. In this method, a molten metal stream is dropped and a spray gas collides with the falling molten metal stream to turn it into powder.
上記特開昭61−253306号公報の従来技術は、チ
タン金属粉末の製造技術としては優れたものであるが、
溶融金属が耐火性金属からなるノズル内面に直接接触し
て流れるために、上記ノズルの耐火性金属は微量ながら
上記溶融金属に溶解し汚染され、そのために高純度金属
粉末を製造することが困難であった。The prior art disclosed in Japanese Unexamined Patent Publication No. 61-253306 is an excellent technique for producing titanium metal powder, but
Because the molten metal flows in direct contact with the inner surface of the nozzle made of refractory metal, the refractory metal in the nozzle dissolves in the molten metal in small amounts and becomes contaminated, making it difficult to produce high-purity metal powder. there were.
また、」1記耐火性金属が溶融金属中に溶出するため、
上記耐火性金属からなるノズルを長時間使用すると、ノ
ズルの内径が変化し、したがって粉末性状の制御が不安
定になるという問題点もあ−〕だ。In addition, since the refractory metal described in 1. is eluted into the molten metal,
Another problem is that when a nozzle made of the refractory metal is used for a long time, the inner diameter of the nozzle changes, making control of powder properties unstable.
そこで、本発明省等は、上記問題点を解決すべく研究を
行った結果、
溶解容器の内壁面たけでなく、ノズル内面をも冷却し、
上記冷却による熱収支を制御することにより上記溶解容
器内面およびノズル内面に密着し7た凝固金属層を形成
し、上記凝固金属層をライニングした溶解容器およびノ
ズルを用いることにより溶融金属流を形成し、この溶融
金属流に不活性ガスを噴射すると、溶融容器およびノズ
ルを構成する材料で」1記溶融金属か汚染されることな
く高純度金属粉末を製造することかできるという知見を
得たのである。Therefore, the Ministry of Invention and others conducted research to solve the above problems, and as a result, they cooled not only the inner wall surface of the melting container but also the inner surface of the nozzle.
A solidified metal layer is formed in close contact with the inner surface of the melting container and the nozzle by controlling the heat balance due to the cooling, and a molten metal flow is formed by using the melting container and nozzle lined with the solidified metal layer. They discovered that by injecting an inert gas into this molten metal stream, it is possible to produce high-purity metal powder without contaminating the molten metal using the materials that make up the melting vessel and nozzle. .
この発明は、かかる知見にもとづいてなされたものであ
って、
落下口を有する溶解容器の落下口内面および溶解容器内
面を冷却し熱収支制御することによって、上記落下口内
面および溶解容器内面に密着した凝固層を形成すると同
時に、上記落下口中心部にビームまたはアークを照η・
jして上記落下口の凝固金属による閉塞を防止しつつ」
−記落下日を通(7゛C溶融金属流を形成し、」1紀溶
融金属流に不活性ガスを噴射し−C高純度金属粉末を製
造する方法およびそのための装置に特徴を有するもので
ある。This invention was made based on this knowledge, and by cooling the inner surface of the dropping port of a melting container having a dropping port and the inner surface of the melting container and controlling the heat balance, the inner surface of the melting port and the inner surface of the melting container are tightly attached to the inner surface of the dropping port and the melting container. At the same time, a beam or arc is irradiated at the center of the drop opening to form a solidified layer.
j to prevent the above-mentioned drop opening from being blocked by solidified metal.''
- A method for producing high-purity metal powder by forming a 7°C molten metal flow and injecting an inert gas into the 1st molten metal flow, and an apparatus therefor. be.
この発明で用いる溶解容器は、水冷銅ルツボが好ましい
。また落下口は、水冷銅ノズルまたは上記水冷銅ルツボ
の底に設けた穴であってもよい。The melting container used in this invention is preferably a water-cooled copper crucible. Further, the drop opening may be a water-cooled copper nozzle or a hole provided at the bottom of the water-cooled copper crucible.
上記落下口内面に形成された凝固金属層が発達して、落
下口全体か閉塞されるのを防くために、レーザービーム
、プラズマビーム、電子ビーム、アーク等を照射して上
記落下口の閉塞を防止する。In order to prevent the solidified metal layer formed on the inner surface of the drop port from developing and blocking the entire drop port, laser beams, plasma beams, electron beams, arcs, etc. are irradiated to block the drop port. prevent.
また、上記ビームおよびアークの出力を変更することに
より溶融金属の落下流量を変えることかでき、したかっ
て、上記ビームおよびアークの出力を一定にすると溶融
金属の落下流量も一定にすることができ、この時にガス
アトマイズして得られた粉末の平均粒径も均一にするこ
とができる。Furthermore, by changing the outputs of the beam and arc, the falling flow rate of the molten metal can be changed, and therefore, when the outputs of the beam and arc are constant, the falling flow rate of the molten metal can also be made constant; At this time, the average particle size of the powder obtained by gas atomization can also be made uniform.
C実 施 例〕
つぎに、この発明の実施例を図面にもとついて具体的に
説明する。C Embodiment] Next, an embodiment of the present invention will be specifically described based on the drawings.
第1図は、この発明の高純度金属粉末を製造するための
装置の概略図である。FIG. 1 is a schematic diagram of an apparatus for producing high-purity metal powder of the present invention.
上記第1図において、1は消耗電極であり、この消耗電
極はT1−6%A、&−4%V合金で作製されている。In FIG. 1, 1 is a consumable electrode, and this consumable electrode is made of T1-6%A, &-4%V alloy.
上記消耗電極1は、電極ホルダー3に装着されるように
なっており、送電線2を通じて消耗電極1と水冷銅ルツ
ボ8の間に電圧がかけられるようになっている。上記水
冷銅ルツボ8の底部中心部には溶融金属落下口12が設
けられており、上記落下口I2に向って噴霧ノズル9が
設けられている。さらに、上記落下口12の真上には、
レーザー発振機4が取付けられている。以上の装置は溶
解チャンバー13に収納されており、上記溶解チャンバ
ー13で作製された生成粉末11および噴霧用ガス10
は、粉末回収チャンバー14に排出され、上記噴霧用ガ
ス10は排気孔(図示せず)から回収し再利用され、一
方生成粉末11は、粉末回収チャンバー14の底に堆積
し回収するようになっている。The consumable electrode 1 is mounted on an electrode holder 3, and a voltage is applied between the consumable electrode 1 and the water-cooled copper crucible 8 through the power transmission line 2. A molten metal dropping port 12 is provided at the center of the bottom of the water-cooled copper crucible 8, and a spray nozzle 9 is provided facing the dropping port I2. Furthermore, right above the drop port 12,
A laser oscillator 4 is attached. The above device is housed in the dissolution chamber 13, and the product powder 11 produced in the dissolution chamber 13 and the atomizing gas 10 are stored in the dissolution chamber 13.
is discharged into the powder recovery chamber 14, and the atomizing gas 10 is recovered from an exhaust hole (not shown) and reused, while the produced powder 11 is deposited at the bottom of the powder recovery chamber 14 and collected. ing.
上記装置を用いて高純度金属粉末を製造するには次のよ
うにして行われる。High purity metal powder is produced using the above apparatus as follows.
まず、消耗電極1と水冷銅ルツボ8の間に10Vの初期
電圧をかけてアークを発生させ、その後電圧を30Vに
上昇し、発生アークを安定化させ融解を開始する。この
時の電流値は2400Aであった。First, an initial voltage of 10 V is applied between the consumable electrode 1 and the water-cooled copper crucible 8 to generate an arc, and then the voltage is increased to 30 V to stabilize the generated arc and start melting. The current value at this time was 2400A.
上記消耗電極1を溶解するとともに上記水冷銅ルツボ8
には温度:25℃の冷却水7を流量:16ρ/minの
割合で供給し、上記水冷銅ルツボ8の内面を冷却するこ
とにより水冷銅ルツボ8内面に凝固金属層15を形成し
、あたかも水冷銅ルツボ8内に凝固金属層15がライニ
ングされ、上記ライニングされた水冷銅ルツボ内に溶融
金属が保持された状態を達成した。このような状態を維
持するためには、溶融金属と水冷銅ルツボとの熱収支を
、上記冷却水7の水温および流量を制御することによっ
て行われる。While melting the consumable electrode 1, the water-cooled copper crucible 8
Cooling water 7 at a temperature of 25°C is supplied at a flow rate of 16ρ/min to cool the inner surface of the water-cooled copper crucible 8, thereby forming a solidified metal layer 15 on the inner surface of the water-cooled copper crucible 8, as if it were water-cooled. The copper crucible 8 was lined with a solidified metal layer 15, and a state was achieved in which the molten metal was held in the lined water-cooled copper crucible. In order to maintain such a state, the heat balance between the molten metal and the water-cooled copper crucible is controlled by controlling the temperature and flow rate of the cooling water 7.
上記溶解が定常状態に達したのち、水冷銅ルツボの底部
に設けた溶融金属落下口12に向って1okW出力のレ
ーサービーム5を照射し、落下口中心線に沿って凝固金
属を溶解し、落下口12に凝固金属層15をライニング
した状態の溶融金属流落下通路を形成する。After the above-mentioned melting reaches a steady state, a laser beam 5 with an output of 1 kW is irradiated toward the molten metal falling port 12 provided at the bottom of the water-cooled copper crucible, melting the solidified metal along the center line of the dropping port, and causing it to fall. A molten metal flow falling passage is formed in which the opening 12 is lined with a solidified metal layer 15.
上記レーザービーム5の照射を維持しながら、水冷銅ル
ツボをかこむ溶解チャンバー13の内圧を大気圧より1
kg/c−上昇させ、上記凝固金属ライニング落下口か
ら溶融金属流を落下させる。上記溶解チャンバー13内
の加圧を行なわずに溶融金属流が形成されるならば、上
記加圧は行なう必要はない。しかし、上記落下口12の
径が小さいほど上記溶解チャンバー内の加圧を必要とす
る。While maintaining the irradiation of the laser beam 5, the internal pressure of the melting chamber 13 surrounding the water-cooled copper crucible is lowered by 1 from atmospheric pressure.
kg/c- is raised, and the molten metal stream is allowed to fall from the solidified metal lining drop opening. If the molten metal flow is formed without pressurization in the melting chamber 13, pressurization is not necessary. However, the smaller the diameter of the drop port 12, the more pressurization within the dissolution chamber is required.
上記落下口12の出口まわりに設けた噴霧用ノズル9か
らは、噴霧用ガス10として圧カニ50kg/c+#の
加圧Arガスを噴出させ、上記落下口12から流出する
溶融金属流に衝突せしめ粉末化を行なうと同時に急速な
冷却を行なった。From the spray nozzle 9 provided around the exit of the drop port 12, a pressurized Ar gas of 50 kg/c+# is ejected as the spray gas 10, and collides with the molten metal flow flowing out from the drop port 12. Rapid cooling was performed at the same time as powdering.
得られた粉末の成分組成と上記消耗電極1の成分組成を
比較したところ、不純物の汚染は皆無であった。When the composition of the obtained powder was compared with that of the consumable electrode 1, it was found that there was no contamination with impurities.
この発明の方法および装置によると、溶解容器および落
下口を構成する材料により溶融金属の汚染が全くなされ
ることなく粉末化され、さらに上記ビームまたはアーク
の出力を変えることにより任意の太さの溶融金属流を形
成することができ、したがって粉末の平均粒径を変化さ
せることができ、さらにビームまたはアークの出力を一
定にすることにより粉末の平均粒径を均一にすることも
でき、すぐれた高純度金属粉末を製造することかできる
ので産業の発達に大いに寄与するものである。According to the method and apparatus of the present invention, the molten metal can be powdered without any contamination by the materials constituting the melting container and the falling port, and furthermore, by changing the output of the beam or arc, the molten metal can be melted to any thickness. It is possible to form a metal flow, thus changing the average particle size of the powder, and also to make the average particle size of the powder uniform by keeping the power of the beam or arc constant. Since it is possible to produce pure metal powder, it greatly contributes to the development of industry.
第1図は、この発明の高純度金属粉末を製造するための
装置の概略図である。
1・・・消耗電極 2・・・送電線3・・・
電極ホルダー 4・・・レーザー発振機5・・・
レーザービーム 6・・溶融金属7・・・冷却水
8・・・水冷銅ルツボ9・・・噴霧用ノズ
ル 10・・噴霧用ガス11・・生成粉末
12・・・落下口13・・・溶解チャンバ
14・・・粉末回収チャンバー
・凝固金属層
出
願
人
菱
金
属
株
式
]FIG. 1 is a schematic diagram of an apparatus for producing high-purity metal powder of the present invention. 1...Consumable electrode 2...Power transmission line 3...
Electrode holder 4... Laser oscillator 5...
Laser beam 6... Molten metal 7... Cooling water
8... Water-cooled copper crucible 9... Nozzle for spraying 10... Gas for spraying 11... Produced powder
12... Falling port 13... Melting chamber 14... Powder recovery chamber/solidified metal layer Applicant: Ryo Metal Co., Ltd.]
Claims (5)
属流に上記落下口の出口付近に設けたノズルから噴出す
るガス流を衝突させて上記溶融金属を粉末化する方法に
おいて、 上記溶解容器および落下口を冷却し、熱収支を制御する
ことにより上記溶解容器内面および落下口内面に密着し
た凝固金属層を形成すると同時に、上記落下口中心部に
ビームまたはアークを照射して上記落下口の凝固金属に
よる閉塞を防止することを特徴とする高純度金属粉末の
製造方法。(1) In a method of pulverizing the molten metal by colliding the molten metal flow falling from a drop port provided at the bottom of the melting container with a gas flow jetted from a nozzle provided near the exit of the drop port, the melting By cooling the container and the drop port and controlling the heat balance, a solidified metal layer is formed that adheres to the inner surface of the melting container and the drop port, and at the same time, a beam or arc is irradiated to the center of the drop port to cool the drop port. A method for producing high-purity metal powder, characterized by preventing blockage caused by solidified metal.
請求項1記載の高純度金属粉末の製造方法。(2) The method for producing high-purity metal powder according to claim 1, wherein the gas flow is an inert gas.
または電子ビームであることを特徴とする請求項1記載
の高純度金属粉末の製造方法。(3) The method for producing high-purity metal powder according to claim 1, wherein the beam is a laser beam, a plasma beam, or an electron beam.
内に溶融金属を形成するための溶解装置と、上記落下口
の出口付近に設けた噴霧ガスノズルとを備えた金属粉末
製造装置において、 上記溶解容器内面および落下口内面は冷却可能な構造と
なっており、さらに上記落下口真上にビームまたはアー
ク発生装置が取付けられていることを特徴とする高純度
金属粉末の製造装置。(4) In a metal powder manufacturing apparatus comprising a melting container provided with a drop port at the bottom, a melting device for forming molten metal in the melting container, and a spray gas nozzle provided near the exit of the drop port. . An apparatus for producing high-purity metal powder, characterized in that the inner surface of the melting vessel and the inner surface of the dropping port have a cooling structure, and a beam or arc generator is installed directly above the dropping port.
、プラズマビーム発生装置または電子ビーム発生装置で
あることを特徴とする請求項4記載の高純度金属粉末の
製造装置。(5) The apparatus for producing high-purity metal powder according to claim 4, wherein the beam generator is a laser beam generator, a plasma beam generator, or an electron beam generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22001488A JPH0270010A (en) | 1988-09-02 | 1988-09-02 | Method and apparatus for manufacturing high purity metal powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22001488A JPH0270010A (en) | 1988-09-02 | 1988-09-02 | Method and apparatus for manufacturing high purity metal powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0270010A true JPH0270010A (en) | 1990-03-08 |
Family
ID=16744581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22001488A Pending JPH0270010A (en) | 1988-09-02 | 1988-09-02 | Method and apparatus for manufacturing high purity metal powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0270010A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015120981A (en) * | 2007-03-30 | 2015-07-02 | エイティーアイ・プロパティーズ・インコーポレーテッド | Melting furnace including wire-discharge ion plasma electron emitter |
WO2018118108A1 (en) * | 2016-12-21 | 2018-06-28 | Puris Llc | Titanium powder production apparatus and method |
US10232434B2 (en) | 2000-11-15 | 2019-03-19 | Ati Properties Llc | Refining and casting apparatus and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60255906A (en) * | 1984-05-29 | 1985-12-17 | Kobe Steel Ltd | Method and equipment for manufacturing active metallic powder |
JPS63145703A (en) * | 1986-12-09 | 1988-06-17 | Nkk Corp | Apparatus for producing powder |
-
1988
- 1988-09-02 JP JP22001488A patent/JPH0270010A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60255906A (en) * | 1984-05-29 | 1985-12-17 | Kobe Steel Ltd | Method and equipment for manufacturing active metallic powder |
JPS63145703A (en) * | 1986-12-09 | 1988-06-17 | Nkk Corp | Apparatus for producing powder |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10232434B2 (en) | 2000-11-15 | 2019-03-19 | Ati Properties Llc | Refining and casting apparatus and method |
JP2015120981A (en) * | 2007-03-30 | 2015-07-02 | エイティーアイ・プロパティーズ・インコーポレーテッド | Melting furnace including wire-discharge ion plasma electron emitter |
US9453681B2 (en) | 2007-03-30 | 2016-09-27 | Ati Properties Llc | Melting furnace including wire-discharge ion plasma electron emitter |
WO2018118108A1 (en) * | 2016-12-21 | 2018-06-28 | Puris Llc | Titanium powder production apparatus and method |
CN110267761A (en) * | 2016-12-21 | 2019-09-20 | 卡本特科技公司 | Produce the device and method of titanium valve |
US10583492B2 (en) | 2016-12-21 | 2020-03-10 | Carpenter Technology Corporation | Titanium powder production apparatus and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220288684A1 (en) | Methods and apparatuses for producing metallic powder material | |
JPH0457722B2 (en) | ||
US8216339B2 (en) | Apparatus and method for clean, rapidly solidified alloys | |
US7803212B2 (en) | Apparatus and method for clean, rapidly solidified alloys | |
JP2004523359A5 (en) | ||
JP3054193B2 (en) | Induction skull spinning of reactive alloys | |
JPH0798965B2 (en) | Apparatus and method for atomizing titanium-based materials | |
US5427173A (en) | Induction skull melt spinning of reactive metal alloys | |
RU2413595C2 (en) | Method of producing spherical granules of refractory and chemically active metals and alloys, device to this end and device to fabricate initial consumable billet to implement said method | |
JPH0270010A (en) | Method and apparatus for manufacturing high purity metal powder | |
JPS58177403A (en) | Method and device for manufacturing ceramic-free high purity metal powder | |
JPS60255906A (en) | Method and equipment for manufacturing active metallic powder | |
JPH0421727A (en) | Method and apparatus for producing titanium cast ingot | |
JPS63145703A (en) | Apparatus for producing powder | |
JPH0641618A (en) | Method and device for continuously producing active metal powder | |
EP3290136A1 (en) | Method for the production of metallic powders | |
JPH06108119A (en) | Production of metallic powder | |
JPH0610012A (en) | Production of metal powder | |
JPH02179832A (en) | Method for melting special metal alloy | |
JPH0518677A (en) | Control method of continuous smelting and outflow of material | |
NZ738183B2 (en) | Methods and apparatuses for producing metallic powder material | |
JPH01205A (en) | powder manufacturing equipment | |
JPH0518676A (en) | Continuous outflow control method of molten material |