JPH02179832A - Method for melting special metal alloy - Google Patents

Method for melting special metal alloy

Info

Publication number
JPH02179832A
JPH02179832A JP63331662A JP33166288A JPH02179832A JP H02179832 A JPH02179832 A JP H02179832A JP 63331662 A JP63331662 A JP 63331662A JP 33166288 A JP33166288 A JP 33166288A JP H02179832 A JPH02179832 A JP H02179832A
Authority
JP
Japan
Prior art keywords
melting
furnace
metal
molten
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63331662A
Other languages
Japanese (ja)
Other versions
JPH0563530B2 (en
Inventor
Masaji Hattori
服部 正司
Katsumi Tono
等農 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63331662A priority Critical patent/JPH02179832A/en
Priority to SU4742387/04A priority patent/RU2117670C1/en
Publication of JPH02179832A publication Critical patent/JPH02179832A/en
Publication of JPH0563530B2 publication Critical patent/JPH0563530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To completely melt a special metal alloy in a short time by supplying a high-melting-point metal melted by an arc discharge generated between a molten metal and an electrode above the opening of a melting furnace to the active metal melted by high-frequency induction heating in the melting furnace. CONSTITUTION:An active metal such as Ti is charged into the melting furnace 2, the inside of the chamber 1 is evacuated or filled with an inert gas atmosphere, and the furnace 2 is heated 3 by high-frequency induction heating to melt the active metal. A voltage is then impressed by a power source 6 between the W electrode 4 and the molten Ti 8 in the furnace 2 to generate an arc discharge or a plasma arc discharge in between. A band-shaped Cr 11, for example, as the high-melting-point metal is continuously supplied 10 into the generated arc 9 at a high temp. of >=5000 deg.C. As a result, the added Cr 11 is melted, and dropped as droplets into the molten Ti 8 with the surface heated by the arc 9 in the furnace 2. The droplets are sufficiently mixed with the molten Ti 8 by the convection of the molten Ti 8 generated in the furnace 2, and an alloy of Ti and Cr is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、Ti、Zrなど活性金属と、Cr。[Detailed description of the invention] [Industrial application fields] This invention uses active metals such as Ti and Zr, and Cr.

Nb、Moなどの高融点金属との合金のような特殊金属
合金の溶解方法に関するものである。
This invention relates to a method for melting special metal alloys such as alloys with high melting point metals such as Nb and Mo.

[従来の技術] 例えば、Tiと、Cr、Nb、Moなどの高融点金属と
からなるTi合金の鋳物を製造する場合におけるTi合
金の溶解方法として、例えば、特開昭63−14933
7号公報に開示されているように、複数個の水冷金属管
からなるるつぼ本体と、前記るつぼ本体の側壁外周に巻
回された高周波誘導コイルとからなる高周波誘導溶解炉
を使用し、この溶解炉内に原料を装入して高周波誘導溶
解を行なう方法、または、特開昭58−133338号
公報に開示されているように、耐火物製のるつぼ本体と
、前記るつぼ本体の側壁外周に巻回された高周波誘導コ
イルとからなる高周波誘導溶解炉を使用し、上記と同じ
ように高周波誘導溶解を行なう方法が知られている。
[Prior Art] For example, as a method for melting a Ti alloy when manufacturing a Ti alloy casting made of Ti and a high melting point metal such as Cr, Nb, Mo, etc., for example, Japanese Patent Application Laid-Open No. 63-14933 is used.
As disclosed in Publication No. 7, a high-frequency induction melting furnace consisting of a crucible body made of a plurality of water-cooled metal tubes and a high-frequency induction coil wound around the outer periphery of the side wall of the crucible body is used to perform this melting. A method of charging raw materials into a furnace and performing high-frequency induction melting, or as disclosed in Japanese Patent Application Laid-Open No. 58-133338, a crucible body made of refractory and a winding around the side wall of the crucible body. A method is known in which high-frequency induction melting is performed in the same manner as above using a high-frequency induction melting furnace consisting of a rotated high-frequency induction coil.

この場合、Cr、Nb、Moなどの高融点金属は溶解し
にくい。このため、従来、前記高融点金属の融点を下げ
るために予めTiと前記高融点金属とを合金化した原料
を使用し、この合金化原料の小片を高周波誘導溶解炉に
装入していた。
In this case, high melting point metals such as Cr, Nb, and Mo are difficult to dissolve. For this reason, conventionally, in order to lower the melting point of the high melting point metal, a raw material is used in which Ti and the high melting point metal are alloyed in advance, and small pieces of this alloyed raw material are charged into a high frequency induction melting furnace.

[発明が解決しようとする課題] しかしながら、上述の従来の方法には、次のような問題
がある。即ち、高周波誘導溶解炉の場合、その加熱温度
には上限があり、著しい高温度で加熱することはできな
い。その結果、多量の合金原料を一時に炉内に挿入する
と、原料の一部が十分に溶解しきれずに比重差で炉の底
部に沈降し、溶は残りが生ずる。
[Problems to be Solved by the Invention] However, the above-described conventional method has the following problems. That is, in the case of a high-frequency induction melting furnace, there is an upper limit to its heating temperature, and heating cannot be performed at extremely high temperatures. As a result, when a large amount of alloy raw material is inserted into the furnace at once, a portion of the raw material is not fully melted and settles to the bottom of the furnace due to the difference in specific gravity, leaving the melt behind.

このような溶は残りが生ずると、溶湯の成分が目標値か
ら外れることになる。従って、原料を完全に溶解させる
ためには長時間を必要とし、その間絶えずサンプリング
を行ない、必要な合金材料を補充して成分を調整しなけ
ればならず、このために生産効率が阻害されていた。
If such a residual molten metal remains, the components of the molten metal will deviate from the target values. Therefore, it takes a long time to completely dissolve the raw materials, and during that time it is necessary to constantly sample and replenish the necessary alloying materials to adjust the composition, which hinders production efficiency. .

従って、この発明の目的は、Ti、Zrなどの活性金属
と、Cr、Nb、Moなどの高融点金属との合金のよう
な特殊金属合金を、短時間で溶は残りがなく確実に溶解
するための方法を提供することにある。
Therefore, an object of the present invention is to reliably melt special metal alloys, such as alloys of active metals such as Ti and Zr, and high melting point metals such as Cr, Nb, and Mo, in a short period of time and without any residue. The goal is to provide a method for

[課題を解決するための手段] この発明は、複数個の水冷金属管によって構成された側
壁を有するるつぼ本体と、前記るつぼ本体の側壁外周に
巻回された高周波誘導コイルとからなる高周波誘導溶解
炉の炉口上方にアーク発生用電極を配置し、前記溶解炉
内に活性金属を装入印加してアーク放電またはプラズマ
アーク放電を発生せしめ、このようにして発生させたア
ーク中に、線状、帯状または粉体状の高融点金属または
高融点金属合金を供給し、前記アークによりこれを溶解
させて前記溶解炉内の溶融金属中に添加し、を製造する
ことに特徴を有するものである。
[Means for Solving the Problems] The present invention provides a high-frequency induction melting system comprising a crucible body having a side wall formed of a plurality of water-cooled metal tubes, and a high-frequency induction coil wound around the outer periphery of the side wall of the crucible body. An arc generating electrode is placed above the furnace mouth of the furnace, and an active metal is charged and applied into the melting furnace to generate arc discharge or plasma arc discharge, and in the arc thus generated, a linear The method is characterized in that a high melting point metal or a high melting point metal alloy in the form of a belt or powder is supplied, melted by the arc, and added to the molten metal in the melting furnace. .

次に、この発明を、図面を参照しながら説明する。第1
図は、この発明の方法に使用される溶解炉の一例を示す
概略垂直断面図である。第1図に示すように、真空また
は不活性ガス雰囲気にするためのチャンバー1内には、
高周波誘導溶解炉2が配置さ九ている。溶解炉2は、銅
製の底板2aと。
Next, the present invention will be explained with reference to the drawings. 1st
The figure is a schematic vertical sectional view showing an example of a melting furnace used in the method of the present invention. As shown in FIG. 1, a chamber 1 for creating a vacuum or inert gas atmosphere contains:
A high frequency induction melting furnace 2 is arranged. The melting furnace 2 has a bottom plate 2a made of copper.

底板2aの周縁に、互いに狭い隙間をあけて立設された
複数個の水冷鋼管からなる側壁2bと、側壁2bの外周
に巻回された高周波誘導コイル3とからなっている。水
冷鋼管からなる側i2bは、図示しない導管を通って循
環する冷却水により常時冷却されている。
It consists of a side wall 2b made of a plurality of water-cooled steel pipes standing on the periphery of the bottom plate 2a with narrow gaps between them, and a high frequency induction coil 3 wound around the outer periphery of the side wall 2b. The side i2b made of water-cooled steel pipes is constantly cooled by cooling water circulating through a conduit (not shown).

溶解炉2の炉口2cの上方のチャンバー1内には、炉口
2cに向けてアーク発生用のタングステン電極4が実質
的に垂直に配置されている。電極4と溶解炉2とは導R
5によって連結されており、チャンバー1の外の導線5
の途中には、アーク放電用の電源6が設けられている。
In the chamber 1 above the furnace mouth 2c of the melting furnace 2, a tungsten electrode 4 for arc generation is arranged substantially vertically toward the furnace mouth 2c. The electrode 4 and the melting furnace 2 are conductive R.
5, and the conductor 5 outside the chamber 1
A power source 6 for arc discharge is provided in the middle.

7は、高周波誘導コイル3用の、チャンバー1の外に設
けられた高周波電源である。
7 is a high frequency power source provided outside the chamber 1 for the high frequency induction coil 3.

溶解炉2内に活性金属として例えばチタンを装入し、チ
ャンバ1内を真空または不活性ガス雰囲気に保ち、高周
波誘導コイル3による高周波誘導加熱によってこれを溶
解する。
For example, titanium is charged as an active metal into the melting furnace 2, and while the inside of the chamber 1 is kept in a vacuum or an inert gas atmosphere, it is melted by high-frequency induction heating by the high-frequency induction coil 3.

次いで、タングステン電極4と溶解炉2即ち溶解炉2内
の溶融チタン8との間に、電源6により電圧を印加して
、両者間にアーク放電またはプラズマアーク放電を発生
させる。
Next, a voltage is applied by the power source 6 between the tungsten electrode 4 and the melting furnace 2, that is, the molten titanium 8 in the melting furnace 2, to generate arc discharge or plasma arc discharge between them.

このようにして発生させた5000℃以上の高温のアー
ク9中に、送給機[10によって例えば帯状に形成した
高融点金属としてのクロム11を連続的に供給する。添
加されたクロム11は、アーク9中において溶解し溶滴
となり、アーク9によって表面が加熱された、溶解炉2
内の溶融チタン8中に流下する。流下した溶滴は、溶解
炉2内において生じている溶融チタン8の対流12によ
リ、溶融チタン8と十分に混合し、かくして、チタンと
クロムとの合金となる。
Chromium 11 as a high melting point metal formed into a belt shape, for example, is continuously fed into the arc 9 at a high temperature of 5000° C. or higher generated in this manner by a feeder [10]. The added chromium 11 melts into droplets in the arc 9, and the melting furnace 2 whose surface is heated by the arc 9
It flows down into the molten titanium 8 inside. The falling droplets are sufficiently mixed with the molten titanium 8 due to the convection 12 of the molten titanium 8 occurring in the melting furnace 2, and thus become an alloy of titanium and chromium.

送給機構10によって、アーク9中に供給する高融点金
属は、帯状に限らず線状または粉状でもよい。また、高
融点金属と活性金属との合金を供給してもよい。
The high melting point metal fed into the arc 9 by the feeding mechanism 10 is not limited to a belt shape, but may be in the form of a line or a powder. Alternatively, an alloy of a high melting point metal and an active metal may be supplied.

[作用] 上述したように、この発明においては、電極と溶解炉内
の溶融金属との間に発生させた高温のアーク中に、高融
点金属が供給される\ので、高融点金属は直ちに溶融し
、溶滴状となって溶解炉内の溶融金属中に流下する。従
って、溶解炉内の溶融金属との間で容易に合金化させる
ことができ、従来のような溶は残りの生ずることはない
。また。
[Function] As mentioned above, in this invention, the high melting point metal is supplied into the high temperature arc generated between the electrode and the molten metal in the melting furnace, so the high melting point metal immediately melts. Then, it forms droplets and flows down into the molten metal in the melting furnace. Therefore, it can be easily alloyed with the molten metal in the melting furnace, and no residual melting occurs as in the conventional case. Also.

前記高温のアークによって、溶解炉内の溶融金属は加熱
され高温度に保持されるので、炉内に供給された活性金
属の溶融および合金化を短時間に効率的に行なうことが
できる。
Since the molten metal in the melting furnace is heated and maintained at a high temperature by the high-temperature arc, the active metal supplied into the furnace can be efficiently melted and alloyed in a short time.

[発明の効果コ 以上述べたように、この発明によれば、Ti。[Effects of invention As described above, according to the present invention, Ti.

Zrなどの活性金属と、Cr、Nb、Moなどの高融点
金属との合金のような特殊金属合金を、短時間で溶は残
りがなく確実に溶解することができる工業上有用な効果
がもたらされる。
It brings industrially useful effects such as the ability to reliably melt special metal alloys, such as alloys of active metals such as Zr and high-melting point metals such as Cr, Nb, and Mo, in a short time and without any residue. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法に使用される溶解炉の一例を示
す概略垂直断面図である。図面において、1・・・チャ
ンバー、  2・・・溶解炉、3・・・高周波誘導コイ
ル、 4・・・電極。 5・・・導線、6,7・・・電源、 8・・・溶融チタン、  9・・・アーク、10・・・
送給機構、  11・・・クロム、12・・・対流。
FIG. 1 is a schematic vertical sectional view showing an example of a melting furnace used in the method of the present invention. In the drawings, 1...chamber, 2...melting furnace, 3...high frequency induction coil, 4...electrode. 5... Conductor wire, 6,7... Power supply, 8... Molten titanium, 9... Arc, 10...
Feeding mechanism, 11...Chromium, 12...Convection.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の水冷金属管によって構成された側壁を有す
るるつぼ本体と、前記るつぼ本体の側壁外周に巻回され
た高周波誘導コイルとからなる高周波誘導溶解炉の炉口
上方にアーク発生用電極を配置し、前記溶解炉内に活性
金属を装入しこれを高周波誘導加熱によって溶解させ、
次いで、前記電極と前記溶解炉内の溶融金属との間に電
圧を印加してアーク放電またはプラズマアーク放電を発
生せしめ、このようにして発生させたアーク中に、線状
、帯状または粉体状の高融点金属または高融点金属合金
を供給し、前記アークによりこれを溶解させて前記溶解
炉内の溶融金属中に添加し、かくして、前記活性金属と
、前記高融点金属または前記高融点金属合金とを混合溶
融して活性金属合金を製造することを特徴とする、特殊
金属合金の溶解方法。
1. An electrode for arc generation is arranged above the furnace mouth of a high frequency induction melting furnace consisting of a crucible body having a side wall made up of a plurality of water-cooled metal tubes and a high frequency induction coil wound around the outer periphery of the side wall of the crucible body. and charging active metal into the melting furnace and melting it by high frequency induction heating,
Next, a voltage is applied between the electrode and the molten metal in the melting furnace to generate an arc discharge or a plasma arc discharge, and in the arc thus generated, a linear, band-shaped or powder-shaped a refractory metal or refractory metal alloy, which is melted by the arc and added to the molten metal in the melting furnace, thus combining the active metal and the refractory metal or refractory metal alloy. A method for melting a special metal alloy, characterized by producing an active metal alloy by mixing and melting a metal alloy.
JP63331662A 1988-10-31 1988-12-28 Method for melting special metal alloy Granted JPH02179832A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63331662A JPH02179832A (en) 1988-12-28 1988-12-28 Method for melting special metal alloy
SU4742387/04A RU2117670C1 (en) 1988-10-31 1989-10-30 Derivatives of triazolo[1,4]diazepine and methods of their synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63331662A JPH02179832A (en) 1988-12-28 1988-12-28 Method for melting special metal alloy

Publications (2)

Publication Number Publication Date
JPH02179832A true JPH02179832A (en) 1990-07-12
JPH0563530B2 JPH0563530B2 (en) 1993-09-10

Family

ID=18246176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63331662A Granted JPH02179832A (en) 1988-10-31 1988-12-28 Method for melting special metal alloy

Country Status (1)

Country Link
JP (1) JPH02179832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535918A (en) * 2012-09-18 2015-12-17 リテック システムズ エルエルシー System and method for melting raw materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535918A (en) * 2012-09-18 2015-12-17 リテック システムズ エルエルシー System and method for melting raw materials

Also Published As

Publication number Publication date
JPH0563530B2 (en) 1993-09-10

Similar Documents

Publication Publication Date Title
US20220288684A1 (en) Methods and apparatuses for producing metallic powder material
RU2333086C2 (en) Refractory metal and its alloy purified with laser treatment and melting
US6144690A (en) Melting method using cold crucible induction melting apparatus
EP0459421A1 (en) Method and apparatus for purifying silicon
JPS63149337A (en) Method for induction melting of reactive metal charge
US3496280A (en) Method of refining steel in plasma-arc remelting
JPH02203932A (en) Method and apparatus for producing ultrafine particles
JP3054193B2 (en) Induction skull spinning of reactive alloys
EP0526159A1 (en) Method for melting titanium aluminide alloys
US20080298425A1 (en) Method and apparatus for melting metals using both alternating current and direct current
JPS6046305A (en) Alloy powder manufacturing process and device
EP0485073A1 (en) Nozzle, vessel and spray forming
US4681627A (en) Process for preparing an ingot from metal scrap
US3723630A (en) Method for the plasma-ac remelting of a consumable metal bar in a controlled atmosphere
RU2346221C1 (en) Method of vacuum-plasma melting of metals and alloys in skull furnace and facility for its implementation
JPH02179832A (en) Method for melting special metal alloy
JPH02236232A (en) Method for melting and casting titanium and titanium alloy
US5160533A (en) Method for grain refining of metals
Sears Current processes for the cold-wall melting of titanium
US3665083A (en) Apparatus for melting titanium
RU2770807C1 (en) Method for producing blanks from low-alloy copper-based alloys
CA1300381C (en) Method for manufacturing alloy
JPH0270010A (en) Method and apparatus for manufacturing high purity metal powder
JPS6092432A (en) Method and device for plasma arc melting
JP3140025B2 (en) Method for producing particle-dispersed aluminum alloy using high energy density heat source