JPS6051545B2 - Method for manufacturing hydrogen storage materials - Google Patents

Method for manufacturing hydrogen storage materials

Info

Publication number
JPS6051545B2
JPS6051545B2 JP57100846A JP10084682A JPS6051545B2 JP S6051545 B2 JPS6051545 B2 JP S6051545B2 JP 57100846 A JP57100846 A JP 57100846A JP 10084682 A JP10084682 A JP 10084682A JP S6051545 B2 JPS6051545 B2 JP S6051545B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
water
crucible
cooled copper
skull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57100846A
Other languages
Japanese (ja)
Other versions
JPS58217651A (en
Inventor
克人 野田
敏夫 豊田
孝一 奥
尚雄 今野
興士 笹井
昇 速水
公正 尾上
誠一郎 賀集
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shinku Gijutsu KK filed Critical Nihon Shinku Gijutsu KK
Priority to JP57100846A priority Critical patent/JPS6051545B2/en
Publication of JPS58217651A publication Critical patent/JPS58217651A/en
Publication of JPS6051545B2 publication Critical patent/JPS6051545B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は水素貯蔵用材料の製造法に関するものであつ
て、凝固後の冷却速度を早くでき、しかも不純物の汚染
が少く、かつ、材料組成の偏析が少い均一な水素貯蔵用
材料、特にTi−Fe系合金からなる水素貯蔵用材料を
製造する方法を提供することを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hydrogen storage material, which can speed up the cooling rate after solidification, reduce contamination with impurities, and produce a uniform material with less segregation of material composition. It is an object of the present invention to provide a method for manufacturing a hydrogen storage material, particularly a hydrogen storage material made of a Ti-Fe alloy.

現在水素貯蔵用材料としてはTi−Fe系合金および
さらにこれにZr9Mo、Nb、La9Ce等のレアア
ースメタル等を添加し、真空中で溶解してTi−Fe系
合金からなる水素貯蔵用材料を製造している。即ち、製
造方法として水冷銅ハース上でタングステン電極を用い
、真空またはアルゴン雰囲気中で小規模に製造する所謂
TIG溶解て製造したものはルツボからの汚染がなく、
しかも合金が急冷されるため成分が均一で偏析がなく水
素吸蔵特性(水素吸蔵等、ヒステリシス、プラドー性な
ど)が良い。しかし規模の大きい溶解法として知られて
いる高周波誘導炉中でルツボを用いて溶解する方法では
、ルツボと材料との反応による汚染がさけられず、また
水冷銅ルツボを用い、消耗電極式アーク炉で溶解する方
法は冷却速度が非常に遅く、従つて水素貯蔵用材料が均
一とならず偏析し、水素吸蔵特性も良ないと云う欠点が
ある。 本発明は特許請求の範囲に記載した構成とする
ことによつて、製品が大塊状を形成することなく急速に
冷却することができ、従つて製品の偏析がなく均一組成
の水素貯蔵用材料を得ることができた。第1図乃至第4
図は本発明の実施に使用する装置の一例を示したもので
あるが、つぎにこれら図面に基づいて本発明を説明する
Currently, hydrogen storage materials include Ti-Fe alloys, and rare earth metals such as Zr9Mo, Nb, and La9Ce are added to these alloys and melted in vacuum to produce hydrogen storage materials made of Ti-Fe alloys. ing. That is, the so-called TIG melting method, which uses a tungsten electrode on a water-cooled copper hearth and is manufactured on a small scale in a vacuum or argon atmosphere, is free from contamination from the crucible.
Moreover, since the alloy is rapidly cooled, its components are uniform, there is no segregation, and the hydrogen storage properties (hydrogen storage, hysteresis, Pradot properties, etc.) are good. However, in the method of melting using a crucible in a high-frequency induction furnace, which is known as a large-scale melting method, contamination due to the reaction between the crucible and the material cannot be avoided. The method of melting with hydrogen has the disadvantage that the cooling rate is very slow, and therefore the hydrogen storage material is not uniform and segregated, and its hydrogen storage properties are also poor. By adopting the structure described in the claims of the present invention, the product can be rapidly cooled without forming large lumps, and therefore a hydrogen storage material with a uniform composition without segregation of the product can be obtained. I was able to get it. Figures 1 to 4
The drawings show an example of an apparatus used to carry out the invention, and the invention will now be described based on these drawings.

真空タンク1内に水冷銅ルツボ2が取付けられており、
これにFe及びTiの金属棒で形成されている消耗式ア
ーク電極(以下たんに電極と云う)3がルツボ2上部か
ら懸架されている。上述に於て使用する電極は第2図及
び第3図に示すように、水素貯蔵用材料としてのTi及
びFeの配合組成に合せてTi棒4の外周にFe棒5の
複数本が前記工1棒4を囲繞して取付けられたものであ
る。
A water-cooled copper crucible 2 is installed inside the vacuum tank 1,
A consumable arc electrode (hereinafter simply referred to as electrode) 3 made of a metal rod of Fe and Ti is suspended from above the crucible 2 . As shown in FIGS. 2 and 3, the electrode used in the above-mentioned process consists of a plurality of Fe rods 5 arranged around the outer periphery of a Ti rod 4 according to the composition of Ti and Fe as the hydrogen storage material. It is attached to surround one rod 4.

また、前記における水冷銅ルツボ2は第4図に示すよう
にルツボ2内側に銅ライナー6が取付けられており、該
銅ライナー6の外周及び底面下部に水が導通できる空隙
7が形成されたものである。
Further, the water-cooled copper crucible 2 mentioned above has a copper liner 6 attached to the inside of the crucible 2 as shown in FIG. 4, and a gap 7 through which water can conduct is formed at the outer periphery and lower part of the bottom surface of the copper liner 6. It is.

上述装置に於て、電極3をニユーマチツクシリンダー8
で引下げて水冷銅ルツボ2内へ挿入すると共に、真空タ
ンク1内を、6〜8×10−3T0rr′−に減圧排気
した後前記電極3と水冷銅ルツボ2とに直流電圧を印加
してアーク放電を発生させ、電極3を水冷銅ルツボ2内
へ溶解させる。
In the above device, the electrode 3 is connected to the pneumatic cylinder 8.
At the same time, the inside of the vacuum tank 1 is depressurized and evacuated to 6 to 8 x 10-3T0rr'-, and then a DC voltage is applied to the electrode 3 and the water-cooled copper crucible 2 to create an arc. Electric discharge is generated to dissolve the electrode 3 into the water-cooled copper crucible 2.

同時に前記水冷銅ルツボ2の空隙7に水を導通する。従
つて、水冷銅ルツボ2内に溶解された電極3、の銅ライ
ナー6に接触している極く薄い部分は水冷によつて急速
に凝固して銅ライナー6内面に薄いスカル(厚さ30T
1Tm以内)を形成するため、前記スカル内側の溶融分
は組成の均一なものとして保持することができる。以上
の操作によつて所定の重量を溶解した後ニユーマチツク
シリンダー8によつて電極3の溶け残り分を引上げた後
、水冷銅ルツボ2をハンドル9を操作して傾動し、水冷
銅ルツボ2内の溶融部分を黒鉛漏斗10内へ傾注し、さ
らに該溶融部分3を合金が飛散しない程度の速度で回転
している分散用回転テーブル11上に固定された銅製板
状鋳型12上に注入して冷却し、冷却をまつて水冷銅ル
ツボ2内に付着しているスカル、黒鉛漏斗10の付着物
及び銅製板状鋳型12内の板状インゴツ1トを採り出す
At the same time, water is introduced into the void 7 of the water-cooled copper crucible 2. Therefore, the very thin part of the electrode 3 melted in the water-cooled copper crucible 2 that is in contact with the copper liner 6 is rapidly solidified by water cooling, and a thin skull (30T thick) is formed on the inner surface of the copper liner 6.
1 Tm or less), the molten content inside the skull can be maintained as having a uniform composition. After a predetermined weight has been melted through the above operations, the undissolved portion of the electrode 3 is pulled up by the pneumatic cylinder 8, and then the water-cooled copper crucible 2 is tilted by operating the handle 9. The molten portion 3 is poured into a graphite funnel 10, and the molten portion 3 is poured onto a copper plate mold 12 fixed on a dispersion rotary table 11 which is rotating at a speed that does not allow the alloy to scatter. After cooling, the skull adhering to the water-cooled copper crucible 2, the deposits on the graphite funnel 10, and the plate-shaped ingot 1 in the copper plate-shaped mold 12 are taken out.

以上の如く本発明は水冷銅ルツボ2内では該ルツボ2内
面にスカルを形成することによつて該水冷銅ルツボ2内
の溶湯の組成の均一化が保持できると共に、該水冷銅ル
ツボ2内の溶湯を黒鉛漏斗10及び銅製板状鋳型12内
で鋳造するため、製品は従来の如き大塊状物を形成せず
急速に冷却され、かつ、組成の均一化を図ることができ
る。
As described above, in the present invention, by forming a skull on the inner surface of the crucible 2, the composition of the molten metal in the water-cooled copper crucible 2 can be maintained uniform, and the composition of the molten metal in the water-cooled copper crucible 2 can be maintained uniform. Since the molten metal is cast in the graphite funnel 10 and copper plate-shaped mold 12, the product is rapidly cooled without forming large lumps as in the conventional method, and the composition can be made uniform.

また、真空タンク1は前述操作では真空としているが真
空に限らずアルゴン、ヘリウム等の不活性ガス雰囲気と
することができ、従つて必要によつて適宜H,MO又は
各種レアアースメタル等を添加できると共にTi,Zr
又はレアアースメタル゛等の活性金属の汚染、さらにま
た水冷銅ルツボ2を使用しているため、従来の如きルツ
ボ材との反応による汚染は皆無である。さらに本発明で
は従来使用されている真空加熱装置を使用でき、殆んど
従来の真空加熱法と同様の操作で製造できるため、本発
明の適用に当り水冷銅ルツボを使用するほかは何等特別
な装置、手段を要さず製造できると云う利点がある。
Further, although the vacuum tank 1 is set to a vacuum in the above-mentioned operation, it is not limited to a vacuum, but can be set to an inert gas atmosphere such as argon or helium, and accordingly, H, MO or various rare earth metals, etc. can be added as appropriate. together with Ti, Zr
Furthermore, since the water-cooled copper crucible 2 is used, there is no contamination caused by reactions with crucible materials as in conventional crucibles. Furthermore, the present invention can use conventionally used vacuum heating equipment, and can be manufactured using almost the same operations as conventional vacuum heating methods. It has the advantage that it can be manufactured without requiring any equipment or means.

また、図示例に於ては電極が消耗されて水素貯蔵用材料
を製造するものであるが、これに限定されるものではな
く、非消耗電極アーク加熱、プラズマアーク加熱、プラ
ズマ電子ビーム加熱又は電子ビーム加熱等の各種加熱方
式が採用できることは勿論である。
In addition, in the illustrated example, the electrode is consumed to produce a hydrogen storage material, but the method is not limited to this, and is not limited to non-consumable electrode arc heating, plasma arc heating, plasma electron beam heating, or electron beam heating. Of course, various heating methods such as beam heating can be employed.

実施例 第1図乃至第4図に示す装置及び部材を用い、Fe,T
i,ZrおよびNbの原子比が0.94:0.96:0
.04:0.04(重量比49.6:43.4:3.5
:3.5)のT1−Fe系合金からなる水素貯蔵用材料
を製造した。
Example Using the apparatus and members shown in FIGS. 1 to 4, Fe, T
The atomic ratio of i, Zr and Nb is 0.94:0.96:0
.. 04:0.04 (weight ratio 49.6:43.4:3.5
:3.5) A hydrogen storage material made of a T1-Fe-based alloy was manufactured.

尚、この場合の溶解条件、収率は次の通りである。溶解
重量203.5k9 溶解条件 アーク電流10KA アーク電圧42V(D.C) 圧 力6〜8×10−3T0rr溶解時間
31分製品重量 銅製板状鋳型 137.5
k9スカル 61.3kg黒鉛漏斗部
2.4k, また、得られた製品の組成は次の表の通りである。
The dissolution conditions and yield in this case are as follows. Melting weight 203.5k9 Melting conditions Arc current 10KA Arc voltage 42V (D.C) Pressure 6-8×10-3T0rr Melting time 31 minutes Product weight Copper plate mold 137.5
k9 skull 61.3kg graphite funnel part
2.4k, and the composition of the obtained product is as shown in the table below.

以上の如く本発明によつて得られる製品は水素吸蔵特性
(水素吸蔵量、ヒステリシス、プラトー性等)は、水冷
銅ハース上で、タングステン電極を用い、アルゴンガス
雰囲気で製造する所謂TIG溶解法により造塊した試料
に優るとも劣らない特性を有するものたらしめることが
できる。
As described above, the hydrogen storage properties (hydrogen storage amount, hysteresis, plateau property, etc.) of the product obtained by the present invention are determined by the so-called TIG melting method, which is manufactured on a water-cooled copper hearth using a tungsten electrode in an argon gas atmosphere. It can be made to have properties that are as good as, if not better than, those of the agglomerated sample.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する装置の一例の断面図、第2図
は電極の一例を示す側面図、第3図は第2図中■−■線
断面図、第4図は水冷銅ルツボの断面図である。 1:真空タンク、2:水冷銅ルツボ、3:消耗・式アー
ク電極、10:黒鉛漏斗、12:銅製板状鋳型。
Fig. 1 is a sectional view of an example of the device used in the present invention, Fig. 2 is a side view showing an example of an electrode, Fig. 3 is a sectional view taken along the line ■-■ in Fig. 2, and Fig. 4 is a water-cooled copper crucible. FIG. 1: Vacuum tank, 2: Water-cooled copper crucible, 3: Consumable/type arc electrode, 10: Graphite funnel, 12: Copper plate mold.

Claims (1)

【特許請求の範囲】[Claims] 1 水素貯蔵用材料の原料を水冷銅ルツボ内で、真空若
しくは不活性ガス雰囲気中で溶解して、前記水冷銅ルツ
ボ内壁面にスカルを形成すると共に、前記スカル内部の
溶融材料を前記真空若しくは不活性ガス雰囲気中で水冷
銅ルツボを傾動して銅製板状鋳型に注入して急冷した後
、前記スカル及び銅製板状鋳型内の製品を採取すること
を特徴とする水素貯蔵用材料の製造法。
1. A raw material for a hydrogen storage material is melted in a water-cooled copper crucible in a vacuum or an inert gas atmosphere to form a skull on the inner wall surface of the water-cooled copper crucible, and the molten material inside the skull is melted in the vacuum or inert gas atmosphere. A method for producing a hydrogen storage material, which comprises tilting a water-cooled copper crucible in an active gas atmosphere, injecting the crucible into a plate-shaped copper mold and rapidly cooling it, and then collecting the skull and the product inside the plate-shaped copper mold.
JP57100846A 1982-06-12 1982-06-12 Method for manufacturing hydrogen storage materials Expired JPS6051545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57100846A JPS6051545B2 (en) 1982-06-12 1982-06-12 Method for manufacturing hydrogen storage materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57100846A JPS6051545B2 (en) 1982-06-12 1982-06-12 Method for manufacturing hydrogen storage materials

Publications (2)

Publication Number Publication Date
JPS58217651A JPS58217651A (en) 1983-12-17
JPS6051545B2 true JPS6051545B2 (en) 1985-11-14

Family

ID=14284677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57100846A Expired JPS6051545B2 (en) 1982-06-12 1982-06-12 Method for manufacturing hydrogen storage materials

Country Status (1)

Country Link
JP (1) JPS6051545B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627035A (en) * 1985-07-03 1987-01-14 Casio Comput Co Ltd Light source device
JPH0273271A (en) * 1988-07-11 1990-03-13 Xerox Corp Amalgam fluorescnt-lamp monitor controller and copier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340613A (en) * 1976-09-27 1978-04-13 Matsushita Electric Ind Co Ltd Production of hydrogen storing aloy
JPS53114713A (en) * 1977-03-18 1978-10-06 Yoshitake Nishi Melting method of titanium alloy using induction furnace
JPS5521510A (en) * 1978-07-31 1980-02-15 Daido Steel Co Ltd Manufacture of manganese or manganese-base alloy ingot
JPS5650776A (en) * 1979-09-28 1981-05-08 Sumitomo Metal Ind Ltd Manufacture of longitudinally short steel ingot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340613A (en) * 1976-09-27 1978-04-13 Matsushita Electric Ind Co Ltd Production of hydrogen storing aloy
JPS53114713A (en) * 1977-03-18 1978-10-06 Yoshitake Nishi Melting method of titanium alloy using induction furnace
JPS5521510A (en) * 1978-07-31 1980-02-15 Daido Steel Co Ltd Manufacture of manganese or manganese-base alloy ingot
JPS5650776A (en) * 1979-09-28 1981-05-08 Sumitomo Metal Ind Ltd Manufacture of longitudinally short steel ingot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627035A (en) * 1985-07-03 1987-01-14 Casio Comput Co Ltd Light source device
JPH0273271A (en) * 1988-07-11 1990-03-13 Xerox Corp Amalgam fluorescnt-lamp monitor controller and copier

Also Published As

Publication number Publication date
JPS58217651A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
JPS63149337A (en) Method for induction melting of reactive metal charge
US6144690A (en) Melting method using cold crucible induction melting apparatus
US3072982A (en) Method of producing sound and homogeneous ingots
US3565602A (en) Method of producing an alloy from high melting temperature reactive metals
Bomberger et al. The melting of titanium
US3548915A (en) New procedure for chill casting beryllium composite
JPH04314836A (en) Method and equipment for manufacturing alloy composed mainly of titanium and aluminum
US3771585A (en) Device for melting sponge metal using inert gas plasmas
JPH0412083A (en) Production of silicon single crystal
US5147451A (en) Method for refining reactive and refractory metals
JPS6051545B2 (en) Method for manufacturing hydrogen storage materials
JP2989060B2 (en) Low oxygen Ti-Al alloy and method for producing the same
Breig et al. Induction skull melting of titanium aluminides
US3867976A (en) Electroflux melting method and apparatus
JP2784324B2 (en) Manufacturing method of titanium
JPH11242098A (en) Device and method for melting and ingot-making
EP0142584B1 (en) Process for producing alloys
JP3125393B2 (en) Casting method of titanium-aluminum alloy casting
CA1300381C (en) Method for manufacturing alloy
Noesen Consumable electrode melting of reactive metals
JPS6092432A (en) Method and device for plasma arc melting
JPS62153108A (en) Fusion synthesis method
Dutta et al. Methods of Refining
JPH04190959A (en) Manufacture of hydrogen occluding alloy
CN116790923A (en) High-entropy alloy for obtaining pseudo-eutectic structure based on directional solidification and preparation method thereof