JPS58214529A - Production of carbon fiber - Google Patents
Production of carbon fiberInfo
- Publication number
- JPS58214529A JPS58214529A JP9630482A JP9630482A JPS58214529A JP S58214529 A JPS58214529 A JP S58214529A JP 9630482 A JP9630482 A JP 9630482A JP 9630482 A JP9630482 A JP 9630482A JP S58214529 A JPS58214529 A JP S58214529A
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- furnace
- yarns
- carbonization
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は炭素繊維の製造法、特に有機重合体繊維糸条か
ら得られた耐炎化糸を最高温度が少なくとも1200℃
の不活性雰囲気中で炭素化処理する際の、炭化炉内にお
ける処理糸条の昇温速度兼ひにここに供給される不活性
ガス量を特定化し、これにより炭素化時の主として急激
な分解反応に伴なって生じる繊維内部の微小なボイドあ
るいはクラック等を減少させると共に、該分解反応生成
物(以下単に分解生成物という)を速やかに排出させる
ことによって毛羽、単糸切れが少なく、しかも物性の優
れた高品質の炭素繊維を製造する方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing carbon fibers, particularly a flame-resistant yarn obtained from an organic polymer fiber yarn at a maximum temperature of at least 1200°C.
During carbonization treatment in an inert atmosphere, we specified the rate of temperature rise of the treated yarn in the carbonization furnace and the amount of inert gas supplied here. By reducing minute voids or cracks inside the fibers that occur due to the reaction, and quickly discharging the decomposition reaction products (hereinafter simply referred to as decomposition products), there is less fuzz and single fiber breakage, and the physical properties are improved. The present invention relates to a method of manufacturing excellent high quality carbon fiber.
炭素繊維は有機重合体繊維を酸化性雰囲気中200〜4
00℃で耐炎化した後、非酸化性雰囲気加熱炉中で炭素
化する方法が一般的な工業的製造法として知られている
。Carbon fiber is an organic polymer fiber in an oxidizing atmosphere of 200 to 4
A common industrial manufacturing method is to make the material flameproof at 00° C. and then carbonize it in a heating furnace in a non-oxidizing atmosphere.
また従来から高品質の炭素繊維を得るために原料重合体
組成の透定、耐炎化及び炭素化処理時の雰囲気、処理温
度・時間、及び張力の条件設定等、種々の検討が行なわ
れていることも事実である。In addition, in order to obtain high-quality carbon fibers, various studies have been carried out, including clarifying the composition of raw polymers, setting conditions for the atmosphere during flame-retardant and carbonization treatments, treatment temperature and time, and tension. This is also true.
しかしながら、上記炭素繊維の製造において、特に炭素
化工程では急激な分解反応に伴なって繊維表面の欠陥(
主として微小なボイド、クラック)が生じ易く、また該
分解反応における分解生成物の一部であるタール化物が
繊維表面あるいは炉内壁に付着して、これらが毛羽や単
糸切れの発生、また炭素繊維の物性(強度、弾性率)低
下、更に操業上のトラブルを招く等の問題があった。こ
の点上記炭素化工程において、今なお未解決の技術的課
題である。However, in the production of the above-mentioned carbon fibers, defects on the fiber surface (
In addition, tar compounds, which are part of the decomposition products in the decomposition reaction, adhere to the fiber surface or the furnace inner wall, causing fuzz and single fiber breakage, as well as the formation of carbon fibers. There were problems such as a decrease in physical properties (strength, elastic modulus) and further operational troubles. This point is still an unresolved technical problem in the carbonization process.
ちなみに、炭素化工程では急激な分解反応によって発生
する分解生成物の一部である分解ガスは概ね処理温度3
00〜700℃、及び1000〜1200℃付近に集中
していること(BADEN−BADEN、CARBON
す2 International Carbon本発
明者等は上記炭素化工程における分解カ□スの発生が概
ね特定の処理温度域に集中し、しかもこれが処理糸条の
分解反応と密接に関連しているところに着目し、処理系
争の分解反応に伴なう上記問題点全解決すべく鋭意検討
の結果1本発明に至ったのである。すなわち、本発明の
目的は炭素繊維製造時の炭素化工程における処理糸条の
昇温速度、並びにここに供給される不活性ガス量を特定
化し、これ釦より炭素化時の主として急激な分解反応に
伴なって生じる繊維表面の欠陥(微小なボイド、クラッ
ク)を減、少させると共に該分解生成物を速やかに排出
た高品質の炭素繊維を得ることにある。また他の目的は
上記分解生成物の一部であるタール化物にもとづぐ操業
トラブルを防止することにある。By the way, in the carbonization process, the cracked gas, which is a part of the decomposition products generated by the rapid decomposition reaction, is generally heated to a processing temperature of 3.
Concentrated around 00 to 700℃ and 1000 to 1200℃ (BADEN-BADEN, CARBON
2. International CarbonThe present inventors have focused on the fact that the generation of decomposition gas in the carbonization process is generally concentrated in a specific treatment temperature range, and that this is closely related to the decomposition reaction of the treated yarn. In order to solve all of the above-mentioned problems associated with the decomposition reaction of the processing system, the present invention was developed as a result of intensive studies. That is, the purpose of the present invention is to specify the temperature increase rate of the treated yarn in the carbonization process during carbon fiber production and the amount of inert gas supplied there, and to control the mainly rapid decomposition reaction during carbonization. The object of the present invention is to reduce defects (micro voids, cracks) on the fiber surface caused by carbon fibers, and to obtain high-quality carbon fibers in which the decomposition products are quickly discharged. Another purpose is to prevent operational troubles caused by tar compounds that are part of the decomposition products.
かかる本発明の目的は、有機重合体繊維糸条から得られ
た耐炎化糸を最高温度が少なくとも1200℃の不活性
雰囲気中で炭化するに際し、炭化炉内における処理糸条
の昇温速度が、下記(1)〜■)式
%式%(1)
()
)
()
(
ただし、uT、は温度域300〜7oo℃における処理
糸条の平均昇温速度。The object of the present invention is to carbonize flame-resistant yarn obtained from organic polymer fiber yarn in an inert atmosphere with a maximum temperature of at least 1200°C, so that the temperature increase rate of the treated yarn in the carbonization furnace is The following (1) to ■) formula % formula % (1) () ) () (where uT is the average temperature increase rate of the treated yarn in the temperature range of 300 to 70°C.
UT、は温度域7oO〜10oo℃における処理糸条の
平均昇温速度。UT is the average temperature increase rate of the treated yarn in the temperature range of 7oO to 10oOoC.
UTsは温度域10,00〜12oo℃における処理糸
条の平均昇温
速度。UTs is the average temperature increase rate of the treated yarn in the temperature range of 10,00 to 12 oo<0>C.
の規定範囲内にあると同時に、前記炭化炉における処理
糸条に対する不活性ガス供給量が下記(6)式
%式%()
ただし、Vは処理糸条重量当りの不活性ガス供給量(”
/に、)
の関係を満足することを特徴とする炭素繊維の製造法に
よって達成できる。At the same time, the amount of inert gas supplied to the treated yarn in the carbonization furnace is within the specified range of the amount of inert gas supplied per yarn weight (
This can be achieved by a carbon fiber manufacturing method characterized by satisfying the following relationships.
以下本発明における構成要件及び効果について詳細に説
明する。The constituent elements and effects of the present invention will be explained in detail below.
まず本発明における有機重合体繊維糸条としては、セル
ロース系、ポリアクリロニトリル系。First, the organic polymer fiber yarn in the present invention is cellulose-based or polyacrylonitrile-based.
ポリビニルアルコール系有機合成重合体繊維やリグニン
、ピッチからの繊維等炭化可能なものであればよいが、
好ましくはポリアクリロニトリル系繊維、特にアクリロ
ニトリル(AN)を少なくとも9aモル%以上含有する
AN系重合体からの繊維、たとえばポリアクリロニトリ
ル。Any material that can be carbonized may be used, such as polyvinyl alcohol-based organic synthetic polymer fibers, lignin, pitch fibers, etc.
Preferably polyacrylonitrile fibers, especially fibers made from AN polymers containing at least 9 a mol % of acrylonitrile (AN), such as polyacrylonitrile.
共重合成分としてアクリル酸、メタクリル酸。Acrylic acid and methacrylic acid as copolymerization components.
イタコン酸またはその低級アルキルエステル類。Itaconic acid or its lower alkyl esters.
オキシアルキルアクリル化合物、アクロレイン。Oxyalkyl acrylic compound, acrolein.
メタクロレイン、ビニルスルホン酸、アリルスルホン酸
、メタリルスルホン酸およびそれらの塩類など少なくと
も1種を共重合した共重合体からなる繊維がよい。Fibers made of a copolymer of at least one of methacrolein, vinylsulfonic acid, allylsulfonic acid, methallylsulfonic acid, and salts thereof are preferable.
これらの繊維糸条は、通常単糸テニール0.5〜1.5
d、構成フィラメント数500〜30,000本の範
囲の連続フィラメント糸条形態あるいは、フィラメント
数30,000本以上の連続トウ形態のものがある。These fiber yarns usually have a single yarn tenier of 0.5 to 1.5.
d. There are continuous filament thread forms with a range of 500 to 30,000 filaments, or continuous tow forms with 30,000 or more filaments.
上記糸条は、通常活性雰囲気(例えば空気)中200〜
400℃で耐炎化処理し、引きつづき400〜1600
℃の不活性雰囲気(例えば窒素ガス)加熱炉中で炭素化
するが、本発明において要諦となるところは最高温度が
少なくとも1200℃の不活性雰囲気中で炭素化処理す
る際の炭化炉内の温度条件、就中処理糸条の昇温速度と
ここに供給される不活性ガス量を特定化したところにあ
る。The above-mentioned yarn usually has a molecular weight of 200 to
Flame retardant treated at 400℃ and continued to 400~1600
Carbonization is carried out in an inert atmosphere (e.g. nitrogen gas) heating furnace at a temperature of 1200°C, but the key point in the present invention is the temperature in the carbonization furnace during carbonization treatment in an inert atmosphere with a maximum temperature of at least 1200°C. The conditions, particularly the rate of temperature rise of the yarn to be processed and the amount of inert gas supplied thereto, have been specified.
すなわち、処理糸条の昇温速度条件については上述した
ように通常の炭素化段階では、急激な分解反応のため繊
維表面に主として微小なボイドあるいはクラック等の欠
陥が生じ易く、これが炭素繊維の品質を著しく阻害する
が、この点本発明は処理糸条の昇温速度を上記(1)〜
(至)式の規定範囲、好ましくは(1)〜(至)式につ
いてUT、=200〜500′C/m1n
UT、=400〜30 [1”C/rrlinUT、=
200〜1000℃7m1n
の範囲で炭素化処理を行なうものである。In other words, regarding the heating rate conditions for the treated yarn, as mentioned above, during the normal carbonization stage, defects such as micro voids or cracks are likely to occur on the fiber surface due to the rapid decomposition reaction, which affects the quality of the carbon fiber. However, in this respect, the present invention reduces the temperature increase rate of the treated yarn to the above (1) to
For the specified range of formula (to), preferably for formula (1) to (to), UT, = 200 to 500'C/m1n UT, = 400 to 30 [1''C/rrlinUT, =
Carbonization treatment is carried out in the range of 200 to 1000°C and 7 m1n.
かかる昇温速度条件は第1図に示す如く炭素化処理時の
分解生成物が概ね集中的に発生する温度域、即ち500
〜700℃及び1000〜1200℃では昇温速度を小
さくし、分解反応を緩やかに進行させることによって繊
維表面に生じる微小なボイドあるいはクラック等の欠陥
を防止し、炭素繊維の品質向上、を図るものであるから
、本発明においては特にUTl<UT2、UT、 >
UT、の関係を満足させることが重要である。The temperature increase rate conditions are as shown in FIG.
At ~700℃ and 1000~1200℃, the temperature increase rate is reduced to allow the decomposition reaction to proceed slowly, thereby preventing defects such as minute voids or cracks that occur on the fiber surface, and improving the quality of carbon fiber. Therefore, in the present invention, especially UTl<UT2, UT, >
It is important to satisfy the relationship UT.
ここで(1)〜(2)式規定の下限は糸条処理の経済速
度を、また上限は炭素繊維の物性面を考慮して透定され
た値である。Here, the lower limit defined by formulas (1) and (2) is a value determined in consideration of the economic speed of yarn processing, and the upper limit is a value determined in consideration of the physical properties of the carbon fiber.
なおこの段階での分解反応は十分進行させる必要から所
定の温度域を保っている炉長、あるいは糸条の走行速度
について十分配慮し、本発明の目的に沿うよう併定すべ
きである。Since the decomposition reaction at this stage needs to proceed sufficiently, sufficient consideration should be given to the length of the furnace that maintains a predetermined temperature range or the traveling speed of the yarn, and should be determined in accordance with the purpose of the present invention.
次に不活性ガス供給量については、炭素化時に発生する
分解生成物をできるだけ速やかに炉外に排出し、特に分
解生成物の一部であるタール化物が繊維表面あるいは炉
内壁、就中炉の出入口に当るシール部付近に付着して、
これが毛羽、単糸切れ、および物性低下の原因となった
り、あるいは操業トラブルが生じるのを防止するのであ
るから、上記(ロ)式の条件を十分満足させねばならな
い。Next, regarding the amount of inert gas supplied, the decomposition products generated during carbonization should be discharged outside the furnace as quickly as possible. It adheres near the seal part that corresponds to the entrance and exit,
Since this prevents fuzz, single yarn breakage, deterioration of physical properties, and operational troubles, the condition of formula (b) above must be fully satisfied.
ここで不活性ガス供給量、■(ただし■は処理糸条重量
当りの不活性ガス供給量 Nm’/、)が3に満たない
ときは炉内における分解生成物の炉外徘tB−が不十分
となって、特にタール化物にもとづく種々のトラブルが
生じるようになる。一方■が10を越えると炭素繊維物
性プロセス性の改善効果は飽和し工業的規模では経済的
に不利となる。Here, if the inert gas supply amount, ■ (where ■ is the inert gas supply amount per yarn weight to be treated, Nm'/), is less than 3, the decomposition products wandering outside the furnace tB- will be insufficient. As a result, various troubles, especially those caused by tar compounds, begin to occur. On the other hand, when (■) exceeds 10, the effect of improving the physical properties and processability of carbon fibers is saturated, which is economically disadvantageous on an industrial scale.
また、かかる分解生成物の炉外排出をより適切に行なう
ための一方法として、例えば特に前記温度域400〜7
00℃での炭素化処理を一つの炭化炉によって実施し、
これに続く高温域での炭素化処理を別異の炭化炉によっ
て実施することも可能である。In addition, as a method for more appropriately discharging such decomposition products to the outside of the furnace, for example, particularly in the temperature range 400 to 7
Carbonization treatment at 00°C is carried out using one carbonization furnace,
It is also possible to carry out the subsequent carbonization treatment in a high temperature range using a different carbonization furnace.
また分解生成物の炉外排出を容易にするため第2図に示
すような竪形炭化炉を用いてもよい。Further, a vertical carbonization furnace as shown in FIG. 2 may be used to facilitate the discharge of decomposition products from the furnace.
図において炭化炉1は糸条出入口シール部2.3不活性
ガス供給口4.5及び炉長中心部付近に設けられた不活
性ガス排出口6を有しており、炉内で発生する。In the figure, a carbonization furnace 1 has a yarn entrance/exit seal portion 2.3, an inert gas supply port 4.5, and an inert gas discharge port 6 provided near the center of the furnace length, and carbonization is generated within the furnace.
分解生成物は、不活性ガスと共に排出口6より炉外へ排
出されることになる。The decomposition products are discharged from the furnace through the discharge port 6 together with the inert gas.
もちろん上記側れの方法においても分解生成物の速みや
かな炉外排出を行なうためには、前記(ロ)式の条件を
満すことが肝要である。Of course, even in the above-mentioned sideways method, it is important to satisfy the condition of formula (b) above in order to promptly discharge the decomposition products out of the furnace.
以上本発明によれば、炭素化処理時の炭化炉・内におけ
る処理糸条の昇温速度と不活性ガス供給量と全規定し、
これらの一体重効果によって繊維表面の微小なボイドあ
るいはクラック等の欠陥、並びに分解生成物、就中ター
ル化物の繊維表面への付着等が著しく減少し、この結果
は毛羽、単糸切れが少なく、かつ強度、弾性率の優れた
高品質の炭素繊維が容易に得られるようになった。As described above, according to the present invention, the rate of temperature increase of the treated yarn in the carbonization furnace and the amount of inert gas supply during carbonization treatment are fully defined,
Due to these single weight effects, defects such as minute voids or cracks on the fiber surface, as well as the adhesion of decomposition products, especially tar compounds, to the fiber surface are significantly reduced, resulting in less fluff and single fiber breakage. In addition, high-quality carbon fibers with excellent strength and elastic modulus can now be easily obtained.
また、前記タール化物の炉内壁への付着が減少したこと
に伴ない、操業トラブルも大+11に減少した。Furthermore, as the adhesion of the tar compounds to the inner wall of the furnace decreased, the number of operational troubles decreased by a large +11.
以下、実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.
実施例1
アクリル系繊維糸条(単糸デニール1.Od、フィラメ
ント数6000本)を空気中240〜270℃に加熱さ
れた耐炎化炉に入れて40分間耐炎化処理を行なった。Example 1 Acrylic fiber yarn (single yarn denier 1.Od, number of filaments 6000) was placed in a flameproofing furnace heated to 240 to 270°C in air and subjected to flameproofing treatment for 40 minutes.
得られた耐炎化糸を窒素ガス中最高温度が1300℃の
炭化炉で糸条の昇温速度を種々変更して炭素化処理を行
なった。The obtained flame-resistant yarn was carbonized in a carbonization furnace with a maximum temperature of 1300°C in nitrogen gas while varying the heating rate of the yarn.
ただし、この場合の炭素化処理において窒素ガス供給量
■を5とし、また1200〜1300℃の温度範囲での
昇温速度は1500 /mH1とした。However, in the carbonization treatment in this case, the nitrogen gas supply amount (1) was set to 5, and the temperature increase rate in the temperature range of 1200 to 1300°C was set to 1500/mH1.
炭素化条件及び得られた炭素繊維の品質を第1表に示し
た。The carbonization conditions and the quality of the obtained carbon fibers are shown in Table 1.
第1表
実施例2
実施例1で得られた耐炎化糸を最高温度が1300℃の
炭化炉中処理糸条当りの窒素カス供給量を種々変更して
炭素化処理を行なった。Table 1 Example 2 The flame-resistant yarn obtained in Example 1 was treated in a carbonization furnace with a maximum temperature of 1300° C. Carbonization treatment was carried out by varying the amount of nitrogen scum supplied per yarn.
ただし、この場合の炭素化処理において糸条の昇温速度
は、UT+:300′c/min UTt’2000
”/−1nUT、:5oo℃/、とし、また1200〜
1300℃のln
温度範囲での昇温速度は1500℃/r11inとした
。However, the heating rate of the yarn in the carbonization treatment in this case is UT+: 300'c/min UTt'2000
”/-1nUT, :5oo℃/, and 1200~
The temperature increase rate in the ln temperature range of 1300°C was 1500°C/r11in.
炭素化条件及び得られた炭素繊維の品質を第1表に示し
た。The carbonization conditions and the quality of the obtained carbon fibers are shown in Table 1.
第2表
実施例3
アクリル繊維(単糸デニール1d、フィラメント数60
00本)をクリールで1m当り10回の撚りをかけなが
ら連続的に巻き出し、2本づつ溝付ローラの1溝内に引
き揃えて合糸し、空気中240℃〜260℃に加熱され
た耐炎化炉に通して50分間耐炎化処理を行なった。Table 2 Example 3 Acrylic fiber (single yarn denier 1d, number of filaments 60
00 yarns) were continuously unwound using a creel with 10 twists per meter, and the yarns were pulled two by two into one groove of a grooved roller and doubled, and heated in air to 240°C to 260°C. It was passed through a flameproofing furnace and subjected to flameproofing treatment for 50 minutes.
次いで窒素ガス中最高温度が1300℃の炭化炉で炭素
化処理を行なった。ただし、この場合の炭素化処理条件
において、糸条の昇温速度はUT、 : 300′C/
min、 UT、 : 2000℃/min、UTs
:500℃/・ 1200〜1300℃の温度範囲で
は1500mtn。Next, carbonization treatment was performed in a carbonization furnace with a maximum temperature of 1300° C. in nitrogen gas. However, under the carbonization treatment conditions in this case, the heating rate of the yarn is UT: 300'C/
min, UT, : 2000℃/min, UTs
:500℃/・1500mtn in the temperature range of 1200-1300℃.
℃ン、とじ、窒素ガス供給量■は4とした。℃, stitching, and nitrogen gas supply amount (■) was set to 4.
ln
一方、比較例として糸条の昇温速度は同一とし、窒素ガ
ス供給量vを2とした。ln On the other hand, as a comparative example, the heating rate of the yarn was the same, and the nitrogen gas supply amount v was 2.
かかる操作1ケ月間連続して実施し、この間の炭素繊維
の品質および炉内壁へのタール状物の付着状態を調べ、
第3表に示した。This operation was carried out continuously for one month, and the quality of the carbon fibers and the state of tar-like substances adhering to the inner wall of the furnace were examined during this period.
It is shown in Table 3.
第6表Table 6
第1図は本発明の一実施例である炭化炉内における糸条
の昇温状態図であり、第2図は本発明の一実施例である
炭化炉の概略図である。
1:炉 体
2.6:糸条出入口シール部
4.5:不活性ガス供給口
6:不活性ガス排出口FIG. 1 is a diagram showing a state in which the temperature of yarn is increased in a carbonization furnace according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a carbonization furnace according to an embodiment of the present invention. 1: Furnace body 2.6: Yarn inlet/outlet seal part 4.5: Inert gas supply port 6: Inert gas discharge port
Claims (1)
少なくとも1200℃の不活性雰囲気中で炭化するに際
し、炭化炉内における処理糸条の昇温速度が、下記(1
)〜(ト)式%式%() () () () () ただし、UT、は温度域300〜700℃における処理
糸条の昇温速度。 UT2は温度域700〜1000℃における処理糸条の
昇温速度。 UT、は温度域1000〜1200℃における処理糸条
の昇温速度。 の規定範囲内にあると同時に、前記炭化炉における処理
糸条に対する不活性ガス供給量が、下記(至)式 %式%() ただし、■は処理糸条重量当りの不活性ガス供給量(N
′/に、) の関係を満足することを特徴とする炭素繊維の製、進法
。[Claims] When carbonizing flame-resistant yarn obtained from organic polymer fiber yarn in an inert atmosphere with a maximum temperature of at least 1200°C, the rate of temperature increase of the treated yarn in the carbonization furnace is as follows: (1
) ~ (G) Formula % Formula % () () () () () However, UT is the temperature increase rate of the treated yarn in the temperature range of 300 to 700°C. UT2 is the temperature increase rate of the treated yarn in the temperature range of 700 to 1000°C. UT is the temperature increase rate of the treated yarn in the temperature range of 1000 to 1200°C. At the same time, the amount of inert gas supplied to the treated yarn in the carbonization furnace is within the specified range of N
A system made of carbon fiber characterized by satisfying the following relationships: ′/to, ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9630482A JPS58214529A (en) | 1982-06-07 | 1982-06-07 | Production of carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9630482A JPS58214529A (en) | 1982-06-07 | 1982-06-07 | Production of carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58214529A true JPS58214529A (en) | 1983-12-13 |
Family
ID=14161288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9630482A Pending JPS58214529A (en) | 1982-06-07 | 1982-06-07 | Production of carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58214529A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177216A (en) * | 1986-01-31 | 1987-08-04 | Nikkiso Co Ltd | Carbonization treatment |
JP2019143287A (en) * | 2018-02-23 | 2019-08-29 | 帝人株式会社 | Manufacturing method of carbon fiber and carbon fiber |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5725419A (en) * | 1980-07-16 | 1982-02-10 | Mitsubishi Rayon Co Ltd | Preparation of carbon fiber |
-
1982
- 1982-06-07 JP JP9630482A patent/JPS58214529A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5725419A (en) * | 1980-07-16 | 1982-02-10 | Mitsubishi Rayon Co Ltd | Preparation of carbon fiber |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177216A (en) * | 1986-01-31 | 1987-08-04 | Nikkiso Co Ltd | Carbonization treatment |
JP2019143287A (en) * | 2018-02-23 | 2019-08-29 | 帝人株式会社 | Manufacturing method of carbon fiber and carbon fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1095206A (en) | Process for producing carbon fibers | |
US3639953A (en) | Method of producing carbon fibers | |
GB2168966A (en) | High-strength carbonaceous fiber | |
US4686096A (en) | Chopped carbon fibers and methods for producing the same | |
US4186179A (en) | Process for producing oxidized or carbon fibers | |
US5030435A (en) | Process for producing chopped strand of carbon fiber | |
EP0147005A2 (en) | Oxidation of pitch fibers | |
JPS58136838A (en) | Production of high-performance carbon fiber | |
JPS58214529A (en) | Production of carbon fiber | |
JP2003055843A (en) | Method for producing carbon fiber | |
JPS62257422A (en) | Production of carbon fiber | |
WO1987002391A1 (en) | Process for producing carbon fibers | |
JPS6021911A (en) | Manufacture of carbon fiber product | |
JP2930166B2 (en) | Carbon fiber production method | |
JPS6250574B2 (en) | ||
JPS58220821A (en) | Acrylic carbon fiber bundle with high strength and elongation and its production | |
JPS5853086B2 (en) | Method for producing flame-resistant fibers | |
JPH06102852B2 (en) | Pitch-based carbon fiber manufacturing method | |
JPS6278220A (en) | Production of ribbon-like carbon fiber | |
JPH0617319A (en) | Production of pitch-based carbon fiber | |
JPS5887321A (en) | Continuous production of carbon fiber | |
JPS62257424A (en) | Production of carbon fiber having high strength and elastic modulus | |
JPH026627A (en) | Production of novel carbon fiber using predetermined stretching | |
JP2507334B2 (en) | Method for producing pitch carbon fiber | |
JPS62250228A (en) | Carbon fiber of high strength and high elasticity |