JPS58213472A - Mos type semiconductor device - Google Patents

Mos type semiconductor device

Info

Publication number
JPS58213472A
JPS58213472A JP57095885A JP9588582A JPS58213472A JP S58213472 A JPS58213472 A JP S58213472A JP 57095885 A JP57095885 A JP 57095885A JP 9588582 A JP9588582 A JP 9588582A JP S58213472 A JPS58213472 A JP S58213472A
Authority
JP
Japan
Prior art keywords
type transistor
mos type
offset diffusion
diffusion layer
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57095885A
Other languages
Japanese (ja)
Inventor
Toshiaki Ogata
尾形 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57095885A priority Critical patent/JPS58213472A/en
Publication of JPS58213472A publication Critical patent/JPS58213472A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To lessen the irregularity in transistor characteristics by a method wherein an MOS type transistor having an offset diffusion layer on the drain side only and another MOS type transistor having an offset diffusion layer on both drain and source sides are joined together. CONSTITUTION:The characteristics of transistors are stabilized by reducing the irregularity of channel length using offset diffusion layers 21 and 22 on source 19 side and drain 20 side on a P-channel MOS type transistor 18. On the other hand, an MOS type transistor, having an offset diffusion layer 26 on the drain 25 side only, is used on an N-channel MOS type transistor 24, thereby enabling to increase an ON current and to contrive high integration of the titled semiconductor device.

Description

【発明の詳細な説明】 本発明はMOB型半導体装置の構造に関する。[Detailed description of the invention] The present invention relates to the structure of a MOB type semiconductor device.

従来選択酸化法によって形成される酸化膜下のイオン打
ち込み層をオフセット拡散層として用いたMOEi型半
導体装置には第1図及び第2図に示す2種類の構造が有
り、液晶駆動用半導体装置等数十■の耐圧を要する高集
積半導体装置のドライバ回路に用いられてきたがそれぞ
れに長所及び欠点を有している。第1図に示すドレイン
1,2側にのみオフセット拡散層5,4を持つ構造のM
O8型トランジスタは第2図に示すドレイン側、ソース
側双方にオフセット拡散層を有するyos型トランジス
タに比べて寸法を小さくする事が出来、またオン電流を
大きくする事が出来る長所を持つ反面、選択酸化法によ
る酸化膜5.6と多結晶シリコンゲート配@7.8のマ
スク合わせ誤差によってチャネル長が変動する為に同一
チップ内においてトランジスタの配置された方向によっ
てトランジスタ特性が変化し大きなバラツキを持つ欠点
がある。特にPチャネルMO8型トランジスタにおいて
はオフセット拡散層4の抵抗に比べてチャネル部9のオ
ン抵抗が大きく、チャネル長の変化によるトランジスタ
特性の変動が大きい。第2図に示すドレイン10.11
側、ソース12゜13側双方にオフセット拡散層14.
1s、16.17を持つ構造のMOB型トランジスタは
第1図に示したトランジスタと異なりチャネル長が選択
醗化前の窒化シリコン膜のフォトエッチの線巾で決まる
為にバラツキが少ない長所を持っているが、ソース側に
オフセット拡散層を持つ為にオフセット拡散層16の抵
抗値の大きいNチャネルMO8型トランジスタでは第1
図のNチャネルMO8型トランジスタと比較して大巾に
オン電流が減少する欠点がある。
Conventionally, there are two types of MOEi type semiconductor devices using an ion-implanted layer under an oxide film formed by selective oxidation as an offset diffusion layer, as shown in FIGS. 1 and 2. They have been used in driver circuits for highly integrated semiconductor devices that require a withstand voltage of several tens of microns, but each has its own advantages and disadvantages. M with a structure having offset diffusion layers 5 and 4 only on the drain 1 and 2 sides shown in FIG.
The O8 type transistor has the advantage of being smaller in size and having a larger on-current than the YOS type transistor, which has offset diffusion layers on both the drain and source sides, as shown in Figure 2. Because the channel length changes due to the mask alignment error between the oxide film 5.6 created by the oxidation method and the polycrystalline silicon gate layout @7.8, the transistor characteristics change depending on the direction in which the transistor is placed within the same chip, resulting in large variations. There are drawbacks. In particular, in a P-channel MO8 type transistor, the on-resistance of the channel portion 9 is greater than the resistance of the offset diffusion layer 4, and the transistor characteristics vary greatly due to changes in channel length. Drain 10.11 shown in Figure 2
Offset diffusion layers 14. on both the source 12 and 13 sides.
Unlike the transistor shown in Fig. 1, the MOB type transistor with a structure of 1s and 16.17 has the advantage that there is little variation because the channel length is determined by the line width of photo-etching of the silicon nitride film before selection. However, in an N-channel MO8 type transistor, which has an offset diffusion layer on the source side and has a large resistance value of the offset diffusion layer 16, the first
There is a drawback that the on-current is greatly reduced compared to the N-channel MO8 type transistor shown in the figure.

本発明は上記2種類のMO8型トランジスタを組み合わ
せる事により、トランジスタ特性のノ(ラツキの少ない
、またオン電流の大きいトランジスタを用いる事により
、多ピン化の進む液晶駆動用半導体装置に適した高集積
でしかも耐圧特性が向上したMOB型半導体装置を提供
するものである。本発明のMO8型半導体装置において
は第3図に示すようにPチャネルMO8型トランジスタ
18にはソース19側、ドレイン20側双方にオフセッ
ト拡散層21.22を持つMO8型トランジスタを用い
る事によりチャネへ長のバラツキを少なくし特性を安定
させる。PチャネルMO8型トランジスタのオフセット
拡散層21.22の抵抗値はチャネル部23のオン抵抗
に比べて小さくソース側オフセット拡散層21によるオ
ン電流の減少は小さい。一方NチャネルMO8型トラン
ジスタ24にはドレイン25側にのみオフセット拡散層
26を有するMO8型トランジスタを用いる事によって
オン電流を多くし高集積化をはかる。
By combining the above two types of MO8 type transistors, the present invention achieves high integration, which is suitable for liquid crystal driving semiconductor devices with an increasing number of pins, by using transistors with low transistor characteristics (less fluctuations and large on-current). Moreover, the present invention provides a MOB type semiconductor device with improved breakdown voltage characteristics.In the MO8 type semiconductor device of the present invention, as shown in FIG. By using an MO8 type transistor having an offset diffusion layer 21, 22 in the P channel MO8 type transistor, the variation in channel length is reduced and the characteristics are stabilized.The resistance value of the offset diffusion layer 21, 22 of the P channel MO8 type transistor is The reduction in on-current due to the source-side offset diffusion layer 21 is small compared to the resistance.On the other hand, by using an MO8-type transistor having an offset diffusion layer 26 only on the drain 25 side for the N-channel MO8-type transistor 24, the on-current can be increased. and aim for high integration.

NチャネルMO13型トランジスタではオフセット拡散
層26の抵抗が大きい為にチャネル長の変化による特性
のバラツキは小さくなる。
In the N-channel MO13 type transistor, since the resistance of the offset diffusion layer 26 is large, variations in characteristics due to changes in channel length are reduced.

以上述べた様に本発明のMO8型半導体装置はPチャネ
ルMO8型トランジスタ、NチャネルMO8型トランジ
スタの各々に高集積化及び特性安定化に適したMOB型
トランジスタを用いる事によって従来のMO8型半導体
装置の欠点を改着したものであり、マトリックス表示等
で多ビン化を要求されている液晶表示装置の駆動用半導
体装置等に大いに適している。
As described above, the MO8 type semiconductor device of the present invention uses MOB type transistors suitable for high integration and characteristic stabilization for each of the P-channel MO8 type transistor and the N-channel MO8 type transistor. This method overcomes the drawbacks of the previous method, and is highly suitable for semiconductor devices for driving liquid crystal display devices that require a large number of bins for matrix displays and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の選択酸化膜下のオフセット瀘
散層を用いたMoth型半導体装置を示す第3図は本発
明の選択酸化膜下のオフセット拡散層を用いたM、O8
型半導体装置を示す。 1.2,10,11,25.20塾・・ドレイン12.
13,19・・・ソース 5 、4 、14 、15 、.16 、17 、21
 、22.26・・・・・・オフセット拡散層 5.6・・・・・・選択酸化法による酸化膜7.8・・
・・・・ゲート多結晶シリコン配線9.23・・・チャ
ネル部 18・・・・・・・・・PチャネルMO8型トランジス
タ24・・・・・・・・・NチャネルMO8型トランジ
スタ以上 出願人 株式会社譚訪精工舎 代理人 弁理士 最上  務 第2図 第3図
1 and 2 show a conventional Moth type semiconductor device using an offset diffusion layer under a selective oxide film. FIG. 3 shows a Moth type semiconductor device using an offset diffusion layer under a selective oxide film according to the present invention.
type semiconductor device. 1. 2, 10, 11, 25. 20 cram school... drain 12.
13, 19... Source 5, 4, 14, 15, . 16, 17, 21
, 22.26...offset diffusion layer 5.6...oxide film 7.8 by selective oxidation method
...Gate polycrystalline silicon wiring 9.23...Channel portion 18...P channel MO8 type transistor 24...N channel MO8 type transistor or above Applicant Tanwa Seikosha Co., Ltd. Representative Patent Attorney Tsutomu Mogami Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一部のNチャネルMO8型トランジスタはド
レイン側にオフセット拡散層を有し、かつ少なくとも一
部のPチャネルMO8型トランジスタはドレイン側及び
ソース側双方にオフセット拡散層を有する事を特徴とす
るM’O8型半導体装置。
M' characterized in that at least some of the N-channel MO8 type transistors have an offset diffusion layer on the drain side, and at least some of the P-channel MO8 type transistors have offset diffusion layers on both the drain side and the source side. O8 type semiconductor device.
JP57095885A 1982-06-04 1982-06-04 Mos type semiconductor device Pending JPS58213472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095885A JPS58213472A (en) 1982-06-04 1982-06-04 Mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095885A JPS58213472A (en) 1982-06-04 1982-06-04 Mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPS58213472A true JPS58213472A (en) 1983-12-12

Family

ID=14149768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095885A Pending JPS58213472A (en) 1982-06-04 1982-06-04 Mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPS58213472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358973A (en) * 1986-08-29 1988-03-14 Mitsubishi Electric Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131483A (en) * 1976-04-28 1977-11-04 Hitachi Ltd Mis-type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131483A (en) * 1976-04-28 1977-11-04 Hitachi Ltd Mis-type semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358973A (en) * 1986-08-29 1988-03-14 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US6963100B2 (en) Semiconductor device having gate electrode in which depletion layer can be generated
JP3110262B2 (en) Semiconductor device and operating method of semiconductor device
US20010040257A1 (en) Semiconductor device and manufacturing method thereof
US6204534B1 (en) SOI MOS field effect transistor
JPS6043693B2 (en) drive circuit
JPH0715009A (en) Vertical mos field-effect transistor
JPH04344618A (en) Transistor for driving liquid crystal
JPH04241452A (en) Semiconductor integrated circuit device
JPS58213472A (en) Mos type semiconductor device
JP5541154B2 (en) Semiconductor device and manufacturing method thereof
JPH0222868A (en) Insulated-gate field-effect transistor
JPS59215766A (en) Metal oxide semiconductor integrated circuit device
JP3216705B2 (en) Semiconductor device
JPH0812917B2 (en) Method of operating MIS transistor and MIS transistor
JP2859029B2 (en) High voltage MOS transistor output protection device
JPS62291179A (en) Double diffused mosfet
KR100259726B1 (en) Semiconductor device
JPH0255953B2 (en)
US20120276739A1 (en) Differentially recessed contacts for multi-gate transistor of sram cell
JPH0330371A (en) Semiconductor device
JP2004170999A (en) Thin-film semiconductor unit, liquid crystal display device and method for manufacturing the same, and electronic equipment
JPS63302564A (en) Semiconductor device
JPH05267583A (en) Semiconductor integrated circuit device
JP2004095567A (en) Semiconductor device
JPH05114733A (en) Thin film transistor