JPS58206174A - Mesa type semiconductor device and manufacture thereof - Google Patents

Mesa type semiconductor device and manufacture thereof

Info

Publication number
JPS58206174A
JPS58206174A JP8926482A JP8926482A JPS58206174A JP S58206174 A JPS58206174 A JP S58206174A JP 8926482 A JP8926482 A JP 8926482A JP 8926482 A JP8926482 A JP 8926482A JP S58206174 A JPS58206174 A JP S58206174A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
type semiconductor
mesa
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8926482A
Other languages
Japanese (ja)
Inventor
Seiji Yasuda
聖治 安田
Toshio Yonezawa
敏夫 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP8926482A priority Critical patent/JPS58206174A/en
Publication of JPS58206174A publication Critical patent/JPS58206174A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enhance the withstand voltage and to reduce the leakage current of the device by a method wherein depth of a p-n junction face from the surface of a substrate is formed much more deeper at the neighborhoods of the sides of the substrate. CONSTITUTION:Depth of the p-n junction face 1 is formed as to be much more deeper at the parts nearby the sides 3 of the substrate, and the sides 3 of the substrate are coated with protective films of resin, glass, etc. As the manufacturing method, P is diffused from the back 12 of the n type substrate at first to form an n<+> type region 13. Then B is diffused to the whoe face of the surface 11, and Ga or Al having the diffusion coefficient larger than B is diffused doubly in succession in the neighborhoods of the boundary lines 14 between the parts to be isolated. The maximum electric field intensity in the neighborhood of the side is smaller than that at the center, and the withstand voltage is enhanced. Moreover the surface leakage current to be generated according to inversion or depletion of the p type region can be suppressed small according to elongation of the path of the leakage current of the surface, and moreover according to increase of impurity concentration.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はpn接合面が基板表面とほぼ平行に形成され、
このpn接合面が基板゛創面にて露出したメサ型半導体
装置およびその製造方法に関する、〔発明の技術的背景
とその問題点〕 従来のメサ型半導体装置を第1図(al 、 (b)に
示す。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a method in which a pn junction surface is formed substantially parallel to a substrate surface,
[Technical background of the invention and its problems] Regarding a mesa-type semiconductor device in which the pn junction surface is exposed at the wound surface of the substrate and its manufacturing method [Technical background of the invention and its problems] A conventional mesa-type semiconductor device is shown in FIGS. show.

pnn接合面上基板表面2と平行に形成され、その端部
は基板側面3で露出している7 したがって信頼性や寿
命の点で劣るという問題がある7こ几に対して従来その
基板側面Jを樹脂 ガラス等の保護膜弘でコーティング
して保護したり1、第1図(1))の如く逆台形として
劣化に対して強い構造とするようにしていた。
The pnn junction surface is formed parallel to the substrate surface 2, and its end is exposed on the substrate side surface 3. Therefore, in contrast to the conventional method, which has a problem of inferior reliability and lifespan, the substrate side surface J is They were protected by coating them with a protective film made of resin or glass, or they were made into an inverted trapezoid as shown in Figure 1 (1) to make them resistant to deterioration.

しかし保護膜≠の樹脂ま之はガラス中の不純物(例えば
ナトリウムイオン)に起因する電荷や使用中に外部から
侵入する汚染物によシ、表面付近においてn型領域では
空乏化が起こりにくい之め1界が集中しやす<、p型領
域では空乏化が起こりやすい之めリーク電流が増加し耐
圧が劣化する問題があった。ま之メサ型半導体装置を逆
台形とすることは製作孜術上困難?伴ないかつチップを
効率的に使えないという問題があった。
However, since the protective film is not a resin, it is difficult for depletion to occur in the n-type region near the surface due to charges caused by impurities in the glass (e.g., sodium ions) and contaminants that enter from the outside during use. Since depletion is likely to occur in the p-type region, leakage current increases and breakdown voltage deteriorates. Is it technically difficult to make a Manomesa-type semiconductor device into an inverted trapezoid? However, there was a problem that the chips could not be used efficiently.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮して々されたもので。 The present invention has been developed in consideration of the above circumstances.

高耐圧で信頼性が高く、かつ製造容易なメサ型半導体装
置とその製造方法を提供することを目的とするう 〔発明の概要〕 この目的を達成するために本発明によるメサ型半導体装
置はpn接合面の基板表面からの深さが基板;tt1面
近傍にてより深く形成するようにし、更に本発明による
メサ型半導体装置の製造方法は基板表面の分@境界刊付
近のあらかじめ定められた領域ヤニ重拡散することを特
徴とする。
SUMMARY OF THE INVENTION In order to achieve this object, a mesa semiconductor device according to the present invention has a pn The depth of the bonding surface from the substrate surface is made deeper in the vicinity of the substrate; It is characterized by heavy tar diffusion.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例によるメサ型半導体装置を第2図に示
す。pn接合面/の深さを基板:ll1面、?の近くで
より深くするようにして形成し、基板−1面3を樹脂、
ガラス等の保護膜でコーティングする。
FIG. 2 shows a mesa-type semiconductor device according to an embodiment of the present invention. Depth of pn junction surface/substrate: ll1 plane, ? The substrate-1 side 3 is covered with resin,
Coat with a protective film such as glass.

このようなメサ型半導体装置の製造方法を第、7図(a
l 、 (b) 、 (c)に示す。まずn型基板を裏
面/、2よりリン(P)を拡散してn+領域13を形成
する(、第3図(a))。次に表面/lの全面にホウ素
(B)を拡散し、続いてホウ素(B)より拡散係数の大
きいi ’) ’)ム(Ga )またはアルミニウム(
A1)を分離すべき境界mttt付近に二重拡散する(
第3図(′b))。次にこれに電極付けした後ダイシン
グま念はエツチングにより分離し目的のメサ型半導体素
子が得られる(第3図(C))。例えば耐圧1000 
Vのダイオードを作る場合、基板は厚さ、2.TOμm
で不純物濃度/×10 m のn型基板を用い、リン(
P)は裏面/コから表面濃度2〜6 x 7020cm
  ”で深さgoμm拡散してn 領域13を形成し、
ホウ素(B)は表面濃度/×1Otyn  で30αm
の深さに形成し、ガリウム(Ga )は表面濃度J X
/J’tM ’で35μmの深さに形成すればよい。
A method for manufacturing such a mesa-type semiconductor device is shown in FIG.
Shown in l, (b) and (c). First, phosphorus (P) is diffused from the back side of an n-type substrate to form an n+ region 13 (FIG. 3(a)). Next, boron (B) is diffused over the entire surface /l, and then aluminum (Ga) or aluminum (i') '), which has a larger diffusion coefficient than boron (B), is
A1) is double diffused near the boundary mttt to be separated (
Figure 3 ('b)). Next, after electrodes are attached to this, the dicing element is separated by etching to obtain the desired mesa-type semiconductor element (FIG. 3(C)). For example, pressure resistance 1000
When making a diode of V, the thickness of the substrate is 2. TOμm
Using an n-type substrate with an impurity concentration of /×10 m , phosphorus (
P) has a surface density of 2 to 6 x 7020 cm from the back/co.
” to a depth of goμm to form an n region 13,
Boron (B) is 30αm at surface concentration/×1Otyn
, and gallium (Ga) is formed at a surface concentration J
/J'tM' to a depth of 35 μm.

本実施例によるメサ型半導体装#は内部の電界強度より
p面近傍の電界強度をより小さくすることができる。こ
のこと?第≠図、第j図を用いて説明する。第≠図(a
)、第5図(a)はそれぞれメサ型半漢体装薗の中央2
よμ側面近傍における内部の不純物濃度を示したもので
ある。側面近傍においては二重拡散のためその不純物濃
度曲線は2段となっている。このメサ型半導体装置に電
圧を印加した場合の電界強度Eを第弘図(b)、第5図
(′b)に示す、μsij面近傍における最大電界強度
1!!アは中央におけるt大電界強度ら、より小さく、
高耐圧になっていることがわかるっ上述した具体例では
中央の空乏層厚さW/aは約1. ttm 、 w2a
は約//j Atnであり 、 ’ti11面近傍の空
乏層厚さw71)は約i0μm。
In the mesa type semiconductor device # according to this embodiment, the electric field strength near the p-plane can be made smaller than the electric field strength inside. this thing? This will be explained using Figure ≠ and Figure J. Figure ≠ (a
) and Figure 5(a) are the center 2 of the mesa-shaped half-Chinese body.
This shows the internal impurity concentration near the μ side. Near the side surfaces, the impurity concentration curve has two stages due to double diffusion. The electric field strength E when a voltage is applied to this mesa-type semiconductor device is shown in Fig. 5 (b) and Fig. 5 ('b), and the maximum electric field strength 1! ! A is smaller than t large electric field strength at the center,
It can be seen that the breakdown voltage is high.In the above-mentioned specific example, the central depletion layer thickness W/a is approximately 1. ttm, w2a
is approximately //j Atn, and the depletion layer thickness w71) near the 'ti11 plane is approximately i0 μm.

W2bは10gμmとP型領域でやや厚くなる。このた
め側面近傍での最大電界強度は約jチ改善されろうまt
本実y#4例によればP型領域の反転または空乏化によ
る表面リーク軍、流も矢面のリーク電流のパスが長くな
りかつ不純物濃度の上昇により小さく抑えることができ
る。
W2b is 10 gμm, which is slightly thicker in the P type region. Therefore, the maximum electric field strength near the side surface is improved by approximately
According to the present example y#4, surface leakage current due to inversion or depletion of the P-type region can be suppressed to a small level by increasing the path of the leakage current and increasing the impurity concentration.

更に本実施例による製造方法によれは拡散工哩をひとつ
加えるだけで容易に高i耐圧 菩信頼性のメサ型半導体
装置を製造することができる。
Furthermore, according to the manufacturing method according to this embodiment, a mesa-type semiconductor device with high I-breakdown voltage and high reliability can be easily manufactured by adding one diffusion process.

上述の実施例においてはダイオードについて説明したが
、ダイオード以外のトランジスタ等のメサ型半導体装置
についても同様である。
Although diodes have been described in the above embodiments, the same applies to mesa-type semiconductor devices such as transistors other than diodes.

また二重拡散における不純物は上述の実施例のように第
1の不純物の拡散係数よシ第2の不純物の拡散係数が大
きいことが望ましいが、同一の不純物でもよく、拡散係
数の大きさが第2の不純物の方が小さくともよいう 〔発明の効果〕 以上の通り本発明によれば、高耐圧でリーク電流の小さ
なメサ型半導体装置が実現でき、かつこのような高信頼
性のメサ型半導体装#を容易に製造することがでさるっ
Further, as for the impurity in double diffusion, it is desirable that the diffusion coefficient of the second impurity is larger than the diffusion coefficient of the first impurity as in the above-mentioned embodiment, but the same impurity may be used, and the diffusion coefficient of the second impurity is larger than that of the first impurity. [Effects of the Invention] As described above, according to the present invention, a mesa-type semiconductor device with high breakdown voltage and small leakage current can be realized, and such a highly reliable mesa-type semiconductor device can be realized. # can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1ス(al 、 1b、lばそj2ぞれ従来のメサ型
体系体装ミの、所光図 A 2 ’、−2’lは木驚明の一実施例によるメサ型
半導坏矢竜の析面図、 第、37(al 、 !’l)l 、 jClはそれぞ
れ本発明の一実施例(でよるメサ型半導体装置の製造方
法を示す工埋図。 塔≠図!al 、 fl)lはそれぞれ同装置の中央に
2ける不純物^度2よび電界強度を示すグラフ、第5図
(al 、 (b)ばそれぞれ同装置の側面近傍におI
ける不純物濃明および電界強度を示すグラフである。 / −pn接合而面2・・・基板表面、3・・・塞板側
面。 ≠・保護膜、//・・基板天面、/−・−・基板裏面、
/J・n+領領域lダ 境界線。 出頒人代理人  渚  没     清第3図(0) 粥J lff1 (C) 鴇4図
The 1st stage (al, 1b, l base j2) is a light map of a conventional mesa type system, respectively. 2', -2'l is a mesa type semiconducting arrow according to an embodiment of Mikkyo Ming. Ryu's analytical drawing, No. 37(al, !'l)l, jCl are construction drawings showing a manufacturing method of a mesa-type semiconductor device according to an embodiment of the present invention.Tower≠Fig!al, fl ) is a graph showing impurity degree 2 and electric field strength at the center of the same device, and FIGS.
FIG. /-pn junction surface 2...Substrate surface, 3...Closing plate side surface. ≠・Protective film, //・・Top surface of substrate, /−・−・Back surface of substrate,
/J・n+territory area lda boundary line. Distributor agent Nagisa Mikiyo Figure 3 (0) Kayu J lff1 (C) Toki 4 Figure

Claims (1)

【特許請求の範囲】 /、pn接合面が基板表面とほぼ平行に形成さn、前記
pn接合面が基板側面にて露出したメサ型半導体装置に
おいて。 前記pn接合面の前記基板表面からの深さが前記基板−
1面近傍にてより深く形成されたことを特徴とするメサ
型半導体装置。 コ、基板衣面に不納物を拡散し前記基板表面上の分離境
界線にて分離するメサ型半導体装置の製造方法、1でお
いて、 前記基板表面に第1の不納物を拡散した後に前記基板表
面上の前記分離境界線近傍のあらかじめ定めらf″L念
領滅領域27)不純物を二X城散することを2!i−友
とするメサ型半導体装置の製造方法・ 3特許請求の範囲第、2項記載の方法、でおいて。 前記第2の不純物の拡散係数i1 nj■記第1.り不
純物の拡散係数より大きいこと¥特徴とすもメサ型半導
体装置の製造方法・
[Claims] / A mesa-type semiconductor device in which a pn junction surface is formed substantially parallel to a substrate surface, and the pn junction surface is exposed at a side surface of the substrate. The depth of the pn junction surface from the surface of the substrate is -
A mesa-type semiconductor device characterized by being formed deeper near one surface. A method for manufacturing a mesa-type semiconductor device, in which undeliverables are diffused on a surface of a substrate and separated at a separation boundary line on the substrate surface. 27) A method for manufacturing a mesa-type semiconductor device in which impurities are dispersed in a predetermined f''L annihilation region near the separation boundary line on the substrate surface. In the method described in Item 2 of Range No. 2. The diffusion coefficient i1 nj of the second impurity is greater than the diffusion coefficient of the first impurity.
JP8926482A 1982-05-26 1982-05-26 Mesa type semiconductor device and manufacture thereof Pending JPS58206174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8926482A JPS58206174A (en) 1982-05-26 1982-05-26 Mesa type semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8926482A JPS58206174A (en) 1982-05-26 1982-05-26 Mesa type semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58206174A true JPS58206174A (en) 1983-12-01

Family

ID=13965890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8926482A Pending JPS58206174A (en) 1982-05-26 1982-05-26 Mesa type semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58206174A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768714A1 (en) * 1995-10-09 1997-04-16 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno - CoRiMMe Construction method for power devices with deep edge ring
US5798554A (en) * 1995-02-24 1998-08-25 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno MOS-technology power device integrated structure and manufacturing process thereof
US5841167A (en) * 1995-12-28 1998-11-24 Sgs-Thomson Microelectronics S.R.L. MOS-technology power device integrated structure
US5900662A (en) * 1995-11-06 1999-05-04 Sgs Thomson Microelectronics S.R.L. MOS technology power device with low output resistance and low capacitance, and related manufacturing process
US5981998A (en) * 1995-10-30 1999-11-09 Sgs-Thomson Microelectronics S.R.L. Single feature size MOS technology power device
US6030870A (en) * 1995-10-30 2000-02-29 Sgs-Thomson Microelectronics, S.R.L. High density MOS technology power device
US6228719B1 (en) 1995-11-06 2001-05-08 Stmicroelectronics S.R.L. MOS technology power device with low output resistance and low capacitance, and related manufacturing process
JP2010153620A (en) * 2008-12-25 2010-07-08 Shindengen Electric Mfg Co Ltd Diode

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798554A (en) * 1995-02-24 1998-08-25 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno MOS-technology power device integrated structure and manufacturing process thereof
US6111297A (en) * 1995-02-24 2000-08-29 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno MOS-technology power device integrated structure and manufacturing process thereof
EP0768714A1 (en) * 1995-10-09 1997-04-16 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno - CoRiMMe Construction method for power devices with deep edge ring
US6090669A (en) * 1995-10-09 2000-07-18 Consorzio Per La Ricerca Sulla Microelectronics Nel Mezzogiorno Fabrication method for high voltage devices with at least one deep edge ring
US5981998A (en) * 1995-10-30 1999-11-09 Sgs-Thomson Microelectronics S.R.L. Single feature size MOS technology power device
US5985721A (en) * 1995-10-30 1999-11-16 Sgs-Thomson Microelectronics, S.R.L. Single feature size MOS technology power device
US6030870A (en) * 1995-10-30 2000-02-29 Sgs-Thomson Microelectronics, S.R.L. High density MOS technology power device
US5900662A (en) * 1995-11-06 1999-05-04 Sgs Thomson Microelectronics S.R.L. MOS technology power device with low output resistance and low capacitance, and related manufacturing process
US6228719B1 (en) 1995-11-06 2001-05-08 Stmicroelectronics S.R.L. MOS technology power device with low output resistance and low capacitance, and related manufacturing process
US5841167A (en) * 1995-12-28 1998-11-24 Sgs-Thomson Microelectronics S.R.L. MOS-technology power device integrated structure
US6051862A (en) * 1995-12-28 2000-04-18 Sgs-Thomson Microelectronics S.R.L. MOS-technology power device integrated structure
JP2010153620A (en) * 2008-12-25 2010-07-08 Shindengen Electric Mfg Co Ltd Diode

Similar Documents

Publication Publication Date Title
JP6030806B1 (en) Wide gap type semiconductor device and method for manufacturing wide gap type semiconductor device
JPS58206174A (en) Mesa type semiconductor device and manufacture thereof
US3634739A (en) Thyristor having at least four semiconductive regions and method of making the same
US4215358A (en) Mesa type semiconductor device
US2919389A (en) Semiconductor arrangement for voltage-dependent capacitances
JPS5921170B2 (en) MOS type semiconductor device
US10658523B2 (en) Semiconductor device and manufacturing method thereof
JPH0690010A (en) Bidirectional surge suppressor circuit
JP2827795B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP6200107B1 (en) Wide gap type semiconductor device
JPH07193257A (en) Bi-directional schottky diode type protection component
JPH01259570A (en) Semiconductor device and manufacture thereof
JPS6115367A (en) Manufacture of gate turn-off thyristor
JPS61144871A (en) Beveled structure of semiconductor element
JPS59143370A (en) Semiconductor rectifying device
US7170104B2 (en) Arrangement with p-doped and n-doped semiconductor layers and method for producing the same
JPS5956773A (en) Semiconductor radiation detection element
JPS621262B2 (en)
JPS5950116B2 (en) diffusion. Alloy semiconductor device
JPH03108773A (en) Semiconductor device
JPS6126267A (en) Bidirectional zener diode
JPH0580834B2 (en)
JPS607763A (en) Semiconductor device
JPS6086873A (en) Semiconductor device
JPH0428144B2 (en)