JPS5820559B2 - Induction motor speed control device - Google Patents
Induction motor speed control deviceInfo
- Publication number
- JPS5820559B2 JPS5820559B2 JP52002981A JP298177A JPS5820559B2 JP S5820559 B2 JPS5820559 B2 JP S5820559B2 JP 52002981 A JP52002981 A JP 52002981A JP 298177 A JP298177 A JP 298177A JP S5820559 B2 JPS5820559 B2 JP S5820559B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- phase
- outputs
- firing
- reference signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Description
【発明の詳細な説明】
本発明は、誘導電動機を2速度電動機として運転し、負
荷機械の位置ぎめ停止等に好適ならしめた速度制御装置
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speed control device that operates an induction motor as a two-speed motor and is suitable for positioning and stopping a load machine.
近年機械の精密化、高速化が進展するに伴い位置ぎめ制
御の要求が増大してきた。In recent years, as machines have become more precise and faster, the demand for positioning control has increased.
この場合、停止精度は被動体の速度の2乗に略比例する
から、一旦被動体を低速運転に切換えてから停止させる
と停止精度を飛躍的に向上させることができる。In this case, since the stopping accuracy is approximately proportional to the square of the speed of the driven object, the stopping accuracy can be dramatically improved if the driven object is once switched to low-speed operation and then stopped.
このため、従来は低速運転をするために親子モータや多
段減速機、或は5CR−モータ等の可変速機が使用され
ていたが、これらはいずれも高価であり、これを単に停
止直前のごく短時間の低速運転を行うために使用するこ
とは甚だ不経済である。For this reason, variable speed motors such as parent-child motors, multi-stage reduction gears, or 5CR motors have traditionally been used to achieve low-speed operation, but these are all expensive, and they are simply It is extremely uneconomical to use it for short-term, low-speed operation.
そこで最近は直接誘導電動機を簡易に周波数制御をする
、いわゆる間引き通電方式が使用されてきた。Therefore, recently, a so-called thinned-out energization method has been used to easily control the frequency of direct induction motors.
前記間引き通電方式の1つに、三相交流電源と三相誘導
電動機との間に双方向性スイッチング素子を挿入し、該
素子を適宜点弧制御することによって電動機に電源周波
数の1/ (nは整数)6n±1
の低周波電圧を印加する方式がある。One of the thinning energization methods described above involves inserting a bidirectional switching element between the three-phase AC power supply and the three-phase induction motor, and controlling the element to turn on as appropriate to control the motor to 1/(n) of the power supply frequency. There is a method of applying a low frequency voltage of 6n±1 (integer).
しかしこの方式は減速比の6倍の段数を有するリングカ
ウンタを必要とするため、例えば減速比を13(n=2
)とすれば78段ものリングカウンタを必要とし、非実
用的である。However, this method requires a ring counter with six times the number of stages as the reduction ratio, so for example, if the reduction ratio is 13 (n=2
) would require a ring counter with as many as 78 stages, which is impractical.
そのため6n±1段のリングカウンタに3進リングカウ
ンタを組合せてリングカウンタの段数を減少させた制御
装置も提案されているが、それでも例えばn=3の場合
は17段又は19段のリングカウンタを必要とし、装置
が複雑となる。Therefore, a control device has been proposed in which a ternary ring counter is combined with a 6n±1-stage ring counter to reduce the number of stages of the ring counter. The equipment is complicated.
さらに前記のいずれの従来例においてもリングカウンタ
の固有の出力をスイッチング素子に与えているため、電
源投入後最初に入力する電源同期信号を識別して6n±
1段のリングカウンタ又はこれと3進リングカウンタと
を所要の初期状態にセットするための初期セット装置を
付加しなければならず、装置が一層複雑化するという欠
点がある。Furthermore, in all of the conventional examples described above, since the unique output of the ring counter is given to the switching element, the first power supply synchronization signal input after power-on is identified and 6n±
This has the disadvantage that an initial setting device must be added to set the one-stage ring counter or the ternary ring counter to a desired initial state, which further complicates the device.
本発明の目的は、従来の上記欠点を除去した誘導電動機
の速度制御装置を提案するにある。An object of the present invention is to propose a speed control device for an induction motor that eliminates the above-mentioned conventional drawbacks.
以下本発明の実施例を図面に従って説明する。Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明のブロック回路を示し、R,S。FIG. 1 shows a block circuit of the present invention, R, S.
Tは三相交流電源、Mは三相誘導電動機、u t v
tWは電機子巻線、TI 、T2.T3はトライアック
等の双方向性スイッチング素子(以下サイリスクと称す
る)である。T is three-phase AC power supply, M is three-phase induction motor, ut v
tW is the armature winding, TI, T2. T3 is a bidirectional switching element (hereinafter referred to as SIRISK) such as a triac.
Aは電源の正負の線間電圧に対応した6個の同。A is 6 same voltages corresponding to the positive and negative line voltages of the power supply.
期信号aを出力する同期信号発生装置、Bは同期信号a
と6進リングカウンタDの出力dとを論理処理して基準
信号すを出力する基準信号発生装置、Cは基準信号すを
分周して分周出力により6進リングカウンタDを作動せ
しめる1/n 分周器、Eは6進リングカウンタDの出
力を論理結合して電源電圧の6n 1/2サイクルを
1周期とし、?巾で互に口凸の位相差を有する3個の相
別基準信号eを出力する相別基準信号発生装置、Fは点
弧位相調整器、Gは点弧位相調整器Fの出力fと出。A synchronization signal generator that outputs a synchronization signal a, B is a synchronization signal a
and the output d of the hexadecimal ring counter D to output a reference signal S. The n frequency divider E logically combines the outputs of the hexadecimal ring counter D to set 6n 1/2 cycles of the power supply voltage as one period, and ? A separate reference signal generator that outputs three separate reference signals e having convex phase differences in width, F is an ignition phase adjuster, and G is an output f of the ignition phase adjuster F. .
力eとを論理結合してサイリスタT1〜T3の点弧パル
スgを与える点弧パルス発生装置である。This is an ignition pulse generator that logically combines the force e and the ignition pulse g to provide an ignition pulse g for the thyristors T1 to T3.
本発明においては基準信号発生装置Bと1分周器Cと6
進リングカウンタDとが環状に結合していて、6進リン
グカウンタDの出力に対応した位。In the present invention, reference signal generator B, 1 frequency divider C and 6
The hexadecimal ring counter D is connected in a ring, and the position corresponds to the output of the hexadecimal ring counter D.
相の同期信号が選択されるので、電源投入時の6進リン
グカウンタDが如何なる出力状態にあっても、その出力
状態に応じた同期信号を自動的に選択して、その同期信
号即ち電源電圧に対応するスイッチング素子を点弧して
電動機を遅滞なく起動。Since the phase synchronization signal is selected, no matter what output state the hexadecimal ring counter D is in when the power is turned on, the synchronization signal corresponding to the output state is automatically selected and the synchronization signal, that is, the power supply voltage The corresponding switching element is ignited to start the motor without delay.
させることができるのである。It is possible to do so.
したがって本発明においては6進リングカウンタの初期
状態を電動機起動の都度セットする必要はない。Therefore, in the present invention, it is not necessary to set the initial state of the hexadecimal ring counter each time the motor is started.
第2図は第1図の点弧制御回路の詳細を示す。FIG. 2 shows details of the ignition control circuit of FIG.
同期パルス発生装置Aは電源の各線間に接続した同一構
成の3個の回路からなる。The synchronous pulse generator A consists of three circuits of the same configuration connected between each line of the power supply.
電源T、Hに接続した回路について説明すると、ホトカ
プラー1と抵抗2,3とは線間電圧V(第3図■)と同
期し且つ線間電圧■の反転電圧と同一位相の信号を発生
し、抵抗4,5及びインバータ6.7が構成するシュミ
ット回路は前記信号を波形整形して線間電圧T−Rと1
80度位相が異る同期信号a3を発生し、さらにインバ
ータ8にて信号a3を線間電圧T−Rと同相の同期信号
a6に変換する。To explain the circuit connected to the power supplies T and H, the photocoupler 1 and the resistors 2 and 3 generate a signal that is synchronized with the line voltage V (Fig. 3 ■) and has the same phase as the inverted voltage of the line voltage ■. , resistors 4 and 5, and an inverter 6.7, the Schmitt circuit shapes the signal and converts it into line voltage T-R and 1.
A synchronizing signal a3 having a phase difference of 80 degrees is generated, and an inverter 8 converts the signal a3 into a synchronizing signal a6 having the same phase as the line voltage TR.
線間電圧R−3,S−Tについても同様にしてそれぞれ
対応する線間電圧に対し、180度位相が異る同期信号
a1.a2、及び同相同期信号a4.a5を発生する。Similarly, for the line voltages R-3 and S-T, synchronization signals a1. a2, and an in-phase synchronization signal a4. Generate a5.
第3図はn=2の場合の各部の信号波形を示し、a1〜
a6は電源の線間電圧の正負に対応した矩形波信号であ
る。Figure 3 shows the signal waveforms of each part when n=2, and shows a1 to
a6 is a rectangular wave signal corresponding to the positive or negative line voltage of the power supply.
第2図において、基準信号発生装置Bは6個のAND素
子9〜14とOR素子15からなり、AND素子9〜1
4は同期信号a1〜a6の1信号と後記する6進リング
カウンタDの1出力とをそれぞれ入力し、その論理積信
号即ち基準信号すをOR素子15から出力する。In FIG. 2, the reference signal generator B consists of six AND elements 9 to 14 and an OR element 15.
Reference numeral 4 inputs one signal of synchronization signals a1 to a6 and one output of a hexadecimal ring counter D to be described later, and outputs the AND signal, that is, the reference signal S, from the OR element 15.
次に基準信号発生装置Bと1/n分周器(n−2とする
)Cと6進リングカウンタ(以後単にカウンタと称す)
Dとの綜合動作を説明する。Next, a reference signal generator B, a 1/n frequency divider (n-2) C, and a hexadecimal ring counter (hereinafter simply referred to as a counter)
The combined operation with D will be explained.
いまある時点でカウンタDの内容がOで、端子0の出力
がHレベル、他の端子1〜5がLレベルであるとすると
、AND素子13のみが開いて信号a3を通過させ、O
R素子15の出力は時刻t1からt2 までHレベル、
t2からt3までLレベルとなる(第3図b)。Assuming that the content of counter D is O at a certain point in time, the output of terminal 0 is at H level, and the other terminals 1 to 5 are at L level, only AND element 13 opens and passes signal a3, and O
The output of R element 15 is at H level from time t1 to t2.
It becomes L level from t2 to t3 (Fig. 3b).
この出力信号すは分周器Cに入力するが、第1回目の入
力信号であるから分周器Cの出力は変化せず、したがっ
てカウンタDの内容は変らない。This output signal S is input to the frequency divider C, but since it is the first input signal, the output of the frequency divider C does not change, and therefore the contents of the counter D do not change.
次に時刻t3で信号a3が再びHレベルとなると、該信
号a3はAND素子13 、 OR素子15を通って分
周器Cに第2回目の信号として入力し、分周期Cから信
号が出力してカウンタDの内容を1にする。Next, at time t3, when the signal a3 becomes H level again, the signal a3 passes through the AND element 13 and the OR element 15 and is input to the frequency divider C as a second signal, and a signal is output from the divided frequency C. to set the contents of counter D to 1.
すなわち、端子0がLレベル、端子1がHレベルとなる
。That is, terminal 0 becomes L level and terminal 1 becomes H level.
その結果、AND素子13は閉じ、代ってAND素子1
0が開き、時刻t3から14 までの間は信号a4が分
周器Cに入力し、時刻t4でLレベルとなる。As a result, AND element 13 is closed, and AND element 1 is instead closed.
0 is open, and the signal a4 is input to the frequency divider C from time t3 to time 14, and becomes L level at time t4.
次に時刻t、で信号a4はHレベルとなるが、これは分
周器Cの第1回目の入力信号となるから、分周器Cの出
力は変化しない。Next, at time t, the signal a4 becomes H level, but since this becomes the first input signal to the frequency divider C, the output of the frequency divider C does not change.
信号a4が時刻t6でLレベルになり、次に時刻t7で
Hレベルになると、分周器Cが出力してカウンタDの内
容を2にする。When the signal a4 becomes L level at time t6 and then becomes H level at time t7, frequency divider C outputs and the content of counter D becomes 2.
すなわち、端子1がLレベル、端子2がHレベルとなっ
て、AND素子10が閉じ、AND素子11が開く。That is, terminal 1 becomes L level and terminal 2 becomes H level, AND element 10 is closed and AND element 11 is opened.
そのため時刻t7からは信号a2が分周器Cに入力する
。Therefore, signal a2 is input to frequency divider C from time t7.
以下順次このような動作が進行して、OR素子15から
は、電源電圧の位相角でπと2
百πのHレベル期間がπのLレベル期間ヲオイテ交互に
現われる基準信号すが出力する。Thereafter, such operations proceed one after another, and the OR element 15 outputs a reference signal in which an H level period of π and 200π alternates with an L level period of π at the phase angle of the power supply voltage.
分周器Cは前記百πのHレベルが現われるごとにパ?、
7Cを発生し、カウンタDの端子0〜5からはTπ1
の巾で丁πづ5位相がずれた信号dO〜
d5が発生する。Frequency divider C outputs a signal every time the 100π H level appears. ,
7C, and from terminals 0 to 5 of the counter D, signals dO to d5 whose phases are shifted by just π by 5 with a width of Tπ1 are generated.
相別基準信号発生装置Eは3個のOR素子16゜17.
18を有し、OR素子16は信号dO。The phase-specific reference signal generator E includes three OR elements 16°, 17.
18, and the OR element 16 receives the signal dO.
dl、d3.d4の論理和信号e1を、OR素子17は
信号di、d2.d4.d5の論理和信号e2を、また
OR素子18は信号d2.d3.d5.dOの論理和信
号e3を1−ffL出力する。dl, d3. The OR element 17 converts the logical sum signal e1 of d4 into signals di, d2 . d4. d5, and the OR element 18 receives the OR signal e2 of the signal d2. d3. d5. The OR signal e3 of dO is outputted as 1-ffL.
信号el、e2.e3は電11
4π 。Signals el, e2. e3 is electric 11
4π.
源電圧の一サイクルを1周期とする一巾のノ・ルスで互
に跡のも相差を有する。There is also a difference in the traces of each trace over a period of one period, which corresponds to one cycle of the source voltage.
3点弧位相調整装置Fはインバーター9、モノマ
ルチバイブレータ20、可変抵抗21、抵抗22、コン
デンサ23、インバータ24、AND素子25からなる
。The three-ignition phase adjustment device F includes an inverter 9, a mono-multivibrator 20, a variable resistor 21, a resistor 22, a capacitor 23, an inverter 24, and an AND element 25.
モノマルチバイブレーク20はインバータ19により反
転された基準信号f1を入力して抵抗21により定まる
巾のQ出力f2を生ずる。The mono multi-bi break 20 inputs the reference signal f1 inverted by the inverter 19 and produces a Q output f2 having a width determined by the resistor 21.
またインバータ24は抵抗22とコンデンサ23にて定
まる時定数により信号f2よりαだけ位相が遅れた反転
信号f3を発生し、AND素子25は信号f2とf3の
論理積信号すなわち点弧位相調整信号f4を発生する。Further, the inverter 24 generates an inverted signal f3 whose phase is delayed by α from the signal f2 by a time constant determined by the resistor 22 and the capacitor 23, and the AND element 25 generates a logical product signal of the signals f2 and f3, that is, a firing phase adjustment signal f4. occurs.
したがって抵抗21を調整すれば信号f4の位相角αを
変えることができる。Therefore, by adjusting the resistor 21, the phase angle α of the signal f4 can be changed.
点弧パルス発生装置GはAND素子26 、27゜28
と該各素子に接続する抵抗261、トランジスタ262
、パルストランス263よりなる増巾器とからなり、A
ND素子26,27.28はそれぞれ信号e1とf4、
e2とf4、e3とf4を入力して信号g1.g2.g
3を発生する。Ignition pulse generator G includes AND elements 26, 27°28
and a resistor 261 and a transistor 262 connected to each element.
, an amplifier consisting of a pulse transformer 263, and A
ND elements 26, 27.28 respectively receive signals e1 and f4,
By inputting e2 and f4, e3 and f4, the signal g1. g2. g
Generates 3.
この信号gl、g2.g3を前記増巾器により増巾して
サイリスクTI 、T2 、T3をそれぞれ点弧すれば
、電動機Mにはhl 、h2.h3の間引き電圧が印加
される。These signals gl, g2. If g3 is amplified by the amplification device and the cyrisks TI, T2, and T3 are fired, the electric motor M will have hl, h2, and h2. A thinning voltage of h3 is applied.
該電圧h1〜h3の基本波は電源周波数のT]−の低周
波弄コ交流電圧であって1、電動機Mを定格速度のほぼ
百の低速をもって回転させる。The fundamental wave of the voltages h1 to h3 is a low frequency alternating current voltage of the power supply frequency T]-1, which causes the motor M to rotate at a low speed approximately 100 times lower than the rated speed.
第4図は分周器Cの分局率を1とした場合の動作波形図
であり、bは基準信号、Cは分周器出力、dO〜d5は
カウンタDの出力を表わす。FIG. 4 is an operating waveform diagram when the division ratio of the frequency divider C is set to 1, where b represents the reference signal, C represents the frequency divider output, and dO to d5 represent the outputs of the counter D.
またe1〜e3は相別基準信号であって、電源電圧の−
サイクルを1周期とするり巾のパルスで、互3
に2“の位相差を有する。Further, e1 to e3 are phase-specific reference signals, which are - of the power supply voltage.
Each pulse has a width of one cycle, and has a phase difference of 2" from each other.
flは基準信号すの反転信号であり、f4は点弧位相調
整信号で、基準信号すの立下り時点より可変抵抗21に
よって定まる位相角αだけ遅れたパルスとなる。fl is an inverted signal of the reference signal S, and f4 is an ignition phase adjustment signal, which is a pulse delayed by a phase angle α determined by the variable resistor 21 from the falling point of the reference signal S.
g1〜g3は信号e1〜e3と信号f4との論理積信号
で、その増巾信号によりサイリスタT1〜T3を点弧制
御すると、h1〜h3に示す電圧が電動機Mに印加され
、その基本波電圧は電源周波数の百の低周波数の三相交
流電圧で、電動機Mを定格速度のほぼ上の低速で回転さ
せる。g1 to g3 are AND signals of signals e1 to e3 and signal f4, and when ignition of thyristors T1 to T3 is controlled by the amplified signal, voltages shown in h1 to h3 are applied to motor M, and its fundamental wave voltage is a three-phase AC voltage with a low frequency of 100 times the power supply frequency, and rotates the electric motor M at a low speed almost above the rated speed.
第5図は分局器Cの分局率を3した場合の動作波形図で
、第3図と同符号のものはそれぞれ対応する同種の波形
を示す。FIG. 5 is an operational waveform diagram when the division ratio of the divider C is set to 3, and the same reference numerals as in FIG. 3 indicate corresponding waveforms of the same type.
電動機Mに加わる電圧hh1〜h3は電源周波数の土の
低周波成分を含6□エヤ、工よゆ。The voltages hh1 to h3 applied to the electric motor M include low frequency components of the power supply frequency.
星。51817 る。Star. 51817 Ru.
本発明は以上の通りであって、電動機を電源周波数の1
/6n−1の低周波電圧をもって低速運転する場合に速
度制御装置としては1/。The present invention is as described above, and has a power supply frequency of 1
1/6n-1 as a speed control device when operating at low speed with a low frequency voltage of 1/6n-1.
分局器のnを変えるだけで、その他の回路は共通に使用
することができるから融通性に富む利点がある上に、リ
ングカウンタとしては段数の少い6進リングカウンタで
足りるから回路構成が非常に簡単となる効果がある。By simply changing n of the divider, other circuits can be used in common, which has the advantage of being highly flexible.In addition, a hexadecimal ring counter with a small number of stages is sufficient as a ring counter, so the circuit configuration is very simple. This has the effect of making it easier.
さらに、本発明においてはカウンタ内容が常に帰環され
て、カウンタ内容に応じた電源同期信号を選択すること
により基準信号を発生させるから、どの時点で電源を投
入しても、制御装置は直ちに動作状態に入ることが可能
であり、従来例における如き初期セット装置が不要であ
るから、装置全体を著しく簡素化することができる効果
がある。Furthermore, in the present invention, the contents of the counter are always fed back and a reference signal is generated by selecting a power synchronization signal according to the contents of the counter, so that the control device immediately operates no matter when the power is turned on. Since it is possible to enter the state and an initial setting device as in the conventional example is not required, there is an effect that the entire device can be significantly simplified.
第1図は本発明の一実施例のブロック回路図、第2図は
論理回路図、第3図は分局率nを2とした場合の回路各
部の動作波形図、第4図、第5図はそれぞれnを1及び
3とした場合の回路各部の動作波形図である。
TI 、T2 、T3・・・・・・双方向性スイッチン
グ素・子、M・・・・・・三相誘導電動機、B・・・・
・導率信号発生装置、C・・・・・・1分周器、D・・
・・・・6進リングカウンタ、E・・・・・・相別基準
信号発生装置、F・・・・・・点弧位相調整器、G・・
・・・・点弧パルス発生装置。Figure 1 is a block circuit diagram of an embodiment of the present invention, Figure 2 is a logic circuit diagram, Figure 3 is an operation waveform diagram of each part of the circuit when the division ratio n is 2, Figures 4 and 5. are operation waveform diagrams of various parts of the circuit when n is 1 and 3, respectively. TI, T2, T3... Bidirectional switching element/element, M... Three-phase induction motor, B...
・Conductivity signal generator, C...1 frequency divider, D...
... Hexadecimal ring counter, E ... Phase-specific reference signal generator, F ... Firing phase adjuster, G ...
...Ignition pulse generator.
Claims (1)
り給電される三相誘導電動機の速度tell装置におい
て、1分周器(nは整数)の出力により作動する6進リ
ングカウンタの出力により前記電源の線間電圧の正負に
対応する複数の同期信号を順次選択して基準信号を発生
すると共に該基準信号により1分周器を作動させる基準
信号発生装置と、前記基準信号に対可調整の遅れ位相を
もつ点弧位相調整信号を発生する点弧位相調整器と、6
進リングカウンタの出力のうち選択された複数の出力の
論理和結合により前記電源の60−1/2すイクルを1
周期とじ−πの巾で互に&三の位相差3 を有する3個の相別基準信号を出力する相別基準信号発
生装置と、該相別基準信号と前記点弧位相調整信号との
論理積信号を双方向性スイッチング素子の点弧信号とし
て出力する点弧パルス発生装置とを有することを特徴と
する誘導電動機の速度制御装置。[Claims] 1. A hexadecimal ring operated by the output of a 1 frequency divider (n is an integer) in a speed tell device for a three-phase induction motor supplied with power from a three-phase AC power source via a bidirectional switching element. a reference signal generating device that sequentially selects a plurality of synchronization signals corresponding to the positive and negative of the line voltage of the power supply based on the output of a counter to generate a reference signal and operates a frequency divider by 1 using the reference signal; a firing phase regulator for generating a firing phase adjustment signal with an adjustable delay phase relative to the firing phase adjuster;
The 60-1/2 cycle of the power supply is reduced to 1 by the OR combination of a plurality of outputs selected from among the outputs of the leading ring counter.
A phased reference signal generator that outputs three phased reference signals having a phase difference of &3 from each other with a period width of −π, and a logic between the phased reference signals and the ignition phase adjustment signal. 1. A speed control device for an induction motor, comprising a firing pulse generator that outputs a product signal as a firing signal for a bidirectional switching element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52002981A JPS5820559B2 (en) | 1977-01-17 | 1977-01-17 | Induction motor speed control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52002981A JPS5820559B2 (en) | 1977-01-17 | 1977-01-17 | Induction motor speed control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5388912A JPS5388912A (en) | 1978-08-04 |
JPS5820559B2 true JPS5820559B2 (en) | 1983-04-23 |
Family
ID=11544540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52002981A Expired JPS5820559B2 (en) | 1977-01-17 | 1977-01-17 | Induction motor speed control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5820559B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63105325U (en) * | 1986-12-25 | 1988-07-08 | ||
JPH0333042Y2 (en) * | 1983-07-18 | 1991-07-12 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61154449A (en) * | 1984-12-26 | 1986-07-14 | Agency Of Ind Science & Technol | Synchronous machine |
JPH081282Y2 (en) * | 1991-11-18 | 1996-01-17 | 株式会社新潟鉄工所 | Filter clogging alarm device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4983816A (en) * | 1972-12-22 | 1974-08-12 | ||
JPS5176511A (en) * | 1974-12-27 | 1976-07-02 | Mitsubishi Electric Corp |
-
1977
- 1977-01-17 JP JP52002981A patent/JPS5820559B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4983816A (en) * | 1972-12-22 | 1974-08-12 | ||
JPS5176511A (en) * | 1974-12-27 | 1976-07-02 | Mitsubishi Electric Corp |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333042Y2 (en) * | 1983-07-18 | 1991-07-12 | ||
JPS63105325U (en) * | 1986-12-25 | 1988-07-08 |
Also Published As
Publication number | Publication date |
---|---|
JPS5388912A (en) | 1978-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4099107A (en) | Apparatus for synchronizing AC-motors | |
US5422557A (en) | Method and apparatus for controlling the speed of a single phase induction motor using frequency variation | |
GB2149242A (en) | Inverter controlling apparatus for induction motor drive | |
US3308362A (en) | Synchronous motor control circuit | |
JPS5820559B2 (en) | Induction motor speed control device | |
US4023082A (en) | Speed control circuit for a DC motor having a Hall generator | |
US4287463A (en) | Zero rotation and zero torque detector and method for an AC electric motor drive | |
JP6359226B1 (en) | Power converter control device | |
JPS5915278B2 (en) | Induction motor speed control device | |
JPS6126316B2 (en) | ||
JP3114937B2 (en) | Motor control device | |
US5886555A (en) | Pulse production circuit | |
JPH0746872A (en) | Speed controller for single phase induction motor | |
JPH05122983A (en) | Controller for permanent magnet motor | |
JPH02206398A (en) | Inverter control system | |
SU847479A1 (en) | Active current setting device for induction machine | |
JPH0549263A (en) | Power supply | |
GB1127263A (en) | Improvements in or relating to a system for forming pilot voltages for controlling electronic commutation channels for induction motors | |
JPH0446591A (en) | Pulse phase shifter | |
JPH07115789A (en) | Method and apparatus for detecting rotor position in brushless motor | |
SU855908A1 (en) | Device for frequency starting of synchronous machine | |
SU1339864A1 (en) | Induction electric drive | |
SU1300620A2 (en) | Static converter for supplying power to hysteresis motor | |
SU1653120A2 (en) | Method for controlling an asynchronous motor with a triac power switch in stator winding phases and device thereof | |
JPS61121787A (en) | Speed controller of motor |