JPS5915278B2 - Induction motor speed control device - Google Patents
Induction motor speed control deviceInfo
- Publication number
- JPS5915278B2 JPS5915278B2 JP52144033A JP14403377A JPS5915278B2 JP S5915278 B2 JPS5915278 B2 JP S5915278B2 JP 52144033 A JP52144033 A JP 52144033A JP 14403377 A JP14403377 A JP 14403377A JP S5915278 B2 JPS5915278 B2 JP S5915278B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- phase
- reference signal
- output
- degrees
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Description
【発明の詳細な説明】
本発明は、誘導電動機を2速度電動機として運転し、負
荷機械の位置ぎめ停止等に好適ならしめた速度制御装置
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speed control device that operates an induction motor as a two-speed motor and is suitable for positioning and stopping a load machine.
5 近年、負荷機械の停止精度を良くするため、停止直
前に一旦低速運転に切換えてから制動する方法が多用さ
れている。5. In recent years, in order to improve the stopping accuracy of loaded machines, a method of switching to low-speed operation immediately before stopping and then braking has been frequently used.
この様な目的に用いる電動機は少くも高低2速度が簡単
に得られることが必要であり、このため誘導電動機を直
被簡易に周波10数制御をして低速運転をする、いわゆ
る″間引き通電″制御が使用されてきた。″間引き通電
″制御には各種の方式があるが、第1図a、bは三相誘
導電動機Mをそれぞれ1/6n−1、又は1/6n+1
(nは整数)に減速5 制御する場合の主回路接続図で
あわ、S、T、Rは三相交流電源THI3TH23TH
3は双方向性スイッチング素子、MCは接触器である。The electric motor used for this purpose needs to be able to easily obtain at least two high and low speeds, and for this reason, the induction motor is operated directly and easily with a frequency of 10 to operate at a low speed, so-called "thinned energization". control has been used. There are various methods for "thinning energization" control, but in Fig. 1 a and b, the three-phase induction motor M is controlled by 1/6n-1 or 1/6n+1, respectively.
(n is an integer) The main circuit connection diagram when controlling 5.S, T, R are three-phase AC power supply THI3TH23TH
3 is a bidirectional switching element, and MC is a contactor.
第1図aにおいて、間引き通電により電動機Mに加わる
1/6n−1の低周波電圧成分は相回転方’o 向が電
源電圧と逆になるため、電源周波数で高速運転をする場
合と、間引き通電によシ低速運転をする場合とでは二相
の切換えをする必要がある。そのため接触器MCを用い
、しかも切換時の短絡を防止するために、接触器MCを
開いたのち0.2・5〜0.3秒の時間間隔をおいて間
引き通電を開始する必要がある。この時間は制御の高速
化を妨げる無駄な時間である。しかし1/6n+1の減
速制御の場合は、低周波電圧成分は電源電圧と相回転方
向が同じであるかゞ0 ら、速度切換時に相の接続替え
をする必要がなく、回路及び操作が簡単となる。In Figure 1a, the 1/6n-1 low frequency voltage component applied to the motor M due to thinning energization has a phase rotation direction opposite to the power supply voltage. It is necessary to switch between two phases when energizing and operating at low speed. Therefore, in order to use the contactor MC and prevent short circuits during switching, it is necessary to start thinning energization at a time interval of 0.2.5 to 0.3 seconds after opening the contactor MC. This time is wasted time that hinders speeding up of control. However, in the case of 1/6n+1 deceleration control, the low frequency voltage component has the same phase rotation direction as the power supply voltage, so there is no need to change the phase connection when switching speeds, and the circuit and operation are simple. Become.
またコンベヤ等では荷くずれ防止のために、速度切換時
に衝撃を与えない緩起動、緩停止が要求されることが多
いが、第1図bの結線ならば点弧15位相制御により容
易に目的を達することができるから、第1図aの場合よ
りも用途が広くなる。In addition, in order to prevent loads from collapsing, conveyors, etc., are often required to start and stop slowly without causing shock when switching speeds, but with the connection shown in Figure 1b, the purpose can be easily achieved with ignition 15 phase control. This makes it more versatile than in the case of FIG. 1a.
したがつて、本発明の目的は1/6n+1の減速制御を
行う誘導電動機の速度制御装置を提案するにある。以下
本発明の実施例を図面に従つて説明する。Therefore, an object of the present invention is to propose a speed control device for an induction motor that performs 1/6n+1 deceleration control. Embodiments of the present invention will be described below with reference to the drawings.
第2図は本発明のブロツク回路を示し、R,S,Tは三
相交流電源、Mは三相誘導電動機、N,V,Wは電鼾巻
線、Tl,T2,T3はトライアツク等の双方向性スイ
ツチング素子(以下サイリスタト称する)である。Aは
電源の正負の線間電圧に対応した6個の同期信号aを出
力する同期信号発生装置、Bは同期信号aと6進リング
カウンタDの出力dとを論理処理して基準信号bを出力
する基準信号発生装置、Cは基準信号bを分周して分周
出力により6進リングカウンタ(以下単にカウンタと称
する)Dを作動せしめる1/n分周器、EはカウンタD
の出力を論理結合して電源電圧の6n+1/2サイクル
を1周期とし、240度巾で互に120度の位相差を有
する3個の相別基準信号eを出力する相別基準信号発生
装置、Gは相別基準信号eと点弧位相調整器Fの出力f
とを論理処理してサイリスタT1〜T3の点弧パルスg
を与える点弧パルス発生装置である。Figure 2 shows the block circuit of the present invention, where R, S, and T are three-phase AC power supplies, M is a three-phase induction motor, N, V, and W are electric windings, and Tl, T2, and T3 are triax, etc. It is a bidirectional switching element (hereinafter referred to as a thyristat). A is a synchronization signal generator that outputs six synchronization signals a corresponding to the positive and negative line voltages of the power supply, and B is a reference signal b by logically processing the synchronization signal a and the output d of a hexadecimal ring counter D. A reference signal generating device to output, C is a 1/n frequency divider that divides the reference signal b and operates a hexadecimal ring counter (hereinafter simply referred to as a counter) D by the divided output, and E is a counter D.
a phased reference signal generating device which logically combines the outputs of the two to output three phased reference signals e having a width of 240 degrees and a phase difference of 120 degrees, with one cycle being 6n+1/2 cycles of the power supply voltage; G is the phase-specific reference signal e and the output f of the ignition phase adjuster F.
The ignition pulse g of thyristors T1 to T3 is obtained by logically processing
This is an ignition pulse generator that gives
第3図は第2図の点弧制御回路の詳細を示す。FIG. 3 shows details of the ignition control circuit of FIG.
同期信号発生装置Aは電源の各線間に接続した同一構成
の3個の回路からなる。電源T,R間の回路について説
明すると、ホトカプラー1と低抗2,3とは線間電圧V
(第4図)と同期し且つ線間電圧の反転電圧と同一位相
の信号を発生し、該信号を抵抗4,5及びインバータ6
,7にて構成したシユミツト回路により波形整形して、
線間電圧T−Rと180度位相が異る同期信号A3を発
生し、さらにインバータ8にて信号A3を線間電圧T−
Rと同相の同期信号A6に変換する。線間電圧R−S,
S−Tについても同様にしてそれぞれ対応する線間電圧
と反対位相の同期信号A2,al及び同相同期信号A5
,a4を発生する。第4図はn=2の場合の各部の信号
波形を示し、al〜A6は線間電圧の正負に対応した矩
形波信号である。The synchronous signal generator A consists of three circuits of the same configuration connected between each line of the power supply. To explain the circuit between the power supplies T and R, the photocoupler 1 and the low resistors 2 and 3 are connected to the line voltage V.
(Fig. 4) and generates a signal having the same phase as the inverted voltage of the line voltage, and transmits this signal to the resistors 4 and 5 and the inverter 6.
The waveform is shaped by the Schmitt circuit configured in , 7,
A synchronizing signal A3 having a phase difference of 180 degrees from the line voltage T-R is generated, and the inverter 8 converts the signal A3 to the line voltage T-R.
It is converted into a synchronization signal A6 that is in phase with R. Line voltage R-S,
Similarly, for ST, synchronization signals A2, al and in-phase synchronization signal A5 having opposite phases to the corresponding line voltages are generated.
, a4 are generated. FIG. 4 shows the signal waveforms of each part when n=2, and al to A6 are rectangular wave signals corresponding to the positive and negative lines of the line voltage.
第3図において、基準信号発生装置Bは、6個のAND
素子9〜14と0R素子15,16と微分回路17及び
モノマルチバイブレータ18とを有し、AND素子9〜
14はカウンタDの内容変化に従つて同期信号al〜A
6の1つを選択し、微分回路17モノマルチバイブレー
タ18及び00Rゲート16は、前記選択した同期信号
を選択の前後を通じて途切らさずに0R素子16から基
準信号bとして出力させる。In FIG. 3, the reference signal generator B includes six AND
It has elements 9 to 14, 0R elements 15 and 16, a differentiation circuit 17, and a mono-multivibrator 18, and AND elements 9 to 14.
14 is a synchronizing signal al~A according to the change in the contents of the counter D.
6, the differentiating circuit 17 mono multivibrator 18 and 00R gate 16 output the selected synchronizing signal as the reference signal b from the 0R element 16 without interruption before and after the selection.
次に、第4図の動作波形図を参照して基準信号発生装置
Bと1/n分周器C(n=2即ち減速比13)とカウン
タDとの綜合動作を詳述する。Next, the integrated operation of the reference signal generator B, the 1/n frequency divider C (n=2, that is, the reduction ratio 13), and the counter D will be described in detail with reference to the operational waveform diagram of FIG.
いま、ある時点でカウンタDの内容が0で、端子0の出
力がHレベル、他の端子1〜5がLレベルであるとする
と、この場合はAND素子10のみが開くから信号A4
が該素子10及び0R素子15を通過し、微分回路17
は時刻t1で微分パルス(B2)を出力してモノマルチ
バイブレータ18をトリガする。いまモノマルチバイブ
レータ18の出力パルス巾を電源電圧の位相巾で60度
より大きく180度より小となるように調整しておくと
、0R素子16の出力bはt1でH.t2でLとなb1
信号A4と同じ巾のパルスとなる。このパルスは1/2
分周器Cに対して1回目の入力信号となるから、分周器
Cは出力せず、カウンタDの内容は変らない。したがつ
てT2以降も信号A4がAND素子15を通過する。信
号A4が時刻T3で再びHになると、前記と同様に0R
素子16が分周器Cに2回目の信号を出力して作動せし
める。Now, suppose that the content of counter D is 0 at a certain point, the output of terminal 0 is at H level, and the other terminals 1 to 5 are at L level. In this case, only AND element 10 is open, so signal A4
passes through the element 10 and the 0R element 15, and the differential circuit 17
outputs a differential pulse (B2) at time t1 to trigger the mono multivibrator 18. Now, if the output pulse width of the mono multivibrator 18 is adjusted so that it is larger than 60 degrees and smaller than 180 degrees in terms of the phase width of the power supply voltage, the output b of the 0R element 16 becomes H. L at t2 b1
The pulse has the same width as signal A4. This pulse is 1/2
Since this is the first input signal to frequency divider C, frequency divider C does not output and the contents of counter D do not change. Therefore, the signal A4 passes through the AND element 15 even after T2. When the signal A4 becomes H again at time T3, it becomes 0R as before.
Element 16 outputs a second signal to frequency divider C, causing it to operate.
これによりカウンタDが1だけシフトし、端子0がLレ
ベル、端子1がHレベルとなつてAND素子10が閉じ
、AND素子13が開いて、これから信号A3が出力す
′78′o信号A3はA4より位相が60度遅れている
から、時刻T3ではLレベルであり、それより60度遅
れた時刻T4でHレベルとなる。したがつて、0R素子
15の出力(b1)は時刻T3で一時Hレベルとなつた
のち、直ちにLレベルに落ちるヒゲパルスとなジ、時刻
T4で信号A3によ勺Hレベルとなる。これにより微分
回路17は時刻T3,t4で微分パルスを出力し、モノ
マルチバイブレータ18はT3の微分パルスによりトリ
ガされたのち、T4の微分パルスには影響されずに所定
期間出力を続ける(B3)。したがつて0R素子16の
出力bは時刻T3からT,までHレベルとなる。以下時
刻T6,t7,t8,t9・・・等においてもそれぞれ
時刻Tl,t2,t3,t4・・・に訃けると同様の動
・作が繰返えされ、0R素子16からは、電源電圧の位
相で180度と240度のHレベル期間が180度のL
レベル期間をおいて交互に現われる基準信号bが出力す
る。As a result, the counter D is shifted by 1, terminal 0 becomes L level and terminal 1 becomes H level, AND element 10 is closed, AND element 13 is opened, and signal A3 is output from now on. Since the phase is delayed by 60 degrees from A4, it is at L level at time T3, and becomes H level at time T4, which is 60 degrees later than that. Therefore, the output (b1) of the 0R element 15 temporarily goes to the H level at time T3, then immediately drops to the L level as a pulse, and then goes to the high level by the signal A3 at time T4. As a result, the differentiating circuit 17 outputs differential pulses at times T3 and t4, and after being triggered by the differential pulse at T3, the mono-multivibrator 18 continues to output for a predetermined period without being affected by the differential pulse at T4 (B3) . Therefore, the output b of the 0R element 16 is at H level from time T3 to T. Thereafter, at times T6, t7, t8, t9, etc., the same operations are repeated at times Tl, t2, t3, t4, etc., and the power supply voltage is output from the 0R element 16. With the phase of 180 degrees and 240 degrees H level period is 180 degrees L
A reference signal b that appears alternately with a level period is output.
第4図b1の波形図の上側に記した文字A3,a4・・
・は選択された同期信号を表わし、下側に記した数字1
,2・・・はカウンタDの内容を表わす。上記のように
、0R素子16、微分回路17、モノマルチバイブレー
タ18を含む回路BSは、カウンタDの内容がシフトし
たときに、シフト前とシフト後に卦いてそれぞれ選択さ
れた同期信号(前記説明におけるA4とA3)のHレベ
ル期間をシフト時に途切れることなく継続させる信号継
続回路である。Letters A3, a4, etc. written on the upper side of the waveform diagram in Fig. 4 b1
・represents the selected synchronization signal, and the number 1 written at the bottom
, 2, . . . represent the contents of the counter D. As described above, when the contents of the counter D are shifted, the circuit BS including the 0R element 16, the differentiating circuit 17, and the monomultivibrator 18 receives the synchronization signal (in the above description) selected before and after the shift, respectively. This is a signal continuation circuit that continues the H level periods of A4 and A3) without interruption during shifting.
該回路には、上記実施例のほか、例えば前記シフト時に
AND素子9〜14が開から閉へ移行するのを60度の
位相巾に相当する時間だけ遅延させる等他の公知手段を
用いることもできる。また前記の基準信号bはパルスの
立上り時点及び立下v時点が電源電圧と同期しているが
、実用的にはいずれか一方の時点が電源電圧と同期して
いれば十分である。In addition to the above-described embodiments, the circuit may employ other known means, such as delaying the transition of the AND elements 9 to 14 from open to closed during the shift by a time corresponding to a phase width of 60 degrees. can. Furthermore, although the reference signal b is synchronized with the power supply voltage at the rising time and the falling time v of the pulse, it is practically sufficient if either one of the time points is synchronized with the power supply voltage.
第4図cは分周器Cの出力パルスを示し、同図DO−D
5はカウンタDの端子0〜5の出力信号を示す。Figure 4c shows the output pulse of frequency divider C, and the figure DO-D
5 indicates output signals of terminals 0 to 5 of the counter D.
相別基準信号発生装置Eは3個の0R素子19,20,
21を有し、0R素子19は信号DO,dld3,d4
の論理和信号elを、0R素子20は信号DO,d2,
d3,d5の論理和信号E2を・0R素子21は信号D
l,d2,d4,d5の論理和信号E3をそれぞれ出力
する。The phase-specific reference signal generator E includes three 0R elements 19, 20,
21, and the 0R element 19 receives the signals DO, dld3, d4.
The 0R element 20 converts the OR signal el into the signals DO, d2,
0R element 21 outputs the OR signal E2 of d3 and d5 as the signal D
A logical sum signal E3 of l, d2, d4, and d5 is output, respectively.
信号e1〜E3は第4図に示すように、電源電圧の譬サ
イクルを1周期とする240度巾のパルスで、互に12
0度の位相差を有する。点弧位相調整器Fはインバータ
22、モノマルチバイブレータ23、可変抵抗24、抵
抗25、コンデンサ26、インバータ27及びAND素
子28からなり、モノマルチパイプレータ23はインバ
ータ22により基準信号の反転信号f1を入力して、抵
抗24により定まる巾の(出力F2を生ずる。As shown in FIG. 4, the signals e1 to E3 are pulses with a width of 240 degrees, each of which has a pulse width of 12
It has a phase difference of 0 degrees. The ignition phase regulator F consists of an inverter 22, a mono multivibrator 23, a variable resistor 24, a resistor 25, a capacitor 26, an inverter 27, and an AND element 28. input, producing an output F2 of width determined by resistor 24.
F2はf1がLからHへレベル変化した時点より可変抵
抗24で定められる期間だけLレベルとなる。またイン
バータ27は抵抗25とコンデンサ26とにより定まる
時間だけF2より遅延した反転信号F3を出力し、AN
D素子28はF2とF3との論理積信号F4を出力する
。したがつてF4は、基準信号bがHからLにレベル変
化をする時点から可変抵抗24で定まる位相αだけ遅れ
たパルス信号となる。点弧パルス発生装置GはAND素
子29,30,31と、該各素子に接続する抵抗291
、トランジスタ292、パルストランス293よりなる
増巾器とからなV.AND素子29,30,31はそれ
ぞれ信号e1とF4、E2とF4、E3とF4の各論理
積信号Gl,g2,g3を出力する。F2 remains at L level for a period determined by variable resistor 24 from the time when f1 changes from L to H level. Further, the inverter 27 outputs an inverted signal F3 delayed from F2 by a time determined by the resistor 25 and the capacitor 26, and
D element 28 outputs an AND signal F4 of F2 and F3. Therefore, F4 becomes a pulse signal delayed by the phase α determined by the variable resistor 24 from the point in time when the reference signal b changes in level from H to L. The ignition pulse generator G includes AND elements 29, 30, and 31, and a resistor 291 connected to each element.
, a transistor 292, and an amplifier consisting of a pulse transformer 293. AND elements 29, 30, and 31 output logical product signals Gl, g2, and g3 of signals e1 and F4, E2 and F4, and E3 and F4, respectively.
これらの信号を前記増巾器を弁してサイリスタT1〜T
3をそれぞれ点弧すれば、電動機MにはHl,h2,h
3の間引き電圧が印加される。該電圧hl〜H3の基本
波は電源周波数のmの低周波三相交流電圧であつて、電
動機Mを定格速度のほぼ≠の低速をもつて回転させる。
第5図,第6図は、第3図においてl/n分周器Cの分
周率nをそれぞれ1又は3にした場合の動作波形図であ
り、第4図と同符号のものはこれに対応する信号を示す
。These signals are applied to the thyristors T1 to T by valving the amplifiers.
3 respectively, the electric motor M has Hl, h2, h
A thinning voltage of 3 is applied. The fundamental wave of the voltages hl to H3 is a low frequency three-phase AC voltage of the power supply frequency m, and rotates the electric motor M at a low speed approximately ≠ the rated speed.
Figures 5 and 6 are operating waveform diagrams when the frequency division ratio n of the l/n frequency divider C in Figure 3 is set to 1 or 3, respectively, and the same symbols as in Figure 4 are The corresponding signal is shown.
第5図に訃ける相別基準信号el〜E3は電源電圧のI
サイクルを1周期とする240度巾のパルスで、互に1
20度の位相差を有し、また間引き電圧h1〜H3の基
本波は電源周波数の十の低周波三相交流電圧であつて、
電動機を定格速度のほぼ一の低速で回転させる第6図に
卦ける相別基準信号e1〜E3は電源電圧のηサイクル
を1周期とする、やはV)240ノ度巾で互に120度
の位相差を有するパルスであり、間引き電圧hl〜H3
の基本波は電源周波数の壱となV1電動機を定格速度の
ほぼ結ρ低速で回転させる。The phase-specific reference signals el to E3 shown in FIG.
A pulse with a width of 240 degrees, with one cycle being one period, and a pulse of 1
It has a phase difference of 20 degrees, and the fundamental wave of the thinned-out voltages h1 to H3 is a low frequency three-phase AC voltage of ten times the power supply frequency,
The phase reference signals e1 to E3 shown in FIG. 6, which rotate the motor at a low speed that is approximately one of the rated speed, are set at 120 degrees with a width of 240 degrees, with one cycle being η cycles of the power supply voltage. It is a pulse having a phase difference of , and the thinning voltage hl~H3
The fundamental wave causes the V1 motor, which is the same as the power supply frequency, to rotate at a speed approximately ρ lower than the rated speed.
本発明は以上の通ジであつて、電動機を電源周門波数の
1/6n+lの低周波電圧をもつて低速運転する場合に
、速度制御装置としてはl/n分周期のnを変えるだけ
で、その他の回路は共通に使用することができるから、
融通性に富む利点がある上に、リングカウンタとしては
段数の少い6進リOングカウンタで足勺るから回路構成
が非常に簡単となる効果がある。The present invention is based on the above, and when operating a motor at low speed with a low frequency voltage of 1/6 n+l of the power supply frequency, the speed control device can be used by simply changing n of the l/n division. , other circuits can be used in common,
In addition to having the advantage of being highly flexible, the ring counter has the effect of greatly simplifying the circuit configuration because it uses a hexadecimal ring counter with a small number of stages.
さらに本発明においては、カウンタ内容を帰還させて、
該内容に応じた電源同期信号を選択することにより基準
信号を発生させるから、任意の時点で電源を投入しても
、制衝装置はそのままで直ちに動作状態に入ることが可
能であシ、従来装置における如き電源投入時の初期セツ
ト装置が不要となり、装置全体を著しく簡易化すること
ができる効果がある。Furthermore, in the present invention, the contents of the counter are fed back,
A reference signal is generated by selecting a power synchronization signal according to the content, so even if the power is turned on at any time, the damping device can immediately enter the operating state as it is, unlike conventional methods. This eliminates the need for an initial setting device when the power is turned on, as in the case of the device, and has the effect of significantly simplifying the entire device.
第1図A,bは従来の間引き通電方式に訃ける電動機主
回路接続図を示し、aは6n−1bは6n+1の減速比
を得る場合の接続図である。FIGS. 1A and 1B show connection diagrams of the main circuit of a motor using the conventional thinning-out energization method, and FIG.
Claims (1)
り給電される三相誘導電動機の速度制御装置において、
(1/n)分周器(nは整数)の出力により作動する6
進リングカウンタの出力により前記電源の線間電圧の正
負に対応する複数の周期信号を順次選択して基準信号を
発生すると共に該基準信号により(1/n)分周器を作
動させる基準信号発生装置と、前記基準信号に対し可調
整の遅れ位相をもつ点弧位相調整信号を発生する点弧位
相調整器と、6進リングカウンタの出力のうち選択され
た複数の出力の論理和結合により前記電源の6n+1/
2サイクルを1周期とし240度の巾で互に120度の
位相差を有する3個の相別基準信号を出力する相別基準
信号発生装置と、該相別基準信号と前記点弧位相調整信
号との論理積信号を双方向性スイッチング素子の点弧信
号として出力する点弧パルス発生装置とを有することを
特徴とする誘導電動機の速度制御装置。1. In a speed control device for a three-phase induction motor that is supplied with power from a three-phase AC power source via a bidirectional switching element,
6 operated by the output of the (1/n) frequency divider (n is an integer)
Generate a reference signal by sequentially selecting a plurality of periodic signals corresponding to the positive and negative states of the line voltage of the power supply based on the output of the leading ring counter, and at the same time, generate a reference signal to operate a (1/n) frequency divider using the reference signal. a firing phase adjuster for generating a firing phase adjustment signal having an adjustable phase lag with respect to said reference signal; Power supply 6n+1/
a phased reference signal generation device that outputs three phased reference signals having a phase difference of 120 degrees in a width of 240 degrees with two cycles as one period; and the phased reference signals and the ignition phase adjustment signal. 1. A speed control device for an induction motor, comprising: a firing pulse generating device that outputs an AND signal of the two-way switching element as a firing signal for a bidirectional switching element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52144033A JPS5915278B2 (en) | 1977-12-02 | 1977-12-02 | Induction motor speed control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52144033A JPS5915278B2 (en) | 1977-12-02 | 1977-12-02 | Induction motor speed control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5476920A JPS5476920A (en) | 1979-06-20 |
JPS5915278B2 true JPS5915278B2 (en) | 1984-04-09 |
Family
ID=15352755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52144033A Expired JPS5915278B2 (en) | 1977-12-02 | 1977-12-02 | Induction motor speed control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5915278B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4830014A (en) * | 1971-08-25 | 1973-04-20 | ||
JPS4983816A (en) * | 1972-12-22 | 1974-08-12 |
-
1977
- 1977-12-02 JP JP52144033A patent/JPS5915278B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4830014A (en) * | 1971-08-25 | 1973-04-20 | ||
JPS4983816A (en) * | 1972-12-22 | 1974-08-12 |
Also Published As
Publication number | Publication date |
---|---|
JPS5476920A (en) | 1979-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3783357A (en) | Constant speed controlling device for a direct current motor | |
SU552913A3 (en) | Stepper motor control device | |
US3784888A (en) | Control for commutatorless motor | |
JPH07112360B2 (en) | Control method and apparatus for PWM inverter | |
GB1431832A (en) | Converter apparatus | |
GB1513016A (en) | Multi-phase motor controller | |
JP2686095B2 (en) | Control circuit for braking a cage motor | |
US3353081A (en) | Apparatus for producing frequency and amplitude dependent control voltages | |
JPS5915278B2 (en) | Induction motor speed control device | |
JPH04275098A (en) | Pulse motor control circuit | |
GB2042286A (en) | A speed control-arrangement for a three-phase induction machine | |
JPS5820559B2 (en) | Induction motor speed control device | |
US3148320A (en) | Synchronous induction motor speed control | |
JPS6126316B2 (en) | ||
JPS5923199B2 (en) | Three-phase induction motor speed control device | |
US3621314A (en) | Reversible operating apparatus | |
SU928575A1 (en) | Dc electric drive | |
SU752727A1 (en) | Apparatus for reversible step electric motor control | |
SU720636A1 (en) | Voltage stabilized three-phase bridge inverter | |
JPS6035908B2 (en) | Inverter control method | |
JPS60176481A (en) | Rotation controller of motor | |
JPH0446591A (en) | Pulse phase shifter | |
SU425287A1 (en) | FREQUENCY-PHASE REGULATOR OF SPEED OF ROTATION OF DC MOTOR ELECTRIC MOTOR | |
JPS5926800Y2 (en) | Electric motor drive control device | |
JPS6367439B2 (en) |