JPS58201372A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58201372A
JPS58201372A JP8595782A JP8595782A JPS58201372A JP S58201372 A JPS58201372 A JP S58201372A JP 8595782 A JP8595782 A JP 8595782A JP 8595782 A JP8595782 A JP 8595782A JP S58201372 A JPS58201372 A JP S58201372A
Authority
JP
Japan
Prior art keywords
layer
film
electrode
insulating film
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8595782A
Other languages
Japanese (ja)
Inventor
Hideaki Kozu
神津 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8595782A priority Critical patent/JPS58201372A/en
Publication of JPS58201372A publication Critical patent/JPS58201372A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To prevent the formation of a GaAs connecting layer under a Schottky junction electrode, and to prevent the reduction of the reverse withstand voltage of Schottky junction by a method wherein an SiO2 film containing Sn and an Si3N4 film are provided in succession on the GaAs layer coming in contact with the side of the Schottky junction electrode. CONSTITUTION:The N type GaAs active layer 2, the SiO2 film 3 containing Sn are stacked on a semiinsulating GaAs substrate 1, an opening is formed in the film 3 applying a mask 4, and the surface is covered with the Si3N4 film 5. A heat treatment is performed to diffuse Sn from the film 3, and to form the N<+> type connecting layer 6. Anisotropic etching is performed to remove the Si3N4 film 5, and the film 5 on the side wall of the opening in the film 3 is left. Then Al 7 is laminated, the gate electrode 9 is provided applying a resist mask 8, the mask 8 is removed, and a source electrode 10, a drain electrode 11 are formed interposing the electrode 9 between them. According to this construction, the N<+> type GaAS connecting layer 6 is not formed under the electrode 9, reduction of the reverse withstand voltage of Schottky junction is prevented, and the device being able to operate at large amplitude and having high output can be obtained.

Description

【発明の詳細な説明】 本発明は半導体装置、特に化合物半導体を用いたシーッ
トキ接合彫ダイオードおよびシ′−ットキ接酋グート形
電界効来トランジスタの製造方法に関するものである◇ 半絶縁性(8,1,と略す)砒化カリウム(GaAsと
起す)を用いた集積−路(ICと略す)の開発が違めら
れている0このICの慣成本子である電界幼釆トランジ
スタ(FITと略す)やショットキ接合ダイオード(8
8Diと略す)のシリーズ抵抗を低紙させる方法として
は0)オーム性I11砺とシ1ットキ接合電極との距離
を殻くする、(2)オーム性電極を形成すべき領域のキ
ャリア濃度を為くし、オーム性接触抵抗を低akさせる
、(3)オーム導電−とショットキ接合電極間のGaA
s動作層のキャリア濃度を高くシ、あるいはGaAsl
1b作層を厚くしてシート抵抗を低減させる、(4)オ
ーム性電極を形成すべき01ムl動作層のI!#さを厚
くする等の方法が考えられるoH41E一般には、イオ
ン注入法を用いて(21、+31 、 r41の効果が
期待しつる方法か検討されている。しかしながら、近年
、イオン注入法ではなく、拡散法によりfl) 、 +
21 、 +31 、141の全部あるいは少くともi
ll 、 +21 、 A31 CD条件を満す構造が
検討されてきた。本方法の特徴は前記tl)を実視する
にセルフアライメントでありオーム性電極とシーットキ
接合電砺との距離を実効的に零に近くできる様に高lI
IIMJLキャリア層をシ・ットキ接合電−に接して形
成するところにある。第1図は従来の拡散法により形成
された(jaA@ FBTaJ鮒歯図を、第2図は該F
gTの製造方法を説明するための−であるoail1図
において、8.1.0aAsl上にシ。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and in particular to a method for manufacturing a Schittke junction carved diode and Schottky junction field effect transistor using a compound semiconductor. ◇ Semi-insulating (8, The development of an integrated circuit (abbreviated as IC) using potassium arsenide (abbreviated as GaAs) is different. Schottky junction diode (8
The methods for lowering the series resistance of the 8Di (abbreviated as 8Di) are as follows: 0) Reduce the distance between the ohmic I11 electrode and the Schottky junction electrode, and (2) Reduce the carrier concentration in the region where the ohmic electrode is to be formed. (3) GaA between the ohmic conductive and Schottky junction electrodes to reduce the ohmic contact resistance.
s The carrier concentration in the active layer is increased, or GaAsl
1b layer is thickened to reduce sheet resistance, (4) I of 01ml active layer where ohmic electrodes are to be formed! In general, methods such as increasing the thickness of oH41E can be considered, using ion implantation, which is expected to produce the effect of (21, +31, r41). However, in recent years, instead of ion implantation, fl), + by diffusion method
21 , +31 , 141 or at least i
Structures satisfying the ll, +21, and A31 CD conditions have been studied. The feature of this method is that it is self-aligned when looking at the above-mentioned tl), and the distance between the ohmic electrode and the Schittky junction wire can be effectively brought close to zero.
The IIMJL carrier layer is formed in contact with the Schittke junction electrode. Figure 1 shows the crucian tooth diagram formed by the conventional diffusion method (jaA@FBTaJ), and Figure 2 shows the FBTaJ crucian tooth diagram.
In the oail1 diagram, which is for explaining the manufacturing method of gT, 8.1.0a is placed on Asl.

ットキ鍮合グート電4に4の下にチャンネルとなるGa
As Ikl1作層餉域2につらなり、駄(jaAs 
製作層領域2のキャリアla表よりも高いキャリア論腋
を有する01ム$コンタク)[ml域が形成されている
。該Gapmコンタクト層執域はGaAs中において前
記θ1ムs@作層餉城と−j−の導電形になりうる不M
智を會む絶縁J[5からのがかる不純物の拡散により形
成される。
Ga to be the channel under the 4 to the 4 to 4
As Ikl1Sakulayer 餉 area 2 is connected and useless (jaAs
A ml area is formed in which the carrier axle is higher than the carrier la table in the production layer area 2. The Gapm contact layer area is a non-conducting layer in GaAs that can be of the conductivity type of -j- with the θ1
It is formed by the diffusion of impurities from the insulating layer J [5].

オーム導電極であるソース電極6とドレイン電極7は前
記GaAmコンタクト層上に形成される。
A source electrode 6 and a drain electrode 7, which are ohmic conductive electrodes, are formed on the GaAm contact layer.

總1mに示す#ItxにおいてはOa A sコンタク
ト層の端がシーットキ接合ゲートI1価)に位置してい
るために、lII記のシリーズ抵抗の低減策(3)から
も明らかな嫌に、シリーズ抵抗を低減することかでき、
またGIAsコンタクト層の抵抗が低いためにソースお
よびドレイン電極をゲート電価から一般的なリングラフ
イーの技術を用いて位置しつる糊度の距離をもって形成
しても、ケート#LfiIとソース電極あるいはドレイ
ン電極とゲート電極との距離を他力短くした構造の同勢
の@*を第1図の構造を有しており、実質的にシリーズ
抵抗の低減策(1)を満している。また、ソース電極お
よびドレイン電極は高いキャリア#11度を有するGa
Amコンタクト層上に形成されるため、前記シリーズ抵
抗の低減策(2)も満している。また前記QGaAsコ
ンタクト層を形成するための不純物の拡散温度と拡散特
開を選択することにより、また01ム2動作層との葦ね
合いで該GaAs動作層の厚さよりも(3mAgコンタ
クト層を厚くすることができ、前記シリーズ抵抗の低減
策14)も、特にエンハンスメントFITの場合には満
たしつる。
In #Itx shown in 1m, since the end of the OaAs contact layer is located at the Schittky junction gate I1 value, the series resistance is can be reduced,
In addition, because the resistance of the GIAs contact layer is low, even if the source and drain electrodes are formed using a general ring graphie technique based on the gate voltage and the distance between the gate #LfiI and the source electrode or A similar @* structure in which the distance between the drain electrode and the gate electrode is shortened has the structure shown in FIG. 1, and substantially satisfies the series resistance reduction measure (1). In addition, the source and drain electrodes are made of Ga having a high carrier #11 degree.
Since it is formed on the Am contact layer, it also satisfies the measure (2) for reducing series resistance. In addition, by selecting the impurity diffusion temperature and diffusion method for forming the QGaAs contact layer, the thickness of the GaAs contact layer (3mAg contact layer) is thicker than the thickness of the GaAs active layer due to the alignment with the 01mA2 active layer. This also satisfies the series resistance reduction measure 14), particularly in the case of enhancement FIT.

第1図に示される構造のG為ムs  FF1Tは前述し
た様にシリーズ抵抗の低減策(1)においてセルフアラ
イメントによる電極栴成をとっていると叢ってもよい〇 次に第2図を用いて第1図に示す01ムsFgTの製造
方法を説明する。
As mentioned above, the G-type FF1T with the structure shown in Fig. 1 may be considered to employ electrode formation by self-alignment in the series resistance reduction measure (1).Next, Fig. 2 shows A method of manufacturing 01 msFgT shown in FIG. 1 will be explained using the following.

第2図(a)において% 8.1. GaAs l  
上に形成されたO aA s  動作層2の上に、シぎ
ットキ接合グート亀砺管形成すべき置載にのす、畠lの
絶縁膜3を形成する。次に第1のll!!縁1mmおよ
び前記のGaAm動作層2を嫌って前記のGaAifi
作層2と同一の導電形を示す不純物を含む第2の絶縁膜
4を被着する。この累2の絶縁膜は有嶺嬉済で浴かされ
た絶縁膜の微細粒子である液体を塗布し乾燥することに
より形成されるか、第2の絶縁膜はm奄した時点では液
状の為、+41の絶縁jla上の厚さはOnkmllb
作層上の厚さよりも薄くなる。
In Figure 2(a) % 8.1. GaAs l
On the O aA s operating layer 2 formed above, an insulating film 3 of Hatake 1 is formed, which is to be placed on which a Schittke junction is to be formed. Next, the first ll! ! 1 mm of the edge and the GaAm working layer 2 as described above.
A second insulating film 4 containing impurities having the same conductivity type as the layer 2 is deposited. This second insulating film is formed by applying and drying a liquid that is the fine particles of the insulating film that was bathed at Arimine Kisai, or because the second insulating film was in a liquid state at the time of the bathing. , the thickness on the insulation jla of +41 is Onkmllb
Thinner than the thickness above the strata.

また、麹1の絶線層と絽2の絶縁膜は、それぞれのエツ
チング遍直か異なるように選択されつる0次に菖2自(
b)に示すように、例えば800c(t)^諷でfb地
理すると、第2の絶縁膜中の不純物が0aAs+動作層
中に拡散し、高い不純物濃度を有するGaAs層すなわ
ち、&#嵐のキャリア濃度を有するGaAsコンタクト
層5が形成される。
In addition, the disconnected layer of Koji 1 and the insulating film of Koji 2 are selected so that the etching uniformity of each is different.
As shown in b), for example, when 800c(t)^ is used for fb geography, the impurities in the second insulating film diffuse into the 0aAs+ active layer, and the GaAs layer with a high impurity concentration, that is, &# storm carriers. A GaAs contact layer 5 having a high concentration is formed.

次に、鶴2図(c)の橡に、第20)絶縁膜4のエツチ
ング速度かJlml(D絶縁膜3のエツチング速度より
も遅いと、第1の絶縁膜3上の鴫2の絶縁膜4の岸さか
sIJ述したごとく薄いので、第2の絶縁膜4f残した
状態で、第1の絶m膜3を除去しつる0次に第2地ω)
に示すように、第1の絶縁膜3が除去された慣域を蝋っ
て、ゲート電極6を被着する。
Next, as shown in Figure 2 (c), if the etching speed of the 20th insulating film 4 is slower than the etching speed of the insulating film 3 (D), then the etching speed of the insulating film 2 on the first insulating film 3 is As mentioned above, it is thin, so the first insulating film 3 is removed while the second insulating film 4f is left.
As shown in FIG. 3, the area from which the first insulating film 3 has been removed is soldered and a gate electrode 6 is deposited thereon.

次に1第2図(e)に示す悼にゲート電極6に接触しな
い様に%第2の絶縁膜4を除去した稜GaAsコンタク
ト層5上にオーム性電極であるソース電極7とドレイン
電値8を形成するとmXに示すGaAsFBT が形成
される。一般kUaAaシーットキ振合の逆方向耐圧は
GaAs中のキャリアll&#か高くなると低下する。
Next, as shown in FIG. 2(e), the source electrode 7, which is an ohmic electrode, and the drain voltage are placed on the edge GaAs contact layer 5 from which the second insulating film 4 has been removed so as not to contact the gate electrode 6. 8, GaAsFBT shown in mX is formed. The reverse breakdown voltage of the general kUaAa sheet alignment decreases as the carrier ll&# in GaAs increases.

第1図に示すGaAs  FMTでは^l11!キャリ
ア層であるGaAsコンタクト層の端がシーット千按*
*極の下に位置しているためかかるシー−y )キ懐曾
狽域の逆方向側圧は(i a A s動作層上のシ曽ッ
トキ接合領域の逆方向耐圧より低くなるために、第1図
1ζ示すGaAs  FET  の逆方同耐圧は、(J
aAsコンタクト鳩のシ曹ットキ接合の逆方向耐圧で決
められるため、その耐圧は2〜3V@j[の値となり、
G a A s  k’ g T  のiI流流加加電
圧小さく、人力信号が小さい時は不都合なく動作するが
、大振IILII作をする場合、出力信号を大きくとり
たい^出力FWT  においては、このシ・ット手振合
かブレイクダウンを起し、圧電の動作を示さない。
In the GaAs FMT shown in Figure 1, ^l11! The edges of the GaAs contact layer, which is the carrier layer, are sheet-shaped*
*Because it is located under the pole, the reverse side pressure of the contact region is lower than the reverse breakdown voltage of the contact region on the active layer, so the 1 The reverse breakdown voltage of the GaAs FET shown in Figure 1ζ is (J
Since it is determined by the reverse direction withstand voltage of the aAs contact junction, the withstand voltage is 2 to 3 V@j[,
When the iI current-fed application voltage of G a A s k' g T is small and the human input signal is small, it operates without any problems, but when making a large swing IILII operation, you want to get a large output signal.In the output FWT, this Shit hand gesture or breakdown occurs and no piezoelectric movement is shown.

本発明の目的は、従来のシ四ット十接合耐圧を上げ大振
−動作や高出力を得る使用状層にも耐えられる半導体装
置の製造方法を提供する仁とkあるO 本発明の%黴はシCットキ接合電極の匈面の多くとも一
部に懐してGaAs上に第1のe縁膜を形成し、#IJ
l11の絶縁膜につらなってGaA1上にGaAs中に
おいて、−導電形の不純物となる不M111を含む第2
の絶縁膜が被着されることによりシーットキ級合電極下
にGaAsコンタクト層が位置しない様にし、もってシ
ーツトキ接合の逆方向耐圧が低下しない0aAsFIT
  を提供しつる半導体装置の製造方法にある。すなわ
ち、^抵抗GaAs上に形成されたー導電形GaAs動
作層上に該−導電形GaAg動作層と四−の411L形
にGaム1中でなり゛うる不純物を含む楽22JelI
I膜を被着する工程とゲート′邂4iを形成すべき領域
の第2の絶縁膜を除去し前記の一導電形0aAs @外
層の一部を亀山させる工程と、該露出された一尋電形G
aAm動作層と第2の絶縁膜の少くとも一部とを援って
凧1の丸慮族を振ム4る工程と熱処理して第2の絶縁膜
中の不純物を一壽亀形G1人−動作層中に拡散ξせる工
程と、A方性ドライエVナングにより鴎1の絶縁膜の少
くとも一部を除去して薊1の−・導電形GaAg動作層
の前記の鶴2の絶縁膜を除去した領域のうちの少くとも
一部を露出させる1根とかかる露出された−41&形G
aAs紡作繰およびallのiimおよび−2の杷−臘
のうち一部を核って71ットイ接合龜砺を形成する工程
と、前記の為2の杷鰍農の少くとも一部を除去してオー
ム性電極を形成することをVl値とする半導体装置の製
造方法である。
An object of the present invention is to provide a method for manufacturing a semiconductor device that can withstand the use of layers that increases the conventional junction breakdown voltage and achieves large vibration operation and high output. The mold is deposited on at least a part of the surface of the junction electrode, forming the first e-edge film on the GaAs, and #IJ
A second layer containing impurity M111, which becomes an impurity of − conductivity type, is formed in GaAs on GaA1 along with the insulating film L11.
By depositing an insulating film of
The present invention provides a method for manufacturing a semiconductor device. That is, on the conductive type GaAs active layer formed on the resistor GaAs, the conductive type GaAg active layer and the 411L type 22JelI containing impurities that may occur in the Ga film 1 are formed.
A step of depositing an I film, a step of removing the second insulating film in the area where the gate 4i is to be formed and making a part of the one conductivity type 0aAs@outer layer ridged, and a step of depositing the exposed Ichihiro electrode. Shape G
The step of shaking the round part of the kite 1 with the help of the aAm active layer and at least a part of the second insulating film and heat treatment to remove impurities in the second insulating film. - a step of diffusing ξ into the active layer, and removing at least a part of the insulating film of 驱1 by A-tropic dry etching to remove at least a part of the insulating film of 驱1 - the insulating film of the above-mentioned Tsuru 2 of the conductivity type GaAg active layer. 1 root exposing at least a portion of the area removed and such exposed -41&G
aAs spinning process and a step of forming a part of loquats of all iim and -2 to form a 71-toy jointed abutment, and removing at least a part of the loquat of 2 for the above. This is a method for manufacturing a semiconductor device in which the Vl value is determined by forming an ohmic electrode.

以下、第3図を用いて、本発明の一爽j111例につき
説明する。第3図fatにおいて、^抵抗0aAs層1
の上に形成されたキャリア1lkb11XILi  t
x  )NfeOaAsM拌層2上bLS?lJえはG
aAs中にεい−CN形不純−となりうるスス(an)
7jる不純物を含有する例えは2酸化ンリコン(Si(
Jz)kraる鳳2の絶縁膜3を被層する。次に43図
(−薯こ)】りすように、AU記酸第2絶縁膜3上に例
えばホトレジストなるマスク材4を被着して、通常の写
真食刻法を用いて、シ厘ットキ接合電極を形成すべき領
域の第2の絶縁膜を除去し、前記のN形GaAs動作層
の一部を露出させる。次に843図(c)に示すように
、マスク材4を除去した後例えば不純物を含まない8i
0xを前記の露出されたN形GaAs動作上およびIl
!2の絶縁膜を覆って、例えばSingなる絶縁膜ある
いはリン[F]等のGaAs中において、−導電形不純
物とならない不純物を含む絶縁膜勢の第lの絶縁膜5を
被着した後、例えば 800℃の11度で5分間熱処理
して、例えばsn  tJる第2の絶縁膜1ζ含まれる
不純物+ PAJ IFのN形GaAs動作層2上に拡
散せしめ高amキャリアVB度を有するN形GaAmコ
ンタクト層6を形成する。
Hereinafter, 111 examples of the present invention will be explained using FIG. In Fig. 3 fat, ^resistance 0aAs layer 1
Carrier 1lkb11XILit formed on top of
x) bLS on NfeOaAsM stirred layer 2? lJEhaG
Soot (an) that can become ε-CN type impurity in aAs
An example of an example containing impurities is silicon dioxide (Si(
Jz) Layer the insulating film 3 of the cradle 2. Next, as shown in Fig. 43 (-), a mask material 4 such as photoresist is applied on the AU acid second insulating film 3, and a photolithographic bonding process is performed using an ordinary photolithography method. The second insulating film in the region where the electrode is to be formed is removed to expose a portion of the N-type GaAs active layer. Next, as shown in FIG. 843(c), after removing the mask material 4,
0x above the exposed N-type GaAs operation and Il
! After depositing a first insulating film 5 of an insulating film type containing an impurity that does not become a - conductivity type impurity in GaAs such as a Sing insulating film or phosphorus [F] to cover the second insulating film, for example, Heat treatment is performed at 800° C. for 5 minutes to diffuse the impurities contained in the second insulating film 1ζ + PAJ IF onto the N-type GaAs active layer 2 of the sntJ IF to form an N-type GaAm contact having a high am carrier VB degree. Form layer 6.

(g)N形OajLmコンタクト層の深さは熱処理温度
き熱地J1時間とにより決められる0第4図に8 i 
0211に含有された8nを800℃15分間の熱処理
条件で1Xlll  aN のキャリア製置を有するN
形Gaks中に拡散させた場合のキャリア10フアイル
を示す。JII4Illにおいて、縦軸はキャリア鎖藏
を、横軸には表面からのRさを示す。!!4m1(おい
て、約0.15Jl!II(2)深さの、I X Ig
”am”のキャリア濃度を有するGaA1コンタクト層
が形成されることがわかる。次に第3図(d)に示すよ
うに異方性エツチングを用いて第2の絶縁膜上の第1の
絶縁膜を除去すると前記シ■ットキ接合を形成するため
に露出されたN形GaAs@外層の一部が再び露出され
るが第1の絶縁膜の一部すなわち、第2の絶縁膜の側面
に被着された第1の絶縁膜の一部は残る。
(g) The depth of the N-type OajLm contact layer is determined by the heat treatment temperature and heat treatment time.
8n contained in 0211 was heat-treated at 800°C for 15 minutes to form N with a carrier configuration of 1XllllaN.
Figure 10 shows 10 files of carrier when diffused into Gaks. In JII4Ill, the vertical axis shows the carrier chain and the horizontal axis shows the radius from the surface. ! ! 4m1 (approximately 0.15Jl! II (2) deep, I
It can be seen that a GaAl contact layer having a carrier concentration of "am" is formed. Next, as shown in FIG. 3(d), when the first insulating film on the second insulating film is removed using anisotropic etching, the N-type GaAs exposed to form the Schittky junction is removed. @A part of the outer layer is exposed again, but a part of the first insulating film, that is, a part of the first insulating film deposited on the side surface of the second insulating film remains.

この工程において01λ$コンタクト層6の端が露出し
なけれ〜ば、すなわち、GaAmコンタクト層の端が前
記のドラ1エツチングにより残された第1の絶縁膜の一
部で嶺われていれば露出された(iaAs上すなわちN
形G a A s動作層上にシ側ットキ接合を形成して
もシーットキ接合の逆方向耐圧は低下することはない。
In this step, if the end of the 01λ$ contact layer 6 is not exposed, that is, if the end of the GaAm contact layer is covered with a part of the first insulating film left by the above-mentioned driver etching, it is not exposed. (on iaAs, i.e. N
Even if a Schittke junction is formed on the G a As type active layer, the reverse breakdown voltage of the Schottky junction does not decrease.

一方前記第4図を用いて説明したGaAsコンタクト層
の端は、第2の絶縁膜の端ではなく、Sfiの横方向の
拡散により、第1cIJ絶縁膜の下に位置する。この横
方向の拡散は深さ方向の拡散と同#i嵐である。従って
、前述の熱処塩牽件の場合には0.15μの横力向の拡
散があるので、余裕を見て、0.3μ程嵐の厚さのlA
1の絶縁膜がa&2の絶l#膜の111壁に被着するよ
うに、第3図(clで示した第1の絶縁膜の厚さを決め
ればよい。
On the other hand, the end of the GaAs contact layer explained using FIG. 4 is not the end of the second insulating film, but is located under the first cIJ insulating film due to the lateral diffusion of Sfi. This lateral diffusion is the same #i storm as the depthwise diffusion. Therefore, in the case of the heat treatment salt tension described above, there is a diffusion in the direction of lateral force of 0.15μ, so considering the margin, the thickness of the storm is about 0.3μ.
The thickness of the first insulating film shown in FIG. 3 (as indicated by cl) may be determined so that the first insulating film is coated on the 111 wall of the a & 2 isolation films.

次に、第3図(e)に示すようにシ履ットキ接合金属7
として例えばアルミニウム(AJ )を被着した後ゲー
ト電極を形成すべく、前記のシーットキ接合電極を形成
すべき領域を機ってマスク材8、例えはホトレジストを
被着する。
Next, as shown in FIG. 3(e), the seat fitting metal 7 is
After depositing aluminum (AJ), for example, in order to form a gate electrode, a mask material 8, for example a photoresist, is deposited on the area where the Schittke junction electrode is to be formed.

とのシIl/トキ接合金属7は、異槍金属を多層に核ん
だ構成でもよい。
The metal/toki joint metal 7 may have a structure in which different metals are cored in multiple layers.

次にマスク材8をマスクにしてシ謬ットキ接合金属7の
一部を除してゲート電極9を第3図(f)に示すように
形成した後マスク材8を除去する。次に第3図(f)に
示すように第2の絶縁膜の一部を除去しC1ゲート電極
9をはさんでソース電極IOとドレイン1111.極1
1を形成する。
Next, using the mask material 8 as a mask, a part of the Schittky bonding metal 7 is removed to form a gate electrode 9 as shown in FIG. 3(f), and then the mask material 8 is removed. Next, as shown in FIG. 3(f), a part of the second insulating film is removed and a source electrode IO and a drain 1111 are formed with the C1 gate electrode 9 in between. pole 1
form 1.

以上の説明からも明らかな様に、#記の実施例に示した
GaAs  FBTOJhでなく、8B Di  やあ
るいは他の半導体材料、例えばInP等で製造される半
導体デバイスにも適用しうることは明ら力1であるO
As is clear from the above explanation, it is clear that the present invention can also be applied to semiconductor devices manufactured from 8B Di or other semiconductor materials such as InP, etc., instead of the GaAs FBTOJh shown in the example marked #. O which is force 1

【図面の簡単な説明】[Brief explanation of the drawing]

j@1図は従来のGaAs  FETの断面囚、第2医
は従来のGaAs  FETと(,11人s  FET
のMt刀法を説明するための図であるO第3図は本発明
1こなるGaAs  FETの装造方法を説明するため
の図であり、第4図はN形Gaks中に形成したG a
 A Sコンタクト層をもつG a A sのキャリア
 プロフッ1ルを示す0 第1図において、  lは8. I、 UaAs 、 
  2はGaA@動作層、  3は0aAsコンタクト
1m、4はシ讃ットキ嵌台電極、  5はtiaAi 
中1=Htlで一4電形となりうる1負を含む絶縁膜、
61Jソース電極、7i!トレイン鑞執、でめるO第2
図におい゛(、lは9.1. C’raA&s   2
(iGaAi動作層、  3 +! m 10.)e縁
IA、  4ハ第2の絶縁膜、51工UaAsコンタク
ト増、 6はノ冒ットキ接合電他、7ハ7−ス(@、 
  W+! I−レイン電極であるO Igai&において、  1は4抵抗GhAs膚、2は
N形(iaA・動作層、 3は第2の絶縁膜、4.8は
マスク材、  5はmlの絶縁膜、 6はGaAmコン
タクト層、  7はシーットキ鋸脅金属、9はゲート電
極、lOはソース電4k、11はドレイン1tfiであ
る。 犀1図 絶2図 第 3 図 第4図 4面からの:粟さくP 2 m)
Figure 1 is a cross-sectional view of a conventional GaAs FET, and the second figure is a cross-sectional view of a conventional GaAs FET and (11 people's FET).
FIG. 3 is a diagram for explaining the method for manufacturing a GaAs FET according to the present invention, and FIG.
In Figure 1, which shows the carrier profile of GaAs with an AS contact layer, l is 8. I, UaAs,
2 is GaA@active layer, 3 is 0aAs contact 1m, 4 is Sisanbutki mounting base electrode, 5 is tiaAi
An insulating film containing 1 negative which can be of 14 electric type with 1=Htl in the middle,
61J source electrode, 7i! Train Zenitsu, Demeru O 2nd
In the figure ゛(, l is 9.1. C'raA&s 2
(iGaAi active layer, 3+! m 10.) e-edge IA, 4c second insulating film, 51cm UaAs contact increase, 6 is open contact junction electrode, etc., 7h7-base (@,
W+! In the I-rain electrode O Igai&, 1 is the 4-resistance GhAs layer, 2 is the N type (iaA/active layer, 3 is the second insulating film, 4.8 is the mask material, 5 is the ml insulating film, 6 is a GaAm contact layer, 7 is a sheet metal, 9 is a gate electrode, 1O is a source voltage 4k, and 11 is a drain 1tfi. 2 m)

Claims (1)

【特許請求の範囲】[Claims] 高抵抗”P4体上に形成された一導電形半導体動作層上
に該半導体動作層と同一の4’(形不純物に骸半導体動
作層および薊紀^抵抗牛4体中においてなりつる不純物
を含む第2の絶縁膜を被着する1撫と、グー)[4を形
成すべき領域の少くとも一部領域の第2の絶縁膜を除去
しi#妃の一導電形半導体動作層の一部を藤山させる1
機と、a&繕出された一導電形半導体動作層と絽2の絶
縁績の欠くとも一部とを伽って論lの絶縁績を被着する
工程と、熱処理をして第2の絶縁績中の不純@を一導電
形半導体動作層中に拡散させる工程と、異方性ドライエ
ッチンクによりifの絶縁属の少(とも一部を除去して
、ゲート電1hを形成すべき一部の領域の一部の一導電
形半導体動作層を露出させると共に、i@2の絶縁績の
個面に第1の絶縁属の一#f残す工程と、叔露出6れた
一導電形半導体動作層および譲lの絶縁aおよび第2の
絶縁績のうち一部を横ってシ・ットキ飯酋電龜を形成す
る工程と前記のaI2の絶縁膜の少くとも一部を除去し
てオーム性電極を形成する工程を含むことを特徴とする
半導体装置の製l一方法。
A conductivity type semiconductor active layer formed on a high-resistance P4 body contains the same 4' type impurity as the semiconductor active layer (contains impurities that occur in the skeleton semiconductor active layer and the 4 resistance type body). After removing the second insulating film in at least a part of the region where the second insulating film is to be formed, a part of the first conductivity type semiconductor operating layer make Fujiyama 1
a step of applying an insulating layer to the first conductivity type semiconductor active layer and at least a part of the insulating layer of the second conductive layer, and applying a second insulating layer by heat treatment. A step of diffusing the impurity during the conduction into the semiconductor active layer of one conductivity type, and an anisotropic dry etching process to remove part of the insulating material of if, and remove the part to form the gate conductor 1h. A step of exposing a part of the one-conductivity type semiconductor operating layer in the region and leaving a first insulating layer 1#f on the individual surface of the insulation layer of i@2, A process of forming an electric head across a part of the insulation layer and the second insulation film, and removing at least a part of the insulation film of the above-mentioned aI2 to make the insulation film ohmic. A method for manufacturing a semiconductor device, the method comprising the step of forming an electrode.
JP8595782A 1982-05-20 1982-05-20 Manufacture of semiconductor device Pending JPS58201372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8595782A JPS58201372A (en) 1982-05-20 1982-05-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8595782A JPS58201372A (en) 1982-05-20 1982-05-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58201372A true JPS58201372A (en) 1983-11-24

Family

ID=13873221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8595782A Pending JPS58201372A (en) 1982-05-20 1982-05-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58201372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136078A (en) * 1985-12-10 1987-06-19 Fujitsu Ltd Manufacture of compound semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136078A (en) * 1985-12-10 1987-06-19 Fujitsu Ltd Manufacture of compound semiconductor device

Similar Documents

Publication Publication Date Title
JPS58201372A (en) Manufacture of semiconductor device
JPS59165461A (en) Schottky junction type compound semiconductor field effect transistor
JPS6040716B2 (en) Compound semiconductor device and its manufacturing method
JPS54107273A (en) Production of field effect transistor
JP3147843B2 (en) Method for manufacturing field effect semiconductor device
JPS5950091B2 (en) Manufacturing method of semiconductor device
JPS6051263B2 (en) Manufacturing method of semiconductor device
JPS59228770A (en) Semiconductor device
JPS59181673A (en) Semiconductor device
JPS61163664A (en) Manufacture of semiconductor device
JPS5850434B2 (en) Method for manufacturing field effect transistors
JPS5935480A (en) Semiconductor device
JP3014125B2 (en) Semiconductor device and manufacturing method thereof
JPH01225177A (en) Field effect transistor
JP2928953B2 (en) Thin film equipment
JPS63302571A (en) Semiconductor device
JPS58135667A (en) Semiconductor device
JPS6232660A (en) Semiconductor device and manufacture thereof
JPH03109725A (en) Manufacture of semiconductor device
JPS5987889A (en) Manufacture of semiconductor element
JPS6088477A (en) Manufacture of semiconductor device
JPS5923101B2 (en) Manufacturing method of semiconductor device
JPS6167274A (en) Manufacture of semiconductor device
JPH01201966A (en) Structure of electrode of semiconductor device
JPS6154672A (en) Manufacture of field-effect type semiconductor device