JPS58196076A - Electrostrictive effect element - Google Patents

Electrostrictive effect element

Info

Publication number
JPS58196076A
JPS58196076A JP57079036A JP7903682A JPS58196076A JP S58196076 A JPS58196076 A JP S58196076A JP 57079036 A JP57079036 A JP 57079036A JP 7903682 A JP7903682 A JP 7903682A JP S58196076 A JPS58196076 A JP S58196076A
Authority
JP
Japan
Prior art keywords
electrostrictive
internal electrode
electrode
effect element
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57079036A
Other languages
Japanese (ja)
Other versions
JPH0671102B2 (en
Inventor
Sadayuki Takahashi
高橋 貞行
Masatomo Yonezawa
米沢 正智
Atsushi Ochi
篤 越智
Takeshi Yano
健 矢野
Takeshige Hamatsuki
浜付 武重
Izumi Fukui
福井 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57079036A priority Critical patent/JPH0671102B2/en
Priority to DE8383104556T priority patent/DE3378393D1/en
Priority to EP83104556A priority patent/EP0094078B1/en
Priority to CA000427828A priority patent/CA1206193A/en
Priority to AU14422/83A priority patent/AU553391B2/en
Priority to US06/493,583 priority patent/US4523121A/en
Priority to KR1019830002025A priority patent/KR860000255B1/en
Priority to BR8302536A priority patent/BR8302536A/en
Publication of JPS58196076A publication Critical patent/JPS58196076A/en
Publication of JPH0671102B2 publication Critical patent/JPH0671102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain an element of large amount of displacement by a method wherein a part of the outer periphery of internal electrodes is formed into a structure of overlapping with the outer periphery of the section of an electrostrictive effect element, and the area is reduced more than that of the section. CONSTITUTION:Electrostrictive materials 21 and platinum internal electrodes 22 are laminated alternately, resulting in the electrostrictive effect element. The outer peripheral shape of each internal electrode 22 is equal to the sectional shape of the electrostrictive element. Each internal electrode has a part or more without the electrode 22 inside its outer periphery, in order to reduce the area of each internal electrode 22 more than the sectional shape. Next, each electrode 22 exposed on the side surface of the element is connected by lead wires 23 at intervals of a layer from the outside, and thus electrodes A and B are taken out.

Description

【発明の詳細な説明】 本発明は電歪効果素子の構造に関するものである。電歪
効果素子とは固体の電歪効果を利用して電気エネルギを
機械エネルギに変換するトランスデ、すである。臭体的
には電歪効果の大きな固体の対向する表面に金属膜等の
電極を形成し、電極間に電位差を与えたときに発生する
固体の歪を利用する。電界と平行方向に発生する歪(縦
効果歪)は垂直方向に生じる歪(横効果歪)より一般に
は大きいので、前者を利用する方がエネルギ変換効率は
高い。また、歪の大きさは電界強度に関係し、電界強度
が大きい程発生する歪も大きい。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an electrostrictive element. An electrostrictive element is a transducer that converts electrical energy into mechanical energy by using the electrostrictive effect of a solid. In terms of odor bodies, electrodes such as metal films are formed on opposing surfaces of a solid that has a large electrostrictive effect, and the strain in the solid that occurs when a potential difference is applied between the electrodes is utilized. Since the strain that occurs in the direction parallel to the electric field (longitudinal effect strain) is generally larger than the strain that occurs in the perpendicular direction (transverse effect strain), the energy conversion efficiency is higher when the former is used. Further, the magnitude of strain is related to the electric field strength, and the greater the electric field strength, the greater the generated strain.

横効果を利用した電歪効果素手では一定の印加電圧でも
電界と垂直方向の寸法に比例した変位量を得る事が可能
である。しかしエネルギ変換効率の高い縦効果を利用し
た電歪効果素子では外部から印加する電圧を一定にして
歪の発生する方向の寸法を増すと電界強度が低下するの
で変位量は大きくならない。従りてこの場合に大きな変
位量を得るには電界強度が低下しない様に印加電圧を大
きくすることが必要である。しかし、電圧を大きくする
ためには大型でかつ高価な電源が必要になり、取り扱い
に対する危険度も増す。またトランスデュサを駆動する
ための制御回路も使用されるICの耐圧が低いのであま
り゛高い電圧を使用することは出来ない。
With the electrostrictive bare hand that utilizes the transverse effect, it is possible to obtain a displacement proportional to the dimension in the direction perpendicular to the electric field even with a constant applied voltage. However, in an electrostrictive element that utilizes a longitudinal effect with high energy conversion efficiency, when the externally applied voltage is kept constant and the dimension in the direction in which strain occurs increases, the electric field strength decreases, so the amount of displacement does not increase. Therefore, in order to obtain a large amount of displacement in this case, it is necessary to increase the applied voltage so that the electric field strength does not decrease. However, increasing the voltage requires a large and expensive power supply, which also increases the risk of handling. Furthermore, since the IC used in the control circuit for driving the transducer has a low breakdown voltage, it is not possible to use a very high voltage.

以上の欠点を改善するために積層チップコンデンサ濠の
構造が提案されている。この構造を1111図(a) 
、 (b)に示す。第1図(a)において電歪材料lの
内部に内部電極2が一定の間隔で形成されており、一つ
おきに外部電極3と接続している。内部電極の間隔は通
常のチップコンデンサの技術で数10ミクロン程度にす
ることが出来る。この構造を採用すると電極間距離がせ
まくなるため低電圧で駆動可能な縦効果利用の電歪効果
素子が実現出来る。
In order to improve the above drawbacks, a multilayer chip capacitor moat structure has been proposed. This structure is shown in Figure 1111 (a)
, shown in (b). In FIG. 1(a), internal electrodes 2 are formed at regular intervals inside the electrostrictive material 1, and every other electrode is connected to an external electrode 3. The spacing between the internal electrodes can be reduced to about several tens of microns using normal chip capacitor technology. If this structure is adopted, the distance between the electrodes becomes narrower, so an electrostrictive effect element using the longitudinal effect that can be driven at a low voltage can be realized.

ところで積層方向から見た透視図である第1図(b)か
ら明らかな様に、この構造では内部電極の重なる面積(
中央の矩形部分)は素子の断面積と比較して小さい。従
って基本的には内部電極の重なった部分は電界に応じて
変形するが、他の部分は変形せず、このため素子全体と
しての変位量はその材料が持つ固有の歪量に対応せずか
なり小さくなる欠点がある。また、嵩し警電圧を印加し
て大きな歪を発生させると変形する部分と変形しない部
分との境界に応力集中が起こり素子が機械的に破壊する
欠点がある。
By the way, as is clear from FIG. 1(b), which is a perspective view seen from the stacking direction, in this structure, the overlapping area of the internal electrodes (
The central rectangular portion) is small compared to the cross-sectional area of the element. Therefore, basically, the overlapping part of the internal electrodes deforms in response to the electric field, but the other parts do not, so the amount of displacement of the entire element does not correspond to the inherent strain of the material and is quite large. It has the disadvantage of being smaller. Furthermore, if a large alarm voltage is applied to generate a large strain, stress will be concentrated at the boundary between the deformed part and the non-deformed part, resulting in mechanical destruction of the element.

本発明の目的は上記の欠点を改善した電歪効果素子を提
供することにある。本発明は電歪効果を示す材料と内部
電極とが交互に積層された電歪効果素子において各内部
電極はその平面形状の面積が該電歪効果素子の積層方向
に垂直な断面の面積より小さく、かつ各内部電極の外周
の少なくとも一部は前配電歪効果素子の断面の外周と重
なっている構造であり、さらにこの素子の外側から各内
部電極を一層おきに電気的に接続してなることを特徴と
する。本発明の電歪効果素子は内部′電極の重なる面積
を大きくできるので従来構造の素子に比べ大きな変位量
を実現でき、同時に破壊に対する強度が増大した。
An object of the present invention is to provide an electrostrictive effect element that improves the above-mentioned drawbacks. The present invention provides an electrostrictive element in which materials exhibiting an electrostrictive effect and internal electrodes are alternately laminated, in which each internal electrode has a planar area smaller than the area of a cross section perpendicular to the lamination direction of the electrostrictive element. , and at least a part of the outer periphery of each internal electrode overlaps with the outer periphery of the cross section of the front distribution strain effect element, and each internal electrode is electrically connected every other layer from the outside of this element. It is characterized by Since the electrostrictive effect element of the present invention can increase the overlapping area of the internal electrodes, it is possible to achieve a larger amount of displacement than an element with a conventional structure, and at the same time, the strength against destruction is increased.

次に実施例に従って本発明の詳細な説明を行なう。Next, the present invention will be explained in detail according to examples.

実施例1 マグネシウム・ニオブ酸鉛Pb (Mg5(Nbq )
Osとチタン酸鉛PbTi0.をモル比で9対1の割合
で固溶させたセラミック材料を用いて本発明の電歪効果
素子の効果を調べた。この材料は大きな電歪効果を示す
ことがよく知られている。
Example 1 Magnesium lead niobate Pb (Mg5(Nbq)
Os and lead titanate PbTi0. The effect of the electrostrictive effect element of the present invention was investigated using a ceramic material in which a solid solution was formed in a molar ratio of 9:1. This material is well known to exhibit large electrostrictive effects.

本材料の予焼粉末と有機バインダー、有機S謀とを混合
し、泥漿を作製した。この泥漿をドクターブレード法で
フィルム上に数100ミクロンの厚さにキャスティング
し、グリーンシートを作製した。腋シートを乾燥し、マ
イラーフィルムから剥離し、所定の形状に切断した後、
白金ペーストを片面に印刷し、さらにこれらのシートを
数lθ枚積層、圧着し、所定の寸法に切断した後約12
00℃の温度で焼成した。
A slurry was prepared by mixing the prefired powder of this material, an organic binder, and an organic S mixture. This slurry was cast onto a film to a thickness of several 100 microns using a doctor blade method to produce a green sheet. After drying the axillary sheet, peeling it off from the Mylar film, and cutting it into the desired shape,
Platinum paste was printed on one side, several lθ sheets were laminated and crimped, and cut into predetermined dimensions.
It was fired at a temperature of 00°C.

第2図(a) 、 (b)は本発明の構造を有する電歪
効果素子の外観及び内部電極形状を示すもので、縦、横
の寸法が各々a = 3■、長さがl =10mの直方
体で電歪材料21と白金内部電極22が交互に積層され
た構造になっている。この内部電極の間隔は250ミク
ロンである。
Figures 2 (a) and (b) show the external appearance and internal electrode shape of an electrostrictive effect element having the structure of the present invention, in which the vertical and horizontal dimensions are a = 3 mm, and the length is l = 10 m. It has a rectangular parallelepiped structure in which electrostrictive material 21 and platinum internal electrodes 22 are alternately laminated. The spacing between the internal electrodes is 250 microns.

またこの実施例は各内部電極の外周形状がこの電歪効果
素子の断面形状に等しい場合である。この場合に各内部
電極の面積を該素子の積層方向に垂直な断面の面積より
小さくするために各内部電極はその外周の内側に該電極
の形成されていない部分を1個所以上有している。この
実施例では各内部電極中の該部分が16個所ある構造と
した。この部分の数、形状、位置は適時変更することが
可能である。また実施例においては電歪効果素子の断面
の面積に対し、各内部電極の面積が95チ、85%、7
0Lsの3s類の内部電極を有する電歪効果素子を作製
した。次に素子側御に露出している各内部電極を一層お
きに外部からリード線器をノ・ンダ付けすることにより
電気的に接続し、2つの電極端子A、Bをとり出した。
Further, in this embodiment, the outer peripheral shape of each internal electrode is equal to the cross-sectional shape of this electrostrictive effect element. In this case, in order to make the area of each internal electrode smaller than the area of the cross section perpendicular to the stacking direction of the element, each internal electrode has one or more parts inside its outer periphery where the electrode is not formed. . In this embodiment, each internal electrode has 16 such portions. The number, shape, and position of these parts can be changed at any time. In addition, in the example, the area of each internal electrode is 95 cm, 85%, and 7% of the cross-sectional area of the electrostrictive element.
An electrostrictive effect element having internal electrodes of 0Ls and 3s was fabricated. Next, each internal electrode exposed on the side of the element was electrically connected to every other layer by attaching lead wires from the outside, and two electrode terminals A and B were taken out.

比較のため外形寸法が同じで、電極構造の異なる第1図
に示した従来の積層チップコンデンサ型の電歪効果素子
を同時に試作した。電極の重なり面−積は素子断面積の
84−である。
For comparison, a conventional multilayer chip capacitor-type electrostrictive effect element shown in FIG. 1, which has the same external dimensions but a different electrode structure, was also prototyped at the same time. The overlapping area of the electrodes is 84 times the cross-sectional area of the device.

素子の電極端子A、B間に直流電圧を印加して素子の長
さ!方向の変位量の測定を本発明素子と従来素子に関し
て行なった。結果を第3図に示す。
Apply a DC voltage between electrode terminals A and B of the element to measure the length of the element! The amount of directional displacement was measured for the device of the present invention and the conventional device. The results are shown in Figure 3.

図中■、■、■は本発明素子に関するもので、■は電極
面積が素子断面積の95チ、■は85 %そして■は7
0−の場合である。図から明らかな様に本発明の電歪効
果素子は従来素子と比較して同一印加電圧に対する変位
量が大きい。
In the figure, ■, ■, and ■ are related to the device of the present invention;
This is the case of 0-. As is clear from the figure, the electrostrictive element of the present invention has a larger displacement amount for the same applied voltage than the conventional element.

爽1男1 実施例1に用いた試料に関して最高電圧250v、パル
ス巾1maの正弦波パルス電圧を繰り返し連続的に印加
して、最大変位量と寿命の測定を行なった。結果を第4
図に示す。図中の番号は実施例1の試料番号に対応して
いる。図から明らかな様に従来素子では最大変位が1.
3 ミクロンで約25,000回の繰り返しパルス印加
で機械的に破壊した。−力木発明素子はすべて最大変位
が1.3ミクロン以上で、かつ1億回の繰り返し電圧穴
ルス印加に対しても破壊しなかった。
Sou 1 Man 1 Regarding the sample used in Example 1, a sinusoidal pulse voltage with a maximum voltage of 250 V and a pulse width of 1 ma was repeatedly and continuously applied to measure the maximum displacement amount and life. 4th result
As shown in the figure. The numbers in the figure correspond to the sample numbers of Example 1. As is clear from the figure, the maximum displacement of the conventional element is 1.
It was mechanically destroyed by applying pulses approximately 25,000 times at a diameter of 3 microns. - All of the devices of the invention had a maximum displacement of 1.3 microns or more, and did not break even after 100 million repeated voltage hole pulse applications.

以上の実施例から明らかな様に本発明の電歪効果素子は
従来の積層チップコンデンサ型の素子と比較して変位量
、寿命共に優れていることが明らかである。
As is clear from the above examples, it is clear that the electrostrictive effect element of the present invention is superior in displacement and life compared to conventional multilayer chip capacitor type elements.

第1図は積層チップコンデンサ型の従来の電歪効果素子
の構造図。
Figure 1 is a structural diagram of a conventional multilayer chip capacitor type electrostrictive effect element.

第1図(a)は断面図。第1図(b)は積層方向からの
透視図。
FIG. 1(a) is a sectional view. FIG. 1(b) is a perspective view from the stacking direction.

第2図は本発明の電歪効果素子の構造図。FIG. 2 is a structural diagram of the electrostrictive effect element of the present invention.

第2図(a)は側面図。第2図(b)は内部電極の形状
を示す図。
FIG. 2(a) is a side view. FIG. 2(b) is a diagram showing the shape of the internal electrodes.

第3図は本発明素子と従来素子に関する変位量と印加電
圧の関係を示す図。
FIG. 3 is a diagram showing the relationship between displacement and applied voltage for the device of the present invention and the conventional device.

第4図は本発明素子と従来素子にパルス電圧を繰り返し
印加した場合の最大変位量と寿命の関係を示す図。
FIG. 4 is a diagram showing the relationship between maximum displacement and life when pulse voltage is repeatedly applied to the device of the present invention and the conventional device.

なお、各図において、1.21は電歪材料、2゜nは内
部電極、3は外St極、詔はリード線である。
In each figure, 1.21 is an electrostrictive material, 2°n is an internal electrode, 3 is an outer St pole, and 3 is a lead wire.

第1図 第2図Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 電歪効果を示す材料と内部電極とが交互に積層された電
歪効果素子において各内部電極はその平面形状の面積が
紘電歪効果素子の積層方向に垂直な断面の面積より小さ
く、かつ各内部電極の外周の少なくとも一部は前記電歪
効果素子の断面の外周と重なっている構造であり、さら
に素子の外側から各内部電極を一層おきに接続してなる
ことを%黴とする電歪効果素子。
In an electrostrictive element in which materials exhibiting an electrostrictive effect and internal electrodes are alternately laminated, each internal electrode has a planar area smaller than the area of a cross section perpendicular to the stacking direction of the electrostrictive element, and At least a part of the outer periphery of the internal electrode overlaps with the outer periphery of the cross section of the electrostrictive element, and each internal electrode is connected every other layer from the outside of the element. effect element.
JP57079036A 1982-05-11 1982-05-11 Electrostrictive effect element Expired - Lifetime JPH0671102B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP57079036A JPH0671102B2 (en) 1982-05-11 1982-05-11 Electrostrictive effect element
DE8383104556T DE3378393D1 (en) 1982-05-11 1983-05-09 Multilayer electrostrictive element which withstands repeated application of pulses
EP83104556A EP0094078B1 (en) 1982-05-11 1983-05-09 Multilayer electrostrictive element which withstands repeated application of pulses
CA000427828A CA1206193A (en) 1982-05-11 1983-05-10 Multilayer electrostrictive element which withstands repeated application of pulses
AU14422/83A AU553391B2 (en) 1982-05-11 1983-05-10 Multilayer electrostrictive element
US06/493,583 US4523121A (en) 1982-05-11 1983-05-11 Multilayer electrostrictive element which withstands repeated application of pulses
KR1019830002025A KR860000255B1 (en) 1982-05-11 1983-05-11 Multilayer electrostrictive element
BR8302536A BR8302536A (en) 1982-05-11 1983-05-11 ELECTROSTRITIVE ELEMENT OF HIGH-RESISTANCE MULTIPLE LAYERS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57079036A JPH0671102B2 (en) 1982-05-11 1982-05-11 Electrostrictive effect element

Publications (2)

Publication Number Publication Date
JPS58196076A true JPS58196076A (en) 1983-11-15
JPH0671102B2 JPH0671102B2 (en) 1994-09-07

Family

ID=13678687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57079036A Expired - Lifetime JPH0671102B2 (en) 1982-05-11 1982-05-11 Electrostrictive effect element

Country Status (1)

Country Link
JP (1) JPH0671102B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142875A (en) * 1986-12-05 1988-06-15 Sumitomo Special Metals Co Ltd Piezoelectric laminated actuator
WO2009096381A1 (en) * 2008-01-29 2009-08-06 Kyocera Corporation Laminated piezoelectric element, and injector equipped with laminated piezoelectric element and fuel injection system
WO2009107700A1 (en) * 2008-02-26 2009-09-03 京セラ株式会社 Multilayer piezoelectric element, injector equipped with the multilayer piezoelectric element and fuel injedction system
US7591542B2 (en) 2004-06-03 2009-09-22 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator, method for producing the same and ink-jet head

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379488A (en) * 1976-12-24 1978-07-13 Ngk Spark Plug Co Piezooelectric element
JPS5430953U (en) * 1977-08-04 1979-02-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379488A (en) * 1976-12-24 1978-07-13 Ngk Spark Plug Co Piezooelectric element
JPS5430953U (en) * 1977-08-04 1979-02-28

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142875A (en) * 1986-12-05 1988-06-15 Sumitomo Special Metals Co Ltd Piezoelectric laminated actuator
US7591542B2 (en) 2004-06-03 2009-09-22 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator, method for producing the same and ink-jet head
WO2009096381A1 (en) * 2008-01-29 2009-08-06 Kyocera Corporation Laminated piezoelectric element, and injector equipped with laminated piezoelectric element and fuel injection system
JP5154580B2 (en) * 2008-01-29 2013-02-27 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system
WO2009107700A1 (en) * 2008-02-26 2009-09-03 京セラ株式会社 Multilayer piezoelectric element, injector equipped with the multilayer piezoelectric element and fuel injedction system
JP5133399B2 (en) * 2008-02-26 2013-01-30 京セラ株式会社 Multilayer piezoelectric element, injection device including the same, and fuel injection system

Also Published As

Publication number Publication date
JPH0671102B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
JP2965602B2 (en) Stacked displacement element
JPS6317354B2 (en)
JPH0256830B2 (en)
US5475278A (en) Method for driving piezoelectric actuator
JP3024763B2 (en) Stacked displacement element
JPS6334636B2 (en)
JPS58196076A (en) Electrostrictive effect element
JPH0564873B2 (en)
JPH0451992B2 (en)
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPS58196077A (en) Electrostrictive eeffct element
JP2004296772A (en) Electrically driving method of stacked piezo-electric element
JPS58196074A (en) Electrostrictive effect element
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JPS62271478A (en) Manufacture of electrostrictive effect element
JPH03138987A (en) Electrostrictive effect element
JPH06181343A (en) Laminated displacement element and manufacture thereof
JPH04352481A (en) Manufacture of electrostrictive effect element
JPS58196070A (en) Electrostrictive effect element
JPH01184968A (en) Manufacture of laminar piezoelectric element
JPS58196079A (en) Electrostrictive effect element
JPH0353573A (en) Electrostrictive effect element
JPH04239783A (en) Electrostrictive effect device
JP3017784B2 (en) Stacked displacement element
JPS58196078A (en) Electrostrictive effect element