WO2009096381A1 - Laminated piezoelectric element, and injector equipped with laminated piezoelectric element and fuel injection system - Google Patents

Laminated piezoelectric element, and injector equipped with laminated piezoelectric element and fuel injection system Download PDF

Info

Publication number
WO2009096381A1
WO2009096381A1 PCT/JP2009/051253 JP2009051253W WO2009096381A1 WO 2009096381 A1 WO2009096381 A1 WO 2009096381A1 JP 2009051253 W JP2009051253 W JP 2009051253W WO 2009096381 A1 WO2009096381 A1 WO 2009096381A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrode
piezoelectric element
internal
facing portion
electrodes
Prior art date
Application number
PCT/JP2009/051253
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Okamura
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to JP2009551520A priority Critical patent/JP5154580B2/en
Publication of WO2009096381A1 publication Critical patent/WO2009096381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/508Piezoelectric or electrostrictive devices having a stacked or multilayer structure adapted for alleviating internal stress, e.g. cracking control layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means

Definitions

  • the present invention relates to a laminated piezoelectric element used for, for example, a driving element (piezoelectric actuator), a sensor element, and a circuit element.
  • the driving element include a fuel injection device for an automobile engine, a liquid injection device such as an ink jet, a precision positioning device such as an optical device, and a vibration prevention device.
  • the sensor element include a combustion pressure sensor, a knock sensor, an acceleration sensor, a load sensor, an ultrasonic sensor, a pressure sensor, and a yaw rate sensor.
  • Examples of the circuit element include a piezoelectric gyro, a piezoelectric switch, a piezoelectric transformer, and a piezoelectric breaker.
  • multilayer piezoelectric elements have been required to ensure a large amount of displacement under a large pressure at the same time as miniaturization proceeds. For this reason, it is required that a higher voltage is applied and that the device can be used under severe conditions in which continuous driving is performed for a long time.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a laminated piezoelectric element in which a decrease in displacement due to long-time driving is improved.
  • the multilayer piezoelectric element according to the present invention includes a multilayer body having a plurality of piezoelectric bodies and a plurality of internal electrodes, the piezoelectric bodies and the internal electrodes being alternately stacked, and a first side surface of the multilayer body.
  • the plurality of internal electrodes on the first and second side surfaces are respectively connected to the first external electrodes such that the plurality of internal electrodes are alternately connected to one of the first and second external electrodes.
  • the internal electrodes connected to the second external electrodes and the internal electrodes that are insulated and separated by being formed away from the first side surface or the second side surface are alternately arranged.
  • the stacked body includes a facing portion where the adjacent internal electrodes face each other in the stacking direction, and a non-facing portion provided along the first and second side surfaces, facing each other of the internal electrodes.
  • a laminated piezoelectric element divided into At least one of the plurality of internal electrodes has a plurality of internal electrode non-formation sites provided in the internal electrode along a boundary between the facing portion and the non-facing portion.
  • At least one of the plurality of internal electrodes includes a plurality of internal electrode non-formation sites surrounded by the internal electrode, and the opposing portion and the non-opposing portion. It has along the boundary.
  • FIG. 1 is a perspective view showing a multilayer piezoelectric element according to a first embodiment of the present invention.
  • FIG. 1B is a partial exploded perspective view of the multilayer piezoelectric element of FIG. 1A. It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element shown to FIG. 1A and 1B, and is sectional drawing which shows the cross section of the internal electrode which has an internal electrode non-formation site
  • FIG. 6A which has an internal electrode non-formation site
  • FIG. 9 It is a perspective view which shows the lamination type piezoelectric element of the 6th Embodiment concerning this invention. It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element shown in FIG. 9, and is sectional drawing which shows the cross section of the internal electrode which has an internal electrode non-formation site
  • FIG. 1A is a perspective view showing a multilayer piezoelectric element according to the first embodiment of the present invention.
  • FIG. 1B is an exploded perspective view of a part of the multilayer piezoelectric element according to the embodiment shown in FIG. 1A.
  • 2A, 2B, and 2C are cross-sectional views each including internal electrodes adjacent to each other in the direction perpendicular to the stacking direction in the embodiment shown in FIG.
  • the multilayer piezoelectric element 1 (hereinafter also simply referred to as element 1) of the present embodiment has a plurality of piezoelectric bodies 3 and a plurality of internal electrodes 5, and the piezoelectric body 3 And a laminated body 7 in which the internal electrodes 5 are alternately laminated.
  • the multilayer piezoelectric element 1 includes two external electrodes 11.
  • one (cathode side) external electrode 11 is formed on the first side surface, which is one side surface of the multilayer body 7, and the other (anode side) external electrode.
  • the electrode 11 is formed on the second side surface facing the first side surface (FIG. 1A).
  • the internal electrodes 5 and 9 serving as the negative electrode are formed so as to reach the first side surface, are connected to the external electrode 11 on the first side surface, are formed apart from the second side surface, and are external on the anode side. It is electrically separated from the electrode 11.
  • the internal electrodes 5 and 9 serving as positive electrodes are formed so as to reach the second side surface, are connected to the external electrode 11 on the second side surface, are formed away from the first side surface, and are external to the cathode side. It is electrically separated from the electrode 11.
  • the internal electrodes 5, 9 serving as the negative electrode and the internal electrodes 5, 9 serving as the positive electrode are alternately arranged, and each piezoelectric body 3 is sandwiched between the internal electrodes 5, 9 of the negative electrode and the positive electrode.
  • a structure is realized.
  • the portions where the electrodes are not formed on the piezoelectric body 3 formed by forming the internal electrodes 5 and 9 away from the end portions (first side surface or second side surface) are insulated and separated. This is referred to as part 70.
  • the active region where the piezoelectric body 3 is sandwiched between the positive and negative internal electrodes 5 and 9 and voltage is applied to the sandwiched portion is the first side surface and the second side region.
  • An inactive region that is formed away from the side surface by the width of the insulating separation portion 70 and that has the same polarity of the internal electrodes facing each other with the insulating separation portion 70 interposed therebetween is an inactive region where no voltage is applied to the piezoelectric body 3. It is formed along the side. In this manner, the stacked body 7 is divided into an active region and a non-active region other than the pair of positive and negative internal electrodes 5 adjacent to each other in the stacking direction.
  • an active region in which the piezoelectric body 3 is sandwiched between the positive and negative internal electrodes 5 and 9 facing each other is referred to as a facing portion 7a, and the inactive where the positive and negative internal electrodes 5 and 9 are not facing each other.
  • the region is referred to as a non-facing portion 7b.
  • At least one internal electrode 9 among the plurality of internal electrodes 5 has a plurality of openings (referred to as internal electrode non-formation sites 7 c) each surrounded by the internal electrode 9. It has along the boundary 7d of the opposing part 7a and the non-opposing part 7b, It is characterized by the above-mentioned.
  • the internal electrode 9 has a plurality of internal electrode non-formed portions 7c (hereinafter also referred to as non-formed portions 7c) and is positioned so as to straddle the boundary 7d between the facing portion 7a and the non-facing portion 7b.
  • the portion will be referred to as the first portion 9a and will be described as the other second portion 9b.
  • part 9a is an area
  • part 9b is defined as follows. When a voltage is applied to the external electrode 11, the electric field transmitted to the internal electrode 9 is once disturbed by the internal electrode non-formation site 7c, but the electric field intensity distribution is once disturbed. A phenomenon occurs in which the intensity is aligned in a single line.
  • the boundary between the first part 9a and the second part 9b is defined as the position of the line where the electric field strengths are aligned.
  • the insulating separation portion 70 is generally separated from the boundary 7d between the facing portion 7a and the non-facing portion 7b. It is a position away from the external electrode 11 by a distance of.
  • the ratio of the internal electrode 5 in the first part 9a is smaller than the ratio of the internal electrode 5 in the second part 9b. It is preferable.
  • the multilayer piezoelectric element 1 continuously undergoes dimensional changes when driven, but the piezoelectric element 3 is driven in close contact with the internal electrode 5 so that the element 1 is large as a whole. Drive deformation. Therefore, a relatively large stress is applied to the end portion of the element 1.
  • the non-formation part 7c of the first part 9a is in the above-described form, the amount of displacement at the end portion close to the end face of the element 1 can be reduced. As a result, the stress applied to the end portion of the element 1 can be reduced, and the durability of the element 1 can be improved.
  • At least one of the plurality of internal electrodes 5 and 9 has a plurality of internal electrode non-formation sites 7c each surrounded by the internal electrode 9 as opposed to the opposing portion 7a. Since it has along the boundary 7d with the opposing part 7b, the driving force in the boundary 7d vicinity with the non-opposing part 7b can be made small among the opposing parts 7a. That is, the driving force is small as compared with the central portion of the facing portion 7a along the boundary 7d between the facing portion 7a and the non-facing portion 7b, in the facing portion 7a or across the facing portion 7a and the non-facing portion 7b. A portion is formed, and the driving force can be reduced stepwise toward the non-opposing portion 7b. As a result, stress concentration at the boundary 7d can be suppressed, and high durability can be realized.
  • the first portion 9 a is located between the portion of the internal electrode 9 that is located in the facing portion 7 a and contributes to driving the element 1 and the portion that is connected to the external electrode 11. ing.
  • the ratio of the internal electrode 5 in the first part 9a is smaller than the ratio of the internal electrode 5 in the second part 9b. Therefore, in the portion where the plurality of internal electrode non-formation sites 7c are formed, the current path when the current flows becomes narrow, so the current density when the overcurrent flows is higher than the other portions, Damage is likely to occur.
  • the first portion 9a when the first portion 9a is located at a location where current is passed from the external electrode 11 to the portion of the internal electrode 9 that contributes to driving of the device 1, a very strong voltage is applied to the device 1. A part of the first portion 9a is broken. Thereby, it is suppressed that an excessive voltage is applied to the portion of the internal electrode 9 that contributes to driving of the element 1. As a result, it is possible to suppress the piezoelectric body 3 from being displaced excessively and causing cracks.
  • the electrode portion between adjacent internal electrode non-formation sites 7c is damaged. As described above, the interval between the internal electrode non-formation sites 7c can also be set.
  • the first portion 9a is located between the portion contributing to driving of the element 1 and the portion connected to the external electrode 11, and only in the first portion 9a.
  • the non-formed part 7c stress is easily applied to the first part 9a. Therefore, since it is known in advance that the first portion 9a of the internal electrode 9 is likely to break, it is easy to predict the driving state of the element 1 over a long period of time. As a result, the reliability with respect to the displacement amount of the element 1 can be improved.
  • the plurality of internal electrode non-formed portions 7c are aligned in a direction parallel to the boundary 7d between the facing portion 9b and the non-facing portion 9a. It is more preferable that the plurality of aligned internal electrode non-formed sites 7c are arranged at equal intervals.
  • the plurality of internal electrode non-formation sites 7c are arranged at equal intervals in one direction, and the first site 9a has a lattice shape with the internal electrode non-formation sites 7c as lattices. That's it.
  • the lattice shape of the lattice shape may be arranged in a row or in a plurality of rows.
  • FIG. 3A to 3C are cross-sectional views orthogonal to the stacking direction of the multilayer piezoelectric element 1 according to the modification of the first embodiment, and illustrate cross sections including the internal electrodes 5 and 9.
  • FIG. 3A shows the internal electrode 9 shown in FIG. 3B and the internal electrode 9 adjacent to one end face side of the laminate 7.
  • FIG. 3C shows the internal electrode 9 shown in FIG. 3B and the internal electrode 5 adjacent to the other end face side of the stacked body 7.
  • the end surface of the laminated body 7 refers to the outer surface orthogonal to the lamination direction of the internal electrodes 5 and 9 and the piezoelectric body 3, and refers to the upper surface and the lower surface in FIG. 1A.
  • the laminated piezoelectric element 1 of this modification is different from the element 1 of the first embodiment in which the internal electrode non-forming part 7c is circular, except that the internal electrode non-forming part 7c is rectangular.
  • the configuration is the same as the element 1 of the first embodiment.
  • the lattice shape in the present invention includes a circular shape as shown in FIG. 3, and the lattice shape as shown in FIG. 2 is not limited to a square shape.
  • the lattice in the first portion 9a of the internal electrode 9 is substantially square. It is also effective that the corners have a curved shape.
  • the internal electrode non-forming portion 7c is a boundary between the facing portion 7a and the non-facing portion 7b when the internal electrode 9 is viewed in plan view. 7d is preferred. That is, it is preferable that the internal electrode non-formation site 7c is formed across the facing portion 7a and the non-facing portion 7b. In this case, it is possible to reduce the driving force at the boundary 7d between the facing portion 7a and the non-facing portion 7b where the stress is most likely to concentrate among the facing portions 7a, so that the durability of the element 1 can be further increased. it can.
  • the configuration in which the plurality of internal electrodes 9 have the first portion 9a is shown.
  • at least one internal polarization 9 is the first What is necessary is just to have the site
  • At least one of the internal electrodes 5, 9 connected to the anode-side external electrode 11a and the internal electrodes 5, 9 connected to the cathode-side external electrode 11b has a first portion 9a. More preferably. Thereby, since the bias of the stress distribution can be reduced, the driving direction of the element 1 can be stabilized.
  • the pair of internal electrodes 5 and 9 adjacent in the stacking direction each have the first portion 9a. This is because the amount of displacement of the piezoelectric body 3 sandwiched between the internal electrodes 5 and 9 can be further reduced, and the effect of absorbing stress in the piezoelectric body 3 can be further enhanced.
  • all the internal electrodes 5, 9 have the first portion 9a.
  • the stress can be dispersed in a wider range, and the bias of the stress distribution can be further reduced.
  • FIG. 4A to 4C are cross-sectional views orthogonal to the stacking direction in the multilayer piezoelectric element 1 according to the second embodiment of the present invention, and illustrate cross sections including the internal electrodes 5.
  • FIG. 4A shows the internal electrode 9 shown in FIG. 4B and the internal electrode 9 adjacent to one end face side of the laminate 7.
  • FIG. 4C shows the internal electrode 9 shown in FIG. 4B and the internal electrode 5 adjacent to the other end face side of the multilayer body 7.
  • the non-formed portion 7c in the first portion 9a of the internal electrode 9 is a boundary between the facing portion 7a and the non-facing portion 7b.
  • the point which is arranged in a plurality of rows in parallel with 7d is different from the first embodiment.
  • the non-forming portion 7c in the first portion 9a is arranged in a plurality of rows in parallel with the boundary 7d between the facing portion 7a and the non-facing portion 7b, one of the plurality of rows is the facing portion 7a. It is preferably located on the boundary 7d between the non-opposing portion 7b.
  • first portion 9a Since the first portion 9a is located between the portion of the internal electrode 9 that is located at the facing portion 7a and contributes to driving the element 1 and the portion that is connected to the external electrode 11, stress is generated at the non-forming portion 7c. Can be relaxed. Thereby, it can suppress that stress concentrates on the peripheral part of the internal electrode 5.
  • FIG. 5A to 5A are cross-sectional views orthogonal to the stacking direction of the multilayer piezoelectric element 1 according to the modification of the second embodiment shown in FIG. 4, and illustrate cross sections including the internal electrodes 5 and 9. Yes.
  • FIG. 5A shows the internal electrode 9 shown in FIG. 5B and the internal electrode 9 adjacent to one end face side of the laminate 7.
  • FIG. 5C shows the internal electrode 9 shown in FIG. 5B and the internal electrode 5 adjacent to the other end face side of the multilayer body 7.
  • the non-forming portion 7c constituting the row located on the boundary 7d between the facing portion 7a and the non-facing portion 7b may be larger than the other non-forming portions 7c. Even more preferred. This is because the driving force at the boundary 7d between the opposing portion 7a and the non-opposing portion 7b where stress is most likely to concentrate can be reduced, and the durability of the element 1 can be further increased.
  • FIG. 6A to 6B are cross-sectional views orthogonal to the stacking direction in the multilayer piezoelectric element 1 according to the third embodiment of the present invention, and illustrate a cross section including the internal electrode 5.
  • FIG. 6A shows the internal electrode 9 shown in FIG. 6B and the internal electrode 9 adjacent to one end side in the stacking direction.
  • 6C shows the internal electrode 5 shown in FIG. 6B and the internal electrode 5 adjacent to the other end side in the stacking direction.
  • the anode-side and cathode-side external electrodes 11a, 11b are respectively located on opposite side surfaces of the multilayer body 7, and a boundary 7d between the facing portion 7a and the non-facing portion 7b is separated from each other.
  • at least one internal electrode 9 of the plurality of internal electrodes 5 has a first portion 9a on each boundary 7d. That is, the internal electrode 9 having the internal electrode non-forming portion 7c along the boundary 7d between the facing portion 7a and the one non-facing portion 7b further extends along the boundary 7d between the facing portion 7a and the other non-facing portion 7b.
  • the boundary 7d between the facing portion 7a and the non-facing portion 7b exists at a plurality of locations separated from each other, among the plurality of internal electrodes 5, the internal electrodes 9 adjacent to each other in the stacking direction It is preferable that the 1st site
  • the first portions 9 a are positioned to face each other, so that the drive shaft of the element 1 is less shaken and the durability is improved.
  • FIG. 7 is a perspective view showing a multilayer piezoelectric element according to the fourth embodiment of the present invention.
  • the plurality of internal electrodes 9 having the first portion 9a of the internal electrodes 5 are periodically arranged according to a certain rule in the stacking direction, This is a more preferable embodiment according to the present invention. Thereby, since the stress applied to the entire element 1 can be dispersed in the stacking direction, the element 1 having high durability can be provided.
  • FIG. 8A is a perspective view showing a multilayer piezoelectric element according to the fifth embodiment of the present invention.
  • FIG. 8B is a cross-sectional view taken along the line AA in the fifth embodiment shown in FIG. 8A and including the internal electrode 9.
  • FIG. 8C is a cross-sectional view taken along the line BB in the fifth embodiment shown in FIG. 8A and including the internal electrode 9.
  • a pair of internal electrodes 9 adjacent in the stacking direction each have a first portion 9 a, and the internal electrode 9 occupies the first portion 9 a of the internal electrode 9 close to the end face of the stacked body 7.
  • the ratio is preferably smaller than the ratio occupied by the internal electrode 9 in the first portion 9 a of the internal electrode 9 that is far from the end face of the multilayer body 7. That is, of the pair of internal electrodes 9 having the internal electrode non-formation site 7 c, the ratio of the internal electrode 9 near the end surface of the multilayer body 7 to the internal electrode non-formation site 7 c is located far from the end surface of the multilayer body 7. It is preferable that the ratio of the internal electrode 9 occupied by the internal electrode non-formation site 7c is larger.
  • the multilayer piezoelectric element 1 continuously undergoes dimensional changes when driven.
  • the element 1 is largely driven and deformed integrally. Therefore, a relatively large stress is applied to the end portion of the element 1.
  • the non-formation part 7c of the first part 9a is in the above-described form, so that the stress applied to the end part of the element 1 is reduced. Can be reduced. As a result, the durability of the element 1 can be improved.
  • the non-formation site 7c gradually increases toward the end face side of the laminate 7, and it is even more preferable that the degree of increase is regular.
  • the stress applied to the laminated piezoelectric element 1 gradually increases as it is closer to the end face of the element 1.
  • the stress generated at the boundary 7d between the facing portion 7a and the non-facing portion 7b becomes closer to the end surface of the element 1 because the non-forming portion 7c gradually increases toward the end surface side or gradually according to a certain rule. This is because the effect of relaxing the stress can be gradually increased, so that the bias of the stress distribution in the stacking direction of the element 1 can be further reduced.
  • the internal electrode 9 located on the end face side in the stacking direction among the plurality of internal electrodes 5 has the first portion 9a.
  • the internal electrode 9 located on the most end surface side in the stacking direction has the first portion 9a, so that the stress can be efficiently applied. This is because it can be relaxed. As a result, the durability of the element 1 can be further increased.
  • FIG. 9 is a perspective view showing a multilayer piezoelectric element according to the sixth embodiment of the present invention.
  • 10A to 10C are cross-sectional views orthogonal to the stacking direction in the embodiment shown in FIG. 9, each showing a cross section including the internal electrode 5.
  • FIG. 10A shows the internal electrode 9 shown in FIG. 10B and the internal electrode 9 adjacent to one end face side of the laminate 7.
  • FIG. 10C shows the internal electrode 9 shown in FIG. 10B and the internal electrode 5 adjacent to the other end face side of the multilayer body 7.
  • the multilayer piezoelectric element 1 of the sixth embodiment includes a plurality of piezoelectric bodies 3 and a plurality of internal electrodes 5, and the piezoelectric bodies 3 and the internal electrodes 5 are alternately stacked.
  • the laminated body 7 is provided.
  • the stacked body 7 is divided into a pair of positive and negative internal electrodes 5 adjacent to each other in the stacking direction, a facing portion 7a facing in the stacking direction and the other non-facing portion 7b.
  • At least one internal electrode 9 among the plurality of internal electrodes 5 has a lattice shape, and includes a first portion 9c and a second portion 9d having a finer lattice than the first portion 9c.
  • the second internal electrode non-forming part 7e having a smaller area than the internal electrode non-forming part 7c is further away from the boundary 7d than the internal electrode non-forming part 7c.
  • part 9c is located on the boundary 7d of the opposing part 7a and the non-opposing part 7b.
  • external electrodes 11 a and 11 b are located on the side surface of the multilayer body 7.
  • the plurality of internal electrodes 5 are connected to one of the anode-side and cathode-side external electrodes 11a and 11b, respectively.
  • the multilayer piezoelectric element 1 since the lattice of the first portion 9c is larger than the lattice of the second portion 9d, a voltage is applied to the first portion 9c.
  • the driving force applied to the piezoelectric body 3 is smaller than the driving force applied to the piezoelectric body 3 by applying a voltage to the second portion 9d.
  • part 9c is located on the boundary 7d of the opposing part 7a and the non-opposing part 7b, the driving force in the vicinity of the boundary 7d with the non-opposing part 7b is relatively made among the opposing parts 7a. Since it becomes small, it can suppress that the stress concerning this boundary 7d vicinity concentrates. As a result, the multilayer piezoelectric element 1 having high durability can be provided.
  • the second portion 9b does not have the non-forming portions 7c and 7e, on the boundary or the boundary between the facing portion 7a and the non-facing portion 7b
  • the stress applied near the boundary 7d between the facing part 7a and the non-facing part 7b can be reduced.
  • the internal electrode 9 having the first part 9c and the second part 9d The displacement amount of the entire adjacent piezoelectric body 3 can be reduced. As a result, the stress can be relaxed in the entire piezoelectric body 3, so that the stress applied to the end portion on the end face side of the element 1 can be reduced.
  • 11A to 11C are cross-sectional views in the direction perpendicular to the stacking direction in the stacked piezoelectric element according to the seventh embodiment of the present invention, and show cross sections each including the internal electrode 5 adjacent in the stacking direction. Yes.
  • the cross section shown in FIG. 11A is located closer to the end side of the element than the cross section shown in FIG. 11C.
  • the multilayer piezoelectric element 1 of the seventh embodiment is that the lattice in the second portion 9 d of the internal electrode 9 becomes gradually rough toward the end face side in the sixth embodiment.
  • This is a more preferable form in this respect. That is, the area of the second internal electrode non-forming portion 7e formed on the internal electrode 9 near the end face of the multilayer body 7 is larger.
  • the multilayer piezoelectric element 1 is largely driven and deformed as a unit, a greater stress is applied to the end of the element 1 closer to the end.
  • the non-formation site 7c is gradually roughened toward the end portion, the effect of dispersing the stress generated at the boundary between the facing portion 7a and the non-facing portion 7b increases as the end portion of the element 1 is closer. . Thereby, the bias of the stress distribution in the stacking direction of the element 1 can be further reduced.
  • a ceramic green sheet to be the piezoelectric body 3 is produced. Specifically, a calcined powder of piezoelectric ceramic, a binder composed of an acrylic or butyral organic polymer, and a plasticizer are mixed to prepare a slurry. And a ceramic green sheet is produced by using this slurry for tape forming methods, such as a known doctor blade method and a calender roll method.
  • the piezoelectric ceramic any material having piezoelectric characteristics may be used. For example, a perovskite oxide made of PbZrO 3 —PbTiO 3 or the like can be used.
  • the plasticizer dibutyl phthalate (DBP), dioctyl phthalate (DOP), or the like can be used.
  • a conductive paste to be the internal electrode 5 is produced.
  • a conductive paste can be prepared by adding and mixing a binder, a plasticizer, and the like with a metal powder such as silver-palladium. This conductive paste is disposed on the ceramic green sheet using a screen printing method. Further, a plurality of ceramic green sheets on which the conductive paste is screen-printed are stacked. Then, as will be described later, the laminate 7 including the piezoelectric body 3 and the internal electrode 5 can be formed by firing.
  • the internal electrode 9 having the lattice-shaped first portion can be formed, for example, by changing the pattern shape of the screen.
  • the lattice roughness can also be changed by changing the pattern shape of the screen.
  • the laminated body 7 is not limited to the one produced by the above manufacturing method, and any method can be used as long as a laminated body 7 in which a plurality of piezoelectric bodies 3 and a plurality of internal electrodes 5 are alternately laminated can be produced. It may be formed by any manufacturing method.
  • the external electrode 11 is formed so as to be electrically connected to the internal electrodes 5 and 9 and the piezoelectric body 3 whose end portions are exposed on the outer surface of the multilayer piezoelectric element 1.
  • the external electrode 11 can be obtained by adding a binder to glass powder to produce a silver glass conductive paste, printing it, and then drying and bonding or baking.
  • the laminate 7 on which the external electrode 11 is formed is immersed in a resin solution containing an exterior resin made of silicone rubber. Then, the silicone resin solution is vacuum degassed to bring the silicone resin into close contact with the concavo-convex portions on the outer peripheral side surface of the laminate 7, and then the laminate 7 is pulled up from the silicone resin solution. Thereby, a silicone resin (not shown) is coated on the side surface of the laminate 7. Then, the lead wire is connected to the external electrode 11 as a current-carrying portion with a conductive adhesive (not shown) or the like.
  • the multilayer piezoelectric element 1 of the embodiment is completed by applying a DC electric field of 0.1 to 3 kV / mm to the pair of external electrodes 11 via the lead wires to polarize the multilayer body 7.
  • a DC electric field of 0.1 to 3 kV / mm
  • each piezoelectric body 3 can be largely displaced by the inverse piezoelectric effect. it can.
  • This makes it possible to function as an automobile fuel injection valve that injects and supplies fuel to the engine, for example.
  • FIG. 12 is a schematic cross-sectional view showing an injection device according to an embodiment of the present invention.
  • the multilayer piezoelectric element 1 represented by the above embodiment is stored in a storage container 25 having an injection hole 23 at one end.
  • a needle valve 27 capable of opening and closing the injection hole 23 is disposed in the storage container 25 in the storage container 25, a needle valve 27 capable of opening and closing the injection hole 23 is disposed.
  • a fluid passage 29 is arranged in the injection hole 23 so as to be able to communicate with the movement of the needle valve 27.
  • the fluid passage 29 is connected to an external fluid supply source, and fluid is constantly supplied to the fluid passage 29 at a high pressure. Therefore, when the needle valve 27 opens the injection hole 23, the fluid supplied to the fluid passage 29 is ejected to the outside or an adjacent container, for example, a fuel chamber (not shown) of the internal combustion engine. .
  • the upper end portion of the needle valve 27 has a large inner diameter, and a cylinder 31 formed in the storage container 25 and a piston 33 that can slide are disposed. In the storage container 25, the multilayer piezoelectric element 1 described above is stored.
  • the fluid passage 29 may be opened by applying a voltage to the multilayer piezoelectric element 1 and the fluid passage 29 may be closed by stopping the application of the voltage.
  • the ejection device 21 of the present invention includes a container having the ejection holes 23 and the multilayer piezoelectric element 1 described above, and discharges the fluid filled in the container from the ejection holes 23 by driving the multilayer piezoelectric element 1.
  • You may be comprised so that it may make. That is, the multilayer piezoelectric element 1 does not necessarily have to be inside the container, and may be configured so that pressure is applied to the inside of the container by driving the multilayer piezoelectric element 1.
  • the fluid includes various liquid fluids (such as conductive paste) and gas in addition to fuel and ink.
  • the injection device 21 employing the multilayer piezoelectric element 1 of the present invention is used in an internal combustion engine, fuel can be injected into the fuel chamber of the internal combustion engine such as an engine with a longer period of time with higher accuracy than the conventional injection device 21. .
  • FIG. 13 is a schematic block diagram showing a fuel injection system according to an embodiment of the present invention.
  • the fluid ejection system 41 of the present embodiment includes a common rail 43 that stores high-pressure fluid, a plurality of the above-described injection devices 21 that inject the fluid stored in the common rail 43, and a high pressure applied to the common rail 43.
  • a pressure pump 45 that supplies fluid and an injection control unit 47 that supplies a drive signal to the injection device 21 are provided.
  • the ejection control unit 47 controls the amount and timing of fluid ejection based on external information or an external signal. For example, when an injection control unit is used for fuel injection of the engine, the amount and timing of fuel injection can be controlled while sensing the condition in the combustion chamber of the engine with a sensor or the like.
  • the pressure pump 45 plays a role of feeding fluid fuel from the fluid tank 49 to the common rail 43 at a high pressure. For example, in the case of an engine fuel injection system, the fluid is fed into the common rail 43 at about 1000 to 2000 atmospheres (about 101 MPa to about 203 MPa), preferably about 1500 to 1700 atmospheres (about 152 MPa to about 172 MPa).
  • the fuel sent from the pressure pump 45 is stored and sent to the injection device 21 as appropriate.
  • the injection device 21 injects a certain fluid from the injection hole 23 to the outside or an adjacent container. For example, in the case of an engine, fuel is injected into the combustion chamber in the form of a mist.
  • the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.
  • the present invention relates to a multilayer piezoelectric element, an injection device, and a fuel injection system, but is not limited to the above-described embodiment, and can be implemented as long as the element utilizes piezoelectric characteristics.
  • a laminated piezoelectric element was produced as follows.
  • a slurry is prepared by mixing a raw material powder mainly composed of lead zirconate titanate (PZT) powder having an average particle diameter of 0.4 ⁇ m, a binder and a plasticizer, and a ceramic green sheet having a thickness of 150 ⁇ m is formed by a doctor blade method.
  • PZT lead zirconate titanate
  • a conductive paste was prepared by adding a binder to a raw material powder containing silver-palladium alloy powder having a metal composition of 95% by mass of Ag and 5% by mass of Pd.
  • the conductive paste was printed on one side of the ceramic green sheet to a thickness of 30 ⁇ m by screen printing. And each green sheet on which the conductive paste was printed was laminated to produce a laminate. Note that the number of internal electrodes was 300 so that the number of internal electrodes was 300, and only 20 ceramic green sheets on which no conductive paste was printed were stacked at both ends in the stacking direction of the stack.
  • each internal electrode was not provided with the lattice-shaped first portion, and the cross-sectional areas of each internal electrode were all the same.
  • the conductive paste was printed so that the internal electrodes located at 1, 2, 299, and 300th in the stacking direction had the first part of the lattice shape as shown in Table 1. .
  • sample number 2 as shown in FIG. 2, the first part of the lattice shape having a square lattice is located on the boundary between the facing part and the non-facing part.
  • sample number 3 as shown in FIG. 3, the lattice-shaped first portion having a circular lattice is positioned on the boundary between the facing portion and the non-facing portion.
  • Sample No. 4 as shown in FIG. 5, the first part having a shape in which the lattice is arranged in a plurality of rows parallel to the boundary between the facing part and the non-facing part is the facing part. Located on the boundary with the non-opposing part.
  • the boundary between the facing portion and the non-facing portion exists at a plurality of locations separated from each other, and the first portion is located on each boundary of the internal electrodes.
  • the internal electrode has a lattice shape and has a first portion and a second portion having a finer lattice than the first portion.
  • part is located on the boundary of an opposing part and a non-opposing part.
  • the raw laminate of each sample number was subjected to a binder removal treatment at a predetermined temperature, and then fired at 800 to 1200 ° C. to obtain a laminate.
  • a conductive paste for an external electrode was prepared by adding and mixing a binder, a plasticizer, glass powder and the like to a metal powder containing silver as a main component. This conductive paste was printed by screen printing or the like on the side surface of the laminate on which the external electrodes were to be formed. Further, an external electrode was formed by baking at 600 to 800 ° C.
  • the drive evaluation was performed using the sample thus prepared. As drive evaluation, high-speed response evaluation and durability evaluation were performed. First, a lead wire is connected to the external electrode 11, a 3 kV / mm DC electric field is applied to the positive electrode and the negative external electrode via the lead wire for 15 minutes to perform polarization treatment, and a piezoelectric actuator using a laminated piezoelectric element Was made. A DC voltage of 170 V was applied to the obtained piezoelectric actuator, and the amount of displacement in the initial state was measured.
  • an AC voltage of 0 V to +170 V was applied to each piezoelectric actuator at a room temperature with the frequency gradually increased from 150 Hz.
  • an AC voltage of 0 V to +170 V was applied to each piezoelectric actuator at a frequency of 150 Hz at room temperature, and a test was continuously performed up to 1 ⁇ 10 9 times.
  • the piezoelectric actuator of sample number 1 emitted a beat sound when the frequency exceeded 1 kHz.
  • the multilayered piezoelectric element of sample number 1 does not have the first portion of each internal electrode, and the cross-sectional area of each internal electrode is constant, so that the piezoelectric body located near the end of the element This is because the deformation of is large. This is probably because the high-speed response was hindered by the large deformation of the piezoelectric body located near the end of the element, and as a result, the frequency of the applied AC voltage could not be followed.
  • the pulse waveform of sample number 1 was confirmed using an oscilloscope “DL1640L” manufactured by Yokogawa Electric Corporation. As a result, harmonic noise was found at a location corresponding to an integer multiple of the drive frequency. confirmed.
  • the multilayer piezoelectric element was cut, and the first internal electrode closest to the end in the stacking direction was observed using a microscope.
  • a part of the portion located between the non-formed portions 7c of the internal electrode on the cut surface was broken. As described above, it is confirmed that, when a part of the internal electrode breaks, stress is absorbed, cracking of the piezoelectric body is suppressed, and peeling of the internal electrode from the piezoelectric body is suppressed. It was done.

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Disclosed is a laminated piezoelectric element in which a reduction in the amount of displacement resulting from a long-time drive is improved. The laminated piezoelectric element comprises a laminate including a plurality of piezoelectric bodies and a plurality of internal electrodes that are laminated alternately, a first external electrode formed on the first side surface of the laminate, and a second external electrode formed on the second side surface of the same, wherein the internal electrodes insulated and separated at the first and second side surfaces are arranged alternately so that the plurality of internal electrodes are connected alternately with any one of the first and second external electrodes, the laminate is sectioned into a facing portion where adjoining internal electrodes face each other in the direction of lamination and a non-facing portion provided along the first and second side faces while facing every other internal electrode, and at least one of the plurality of internal electrodes has, in that internal electrode, a plurality of internal-electrode-not-formed parts along the boundary of the facing portion and the non-facing portion.

Description

積層型圧電素子、これを備えた噴射装置及び燃料噴射システムMultilayer piezoelectric element, injection device including the same, and fuel injection system
 本発明は、例えば、駆動素子(圧電アクチュエータ)、センサ素子及び回路素子に用いられる積層型圧電素子に関するものである。駆動素子としては、例えば、自動車エンジンの燃料噴射装置、インクジェットのような液体噴射装置、光学装置のような精密位置決め装置及び振動防止装置が挙げられる。センサ素子としては、例えば、燃焼圧センサ、ノックセンサ、加速度センサ、荷重センサ、超音波センサ、感圧センサ及びヨーレートセンサが挙げられる。また、回路素子としては、例えば、圧電ジャイロ、圧電スイッチ、圧電トランス及び圧電ブレーカーが挙げられる。 The present invention relates to a laminated piezoelectric element used for, for example, a driving element (piezoelectric actuator), a sensor element, and a circuit element. Examples of the driving element include a fuel injection device for an automobile engine, a liquid injection device such as an ink jet, a precision positioning device such as an optical device, and a vibration prevention device. Examples of the sensor element include a combustion pressure sensor, a knock sensor, an acceleration sensor, a load sensor, an ultrasonic sensor, a pressure sensor, and a yaw rate sensor. Examples of the circuit element include a piezoelectric gyro, a piezoelectric switch, a piezoelectric transformer, and a piezoelectric breaker.
 従来から、積層型圧電素子は、小型化が進められると同時に大きな圧力下において大きな変位量を確保できることが求められている。そのため、より高い電圧が印加され、しかも長時間連続駆動させる過酷な条件化で使用できることが要求されている。 Conventionally, multilayer piezoelectric elements have been required to ensure a large amount of displacement under a large pressure at the same time as miniaturization proceeds. For this reason, it is required that a higher voltage is applied and that the device can be used under severe conditions in which continuous driving is performed for a long time.
 高電圧又は高圧力の条件で長時間連続駆動させる場合には、内部電極及び圧電体に応力がかかる。特に、圧電体における、積層方向に隣り合う2つの内部電極に挟まれた対向部分と、この対向部分以外の非対向部分との境界付近には大きな応力がかかる。そのため、上記の境界付近にかかる応力を分散させることが求められている。そこで、特許文献1に開示されているように、非対向部分に応力緩和層が設けられた構造の素子が提案されている。
特開2001-267646号公報
When driving continuously for a long time under a high voltage or high pressure condition, stress is applied to the internal electrode and the piezoelectric body. In particular, a large stress is applied in the vicinity of the boundary between a facing portion sandwiched between two internal electrodes adjacent in the stacking direction and a non-facing portion other than the facing portion in the piezoelectric body. Therefore, it is required to disperse the stress in the vicinity of the boundary. Therefore, as disclosed in Patent Document 1, an element having a structure in which a stress relaxation layer is provided in a non-opposing portion has been proposed.
JP 2001-267646 A
 しかしながら、特許文献1に記載の応力緩和層を設けた場合、応力緩和層に発生したクラックが、圧電体を貫通して隣接する内部電極又は外部電極にまで伸展することがある。そのため、積層方向に隣り合う内部電極間で電気的な短絡が生じて、変位量が低下する可能性がある。 However, when the stress relaxation layer described in Patent Document 1 is provided, a crack generated in the stress relaxation layer may extend to the adjacent internal electrode or external electrode through the piezoelectric body. Therefore, an electrical short circuit may occur between internal electrodes adjacent in the stacking direction, and the amount of displacement may be reduced.
 本発明は、上記課題に鑑みてなされたものであり、長時間の駆動による変位量の低下を改善した積層型圧電素子を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a laminated piezoelectric element in which a decrease in displacement due to long-time driving is improved.
 本発明の積層型圧電素子は、複数の圧電体と複数の内部電極とを有してなりその圧電体と内部電極とが交互に積層された積層体と、前記積層体の第1の側面に形成された第1の外部電極と、前記積層体の第2の側面に形成された第2の外部電極とを備え、
 前記複数の内部電極が交互に前記第1および第2の外部電極のいずれか一方に接続されるように、前記第1および第2の側面においてそれぞれ前記複数の内部電極は前記第1の外部電極または前記第2の外部電極に接続された前記内部電極と前記第1の側面または前記第2の側面から離れて形成されることにより絶縁分離された前記内部電極とが交互に配置されて、
 前記積層体が、隣り合う前記内部電極が積層方向に対向する対向部分と、前記内部電極の1つ置きに対向してなり前記第1および前記第2の側面に沿って設けられた非対向部分とに区分された積層型圧電素子であって、
 前記複数の内部電極のうち少なくとも一つは、当該内部電極の中に設けられた複数の内部電極非形成部位を前記対向部分と前記非対向部分との境界に沿って有することを特徴とする。
The multilayer piezoelectric element according to the present invention includes a multilayer body having a plurality of piezoelectric bodies and a plurality of internal electrodes, the piezoelectric bodies and the internal electrodes being alternately stacked, and a first side surface of the multilayer body. A first external electrode formed, and a second external electrode formed on a second side surface of the laminate,
The plurality of internal electrodes on the first and second side surfaces are respectively connected to the first external electrodes such that the plurality of internal electrodes are alternately connected to one of the first and second external electrodes. Alternatively, the internal electrodes connected to the second external electrodes and the internal electrodes that are insulated and separated by being formed away from the first side surface or the second side surface are alternately arranged.
The stacked body includes a facing portion where the adjacent internal electrodes face each other in the stacking direction, and a non-facing portion provided along the first and second side surfaces, facing each other of the internal electrodes. A laminated piezoelectric element divided into
At least one of the plurality of internal electrodes has a plurality of internal electrode non-formation sites provided in the internal electrode along a boundary between the facing portion and the non-facing portion.
 本発明の積層型圧電素子によれば、前記複数の内部電極のうち少なくとも一つは、それぞれ周囲が当該内部電極によって囲まれた複数の内部電極非形成部位を前記対向部分と前記非対向部分との境界に沿って有している。 According to the multi-layer piezoelectric element of the present invention, at least one of the plurality of internal electrodes includes a plurality of internal electrode non-formation sites surrounded by the internal electrode, and the opposing portion and the non-opposing portion. It has along the boundary.
 そのため、対向部分のうち、非対向部分との境界近傍での変位が抑制されるので、対向部分と非対向部分との境界付近にかかる応力の集中を抑制することができる。このように、内部電極非形成部位を、内部電極によって囲まれた形状である格子形状等とすることにより応力を分散させているので、特許文献1に記載のように圧電体に応力緩和層を設けた場合と比較して、圧電体にクラックが生じる可能性を低減することができる。 Therefore, since the displacement in the vicinity of the boundary between the facing portion and the non-facing portion is suppressed, stress concentration near the boundary between the facing portion and the non-facing portion can be suppressed. As described above, since the stress is dispersed by making the internal electrode non-formation site a lattice shape or the like surrounded by the internal electrodes, a stress relaxation layer is formed on the piezoelectric body as described in Patent Document 1. Compared with the case where it provides, the possibility that a crack will arise in a piezoelectric material can be reduced.
本発明の第1の実施形態にかかる積層型圧電素子を示す斜視図である。1 is a perspective view showing a multilayer piezoelectric element according to a first embodiment of the present invention. 図1Aの積層型圧電素子おける一部の分解斜視図である。FIG. 1B is a partial exploded perspective view of the multilayer piezoelectric element of FIG. 1A. 図1A,1Bに示す積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element shown to FIG. 1A and 1B, and is sectional drawing which shows the cross section of the internal electrode which has an internal electrode non-formation site | part. 図1A,1Bに示す積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する図2Aとは異なる内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element shown to FIG. 1A and 1B, and is sectional drawing which shows the cross section of the internal electrode different from FIG. 2A which has an internal electrode non-formation site | part. 図1A,1Bに示す積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有していない内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element shown to FIG. 1A and 1B, and is sectional drawing which shows the cross section of the internal electrode which does not have an internal electrode non-formation site | part. 第1の実施形態の変形例に係る積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element which concerns on the modification of 1st Embodiment, and is sectional drawing which shows the cross section of the internal electrode which has an internal electrode non-formation site | part. 第1の実施形態の変形例に係る積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する図3Aとは異なる内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element which concerns on the modification of 1st Embodiment, and is sectional drawing which shows the cross section of the internal electrode different from FIG. 3A which has an internal electrode non-formation site | part. 第1の実施形態の変形例に係る積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有していない内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element which concerns on the modification of 1st Embodiment, and is sectional drawing which shows the cross section of the internal electrode which does not have an internal electrode non-formation site | part. 本発明に係る第2の実施形態の積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element of 2nd Embodiment which concerns on this invention, and is sectional drawing which shows the cross section of the internal electrode which has an internal electrode non-formation site | part. 第2の実施形態の積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する図4Aとは異なる内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element of 2nd Embodiment, and is sectional drawing which shows the cross section of the internal electrode different from FIG. 4A which has an internal electrode non-formation site | part. 第2の実施形態の積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有していない内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element of 2nd Embodiment, and is sectional drawing which shows the cross section of the internal electrode which does not have an internal electrode non-formation site | part. 第2の実施形態の変形例に係る積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element which concerns on the modification of 2nd Embodiment, and is sectional drawing which shows the cross section of the internal electrode which has an internal electrode non-formation site | part. 第2の実施形態の変形例に係る積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する図5Aとは異なる内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element which concerns on the modification of 2nd Embodiment, and is sectional drawing which shows the cross section of the internal electrode different from FIG. 5A which has an internal electrode non-formation site | part. 第2の実施形態の変形例に係る積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有していない内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element which concerns on the modification of 2nd Embodiment, and is sectional drawing which shows the cross section of the internal electrode which does not have an internal electrode non-formation site | part. 本発明に係る第3の実施形態の積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element of the 3rd Embodiment concerning this invention, and is sectional drawing which shows the cross section of the internal electrode which has an internal electrode non-formation site | part. 第3の実施形態の積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する図6Aとは異なる内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element of 3rd Embodiment, and is sectional drawing which shows the cross section of the internal electrode different from FIG. 6A which has an internal electrode non-formation site | part. 第3の実施形態の積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有していない内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element of 3rd Embodiment, and is sectional drawing which shows the cross section of the internal electrode which does not have an internal electrode non-formation site | part. 本発明に係る第4の実施形態の積層型圧電素子を示す斜視図である。It is a perspective view which shows the lamination type piezoelectric element of the 4th Embodiment concerning this invention. 本発明に係る第5の実施形態の積層型圧電素子を示す斜視図である。It is a perspective view which shows the lamination type piezoelectric element of the 5th Embodiment concerning this invention. 図8AのA-A断面図である。It is AA sectional drawing of FIG. 8A. 図8AのB-B断面図である。FIG. 8B is a sectional view taken along line BB in FIG. 8A. 本発明に係る第6の実施形態の積層型圧電素子を示す斜視図である。It is a perspective view which shows the lamination type piezoelectric element of the 6th Embodiment concerning this invention. 図9に示す積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element shown in FIG. 9, and is sectional drawing which shows the cross section of the internal electrode which has an internal electrode non-formation site | part. 図9に示す積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する図10Aとは異なる内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element shown in FIG. 9, and is sectional drawing which shows the cross section of the internal electrode different from FIG. 10A which has an internal electrode non-formation site | part. 図9に示す積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有していない内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element shown in FIG. 9, and is sectional drawing which shows the cross section of the internal electrode which does not have an internal electrode non-formation site | part. 本発明に係る第7の実施形態の積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element of the 7th Embodiment concerning this invention, and is sectional drawing which shows the cross section of the internal electrode which has an internal electrode non-formation site | part. 第7の実施形態の積層型圧電素子の積層方向に直交する断面図であり、内部電極非形成部位を有する図11Aとは異なる内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element of 7th Embodiment, and is sectional drawing which shows the cross section of the internal electrode different from FIG. 11A which has an internal electrode non-formation site | part. 第7の実施形態の積層型圧電素子の積層方向に直交する断面図であり、第1の部位及び第2の部位を有していない内部電極の断面を示す断面図である。It is sectional drawing orthogonal to the lamination direction of the lamination type piezoelectric element of 7th Embodiment, and is sectional drawing which shows the cross section of the internal electrode which does not have a 1st site | part and a 2nd site | part. 本発明の一実施形態にかかる噴射装置を示す概略断面図である。It is a schematic sectional drawing which shows the injection apparatus concerning one Embodiment of this invention. 本発明の一実施形態にかかる燃料噴射システムを示す概略ブロック図である。1 is a schematic block diagram showing a fuel injection system according to an embodiment of the present invention.
符号の説明Explanation of symbols
1・・・積層型圧電素子
3・・・圧電体
5、9・・・内部電極
7・・・積層体
7a・・・対向部分
7b・・・非対向部分
7c・・・内部電極非形成部位
7d・・・対向部分と非対向部分との境界
9a、9c・・・内部電極非形成部位を有する第1の部位
9b、9d・・・第2の部位
11・・・外部電極
11a・・・陽極側の外部電極
11b・・・陰極側の外部電極
21・・・噴射装置
23・・・噴射孔
25・・・収納容器
27・・・ニードルバルブ
29・・・流体通路
31・・・シリンダ
33・・・ピストン
35・・・皿バネ
41・・・燃料噴射システム
43・・・コモンレール
45・・・圧力ポンプ
47・・・噴射制御ユニット
49・・・燃料タンク
70・・・絶縁分離部
DESCRIPTION OF SYMBOLS 1 ... Laminated piezoelectric element 3 ... Piezoelectric body 5, 9 ... Internal electrode 7 ... Laminated body 7a ... Opposing part 7b ... Non-opposing part 7c ... Internal electrode non-formation part 7d: Boundaries 9a, 9c between the facing portion and the non-facing portion, first portions 9b, 9d, second portions 11, external electrodes 11a, having internal electrode non-forming portions. External electrode 11b on the anode side ... External electrode 21 on the cathode side ... Injection device 23 ... Injection hole 25 ... Storage container 27 ... Needle valve 29 ... Fluid passage 31 ... Cylinder 33 ... Piston 35 ... Belleville spring 41 ... Fuel injection system 43 ... Common rail 45 ... Pressure pump 47 ... Injection control unit 49 ... Fuel tank 70 ... Insulation separator
 以下、本発明の積層型圧電素子について図面を用いて詳細に説明する。
 <第1の実施形態>
図1Aは、本発明の第1の実施形態にかかる積層型圧電素子を示す斜視図である。図1Bは、図1Aに示す実施形態にかかる積層型圧電素子の一部の分解斜視図である。図2A、図2B及び図2Cは、それぞれ図1に示す実施形態における積層方向に直交する方向の、積層方向に隣り合う内部電極をそれぞれ含む断面図である。
Hereinafter, the multilayer piezoelectric element of the present invention will be described in detail with reference to the drawings.
<First Embodiment>
FIG. 1A is a perspective view showing a multilayer piezoelectric element according to the first embodiment of the present invention. FIG. 1B is an exploded perspective view of a part of the multilayer piezoelectric element according to the embodiment shown in FIG. 1A. 2A, 2B, and 2C are cross-sectional views each including internal electrodes adjacent to each other in the direction perpendicular to the stacking direction in the embodiment shown in FIG.
 図1A~図2Cに示すように、本実施形態の積層型圧電素子1(以下、単に素子1ともいう)は、複数の圧電体3と複数の内部電極5とを有し、その圧電体3と内部電極5とが交互に積層されてなる積層体7を備えている。 As shown in FIGS. 1A to 2C, the multilayer piezoelectric element 1 (hereinafter also simply referred to as element 1) of the present embodiment has a plurality of piezoelectric bodies 3 and a plurality of internal electrodes 5, and the piezoelectric body 3 And a laminated body 7 in which the internal electrodes 5 are alternately laminated.
 また、積層型圧電素子1は2つの外部電極11を備え、例えば、一方(陰極側)の外部電極11が積層体7の一側面である第1側面に形成され、他方(陽極側)の外部電極11が第1側面に対向する第2側面に形成される(図1A)。積層体7において、負極となる内部電極5,9は、第1側面に達するように形成されて第1側面において外部電極11に接続され、第2側面からは離れて形成されて陽極側の外部電極11とは電気的に分離される。これに対して、正極となる内部電極5,9は、第2側面に達するように形成されて第2側面において外部電極11に接続され、第1側面からは離れて形成されて陰極側の外部電極11とは電気的に分離される。そして、積層体7において、負極となる内部電極5,9と正極となる内部電極5,9とは交互に配置されて、各圧電体3が負極と正極の内部電極5,9に挟まれた構造が実現される。尚、本明細書において、内部電極5,9が端部(第1側面又は第2側面)から離れて形成されることにより形成された圧電体3上の電極が形成されていない部分を絶縁分離部70と呼ぶ。 The multilayer piezoelectric element 1 includes two external electrodes 11. For example, one (cathode side) external electrode 11 is formed on the first side surface, which is one side surface of the multilayer body 7, and the other (anode side) external electrode. The electrode 11 is formed on the second side surface facing the first side surface (FIG. 1A). In the laminated body 7, the internal electrodes 5 and 9 serving as the negative electrode are formed so as to reach the first side surface, are connected to the external electrode 11 on the first side surface, are formed apart from the second side surface, and are external on the anode side. It is electrically separated from the electrode 11. On the other hand, the internal electrodes 5 and 9 serving as positive electrodes are formed so as to reach the second side surface, are connected to the external electrode 11 on the second side surface, are formed away from the first side surface, and are external to the cathode side. It is electrically separated from the electrode 11. In the laminate 7, the internal electrodes 5, 9 serving as the negative electrode and the internal electrodes 5, 9 serving as the positive electrode are alternately arranged, and each piezoelectric body 3 is sandwiched between the internal electrodes 5, 9 of the negative electrode and the positive electrode. A structure is realized. In the present specification, the portions where the electrodes are not formed on the piezoelectric body 3 formed by forming the internal electrodes 5 and 9 away from the end portions (first side surface or second side surface) are insulated and separated. This is referred to as part 70.
 以上のように構成された積層型圧電素子1において、圧電体3がそれぞれ正負の内部電極5,9に挟まれてその挟まれた部分に電圧が印加される活性領域が第1側面及び第2側面から絶縁分離部70の幅だけ離れて形成され、絶縁分離部70を間に挟んで同極の内部電極が対向して圧電体3に電圧が印加されない不活性領域が第1側面及び第2側面に沿って形成される。このようにして、積層体7は、積層方向に隣り合う正負一対の内部電極5が積層方向に対向する活性領域とそれ以外の不活性領域とに区分される。尚、本明細書では、対向する正負の内部電極5,9の間に圧電体3が挟まれてなる活性領域を対向部分7aと呼び、正負の内部電極5,9が対向していない不活性領域を非対向部分7bと呼ぶ。 In the multilayer piezoelectric element 1 configured as described above, the active region where the piezoelectric body 3 is sandwiched between the positive and negative internal electrodes 5 and 9 and voltage is applied to the sandwiched portion is the first side surface and the second side region. An inactive region that is formed away from the side surface by the width of the insulating separation portion 70 and that has the same polarity of the internal electrodes facing each other with the insulating separation portion 70 interposed therebetween is an inactive region where no voltage is applied to the piezoelectric body 3. It is formed along the side. In this manner, the stacked body 7 is divided into an active region and a non-active region other than the pair of positive and negative internal electrodes 5 adjacent to each other in the stacking direction. In the present specification, an active region in which the piezoelectric body 3 is sandwiched between the positive and negative internal electrodes 5 and 9 facing each other is referred to as a facing portion 7a, and the inactive where the positive and negative internal electrodes 5 and 9 are not facing each other. The region is referred to as a non-facing portion 7b.
 ここで、特に、本発明では、複数の内部電極5のうち少なくとも一つの内部電極9は、それぞれ周囲がその内部電極9によって囲まれた複数の開口部(内部電極非形成部位7cという。)を対向部分7aと非対向部分7bとの境界7dに沿って有していることを特徴とする。
 以下の説明では、内部電極9において、複数の内部電極非形成部位7c(以下、非形成部位7cともいう)を有して対向部分7aと非対向部分7bとの境界7dを跨ぐように位置する部分を第1の部位9aと称し、それ以外の第2の部位9bと称して説明する。
 ここで、第1の部位9aは、複数の非形成部位7cを有する領域であって、第2の部位9bとの境界については、下記のように定義される。
 外部電極11に電圧が印加されると、内部電極9に伝達される電界は、内部電極非形成部位7cにより、一度、電界の強度分布は乱されるが、内部電極非形成部位7c通過後に電界強度がひとつの線状にそろう現象が発生する。第1の部位9aと第2の部位9bとの境界は、この電界強度がひとつにそろう線の位置と定義される。具体的には、内部電極非形成部位7cを対向部分7aと非対向部分7bとの境界に沿って設けることで、概ね、対向部分7aと非対向部分7bとの境界7dから、絶縁分離部70の距離だけ外部電極11から離れた位置になる。
Here, in particular, in the present invention, at least one internal electrode 9 among the plurality of internal electrodes 5 has a plurality of openings (referred to as internal electrode non-formation sites 7 c) each surrounded by the internal electrode 9. It has along the boundary 7d of the opposing part 7a and the non-opposing part 7b, It is characterized by the above-mentioned.
In the following description, the internal electrode 9 has a plurality of internal electrode non-formed portions 7c (hereinafter also referred to as non-formed portions 7c) and is positioned so as to straddle the boundary 7d between the facing portion 7a and the non-facing portion 7b. The portion will be referred to as the first portion 9a and will be described as the other second portion 9b.
Here, the 1st site | part 9a is an area | region which has several non-formation site | parts 7c, Comprising: The boundary with the 2nd site | part 9b is defined as follows.
When a voltage is applied to the external electrode 11, the electric field transmitted to the internal electrode 9 is once disturbed by the internal electrode non-formation site 7c, but the electric field intensity distribution is once disturbed. A phenomenon occurs in which the intensity is aligned in a single line. The boundary between the first part 9a and the second part 9b is defined as the position of the line where the electric field strengths are aligned. Specifically, by providing the internal electrode non-formation site 7c along the boundary between the facing portion 7a and the non-facing portion 7b, the insulating separation portion 70 is generally separated from the boundary 7d between the facing portion 7a and the non-facing portion 7b. It is a position away from the external electrode 11 by a distance of.
 そして、積層方向に直交する断面であって、この内部電極5を含む断面において、第1の部位9aにおける内部電極5の占める比率が、第2の部位9bにおける内部電極5の占める比率よりも小さいことが好ましい。この場合、積層型圧電素子1は駆動時に素子1自体が連続的に寸法変化を起すが、全ての圧電体3が内部電極5を介して密着して駆動することにより、素子1は一体として大きく駆動変形する。そのため、素子1の端部には相対的に大きな応力がかかる。しかしながら、第1の部位9aの非形成部位7cが上記の形態であることにより、素子1の端面に近い端部における変位量を小さくすることができる。その結果、素子1の端部にかかる応力を低減することができ、素子1の耐久性を向上させることができる。 In the cross section perpendicular to the stacking direction and including the internal electrode 5, the ratio of the internal electrode 5 in the first part 9a is smaller than the ratio of the internal electrode 5 in the second part 9b. It is preferable. In this case, the multilayer piezoelectric element 1 continuously undergoes dimensional changes when driven, but the piezoelectric element 3 is driven in close contact with the internal electrode 5 so that the element 1 is large as a whole. Drive deformation. Therefore, a relatively large stress is applied to the end portion of the element 1. However, since the non-formation part 7c of the first part 9a is in the above-described form, the amount of displacement at the end portion close to the end face of the element 1 can be reduced. As a result, the stress applied to the end portion of the element 1 can be reduced, and the durability of the element 1 can be improved.
 このように、本実施形態では、複数の内部電極5,9のうち少なくとも一つの内部電極9は、それぞれ周囲が内部電極9によって囲まれた複数の内部電極非形成部位7cを対向部分7aと非対向部分7bとの境界7dに沿って有しているので、対向部分7aのうち、非対向部分7bとの境界7d近傍での駆動力を小さくできる。すなわち、対向部分7aと非対向部分7bとの境界7dに沿って、対向部分7aの中または対向部分7aと非対向部分7bとに跨って対向部分7aの中央部に比較して駆動力の小さい部分ができ、非対向部分7bに向かって段階的に駆動力を小さくできる。これにより、この境界7dにおける応力の集中を抑制でき、高い耐久性が実現できる。 Thus, in this embodiment, at least one of the plurality of internal electrodes 5 and 9 has a plurality of internal electrode non-formation sites 7c each surrounded by the internal electrode 9 as opposed to the opposing portion 7a. Since it has along the boundary 7d with the opposing part 7b, the driving force in the boundary 7d vicinity with the non-opposing part 7b can be made small among the opposing parts 7a. That is, the driving force is small as compared with the central portion of the facing portion 7a along the boundary 7d between the facing portion 7a and the non-facing portion 7b, in the facing portion 7a or across the facing portion 7a and the non-facing portion 7b. A portion is formed, and the driving force can be reduced stepwise toward the non-opposing portion 7b. As a result, stress concentration at the boundary 7d can be suppressed, and high durability can be realized.
 また、図2に示すように、内部電極9のうち対向部分7aに位置して素子1の駆動に寄与する部分と、外部電極11と接続する部分との間に第1の部位9aが位置している。上述したように、第1の部位9aにおける内部電極5の占める比率は、第2の部位9bにおける内部電極5の占める比率よりも小さくなっていることが好ましい。したがって、この複数の内部電極非形成部位7cが形成された部分では、電流が流れる際の電流路が狭くなるので、過電流が流れた際の電流密度が他の部分に比較して高くなり、破損が生じやすくなる。すなわち、外部電極11から内部電極9のうち素子1の駆動に寄与する部分へと通電する箇所に、第1の部位9aが位置していると、素子1に非常に強い電圧が印加された場合、第1の部位9aの一部が破断する。これにより、内部電極9のうち素子1の駆動に寄与する部分に過度の電圧が印加されることが抑制される。結果として、圧電体3が過度に変位して、クラックが生じてしまうことを抑制できる。
 本発明では、過度の電圧が印加された場合の圧電体3の保護を考慮して、例えば、一定以上の電圧が印加された場合には隣接する内部電極非形成部位7c間の電極部分が破損するように、内部電極非形成部位7c間の間隔を設定することもできる。
Further, as shown in FIG. 2, the first portion 9 a is located between the portion of the internal electrode 9 that is located in the facing portion 7 a and contributes to driving the element 1 and the portion that is connected to the external electrode 11. ing. As described above, it is preferable that the ratio of the internal electrode 5 in the first part 9a is smaller than the ratio of the internal electrode 5 in the second part 9b. Therefore, in the portion where the plurality of internal electrode non-formation sites 7c are formed, the current path when the current flows becomes narrow, so the current density when the overcurrent flows is higher than the other portions, Damage is likely to occur. That is, when the first portion 9a is located at a location where current is passed from the external electrode 11 to the portion of the internal electrode 9 that contributes to driving of the device 1, a very strong voltage is applied to the device 1. A part of the first portion 9a is broken. Thereby, it is suppressed that an excessive voltage is applied to the portion of the internal electrode 9 that contributes to driving of the element 1. As a result, it is possible to suppress the piezoelectric body 3 from being displaced excessively and causing cracks.
In the present invention, in consideration of protection of the piezoelectric body 3 when an excessive voltage is applied, for example, when a voltage higher than a certain level is applied, the electrode portion between adjacent internal electrode non-formation sites 7c is damaged. As described above, the interval between the internal electrode non-formation sites 7c can also be set.
 また、内部電極9のうち非形成部位7cの間に位置する部分が破断して、内部電極9のうち素子1の駆動に寄与する部分に電圧が印加されなくなった場合であっても、この破断した内部電極9が同極の外部電極に接続された内部電極5に挟まれる形態となる。そのため、この内部電極9と積層方向に隣接する2つの圧電体3の変位量が抑制される。結果として、これらの圧電体3にクラックを生じさせるような応力が発生することを抑制できる。 Further, even when the portion of the internal electrode 9 located between the non-formed portions 7c is broken and no voltage is applied to the portion of the internal electrode 9 that contributes to driving of the element 1, this breakage occurs. The internal electrode 9 is sandwiched between the internal electrodes 5 connected to the external electrodes of the same polarity. Therefore, the displacement amount of the two piezoelectric bodies 3 adjacent to the internal electrode 9 in the stacking direction is suppressed. As a result, it is possible to suppress the generation of stress that causes cracks in these piezoelectric bodies 3.
 特に、図2に示すように、第1の部位9aが、上記素子1の駆動に寄与する部分と、外部電極11と接続する部分との間に位置して、この第1の部位9aにのみ非形成部位7cが配置されることにより、第1の部位9aに応力がかかりやすいこととなる。そのため、内部電極9の第1の部位9aが破断しやすい部位と予め分かっているので、長期間にわたる素子1の駆動状態が予測しやすい。結果として、素子1の変位量に対する信頼性を向上させることができる。 In particular, as shown in FIG. 2, the first portion 9a is located between the portion contributing to driving of the element 1 and the portion connected to the external electrode 11, and only in the first portion 9a. By disposing the non-formed part 7c, stress is easily applied to the first part 9a. Therefore, since it is known in advance that the first portion 9a of the internal electrode 9 is likely to break, it is easy to predict the driving state of the element 1 over a long period of time. As a result, the reliability with respect to the displacement amount of the element 1 can be improved.
 また、本発明では、図1B及び図2A~図2Bに示すように、複数の内部電極非形成部位7cが対向部分9bと非対向部分9aとの境界7dと平行な方向に整列されていることが好ましく、さらにその整列された複数の内部電極非形成部位7cが等間隔で配置されていることがより好ましい。尚、本明細書において、複数の内部電極非形成部位7cが一方向に等間隔で配置されていることを、第1の部位9aが内部電極非形成部位7cを格子目とする格子形状であるという。
 このように、第1の部位9aが、内部電極非形成部位7cを格子目とする格子形状であると、境界7d付近にかかる応力のばらつきを小さくできる。そのため、対向部分7aと非対向部分7bとの境界7d近傍の耐久性を高めることができる。なお、図1及び図2に示すように、本実施形態において格子形状は、格子目が一列に並んでいてもよいし、複数の列で並んでいてもよい。
Further, in the present invention, as shown in FIGS. 1B and 2A to 2B, the plurality of internal electrode non-formed portions 7c are aligned in a direction parallel to the boundary 7d between the facing portion 9b and the non-facing portion 9a. It is more preferable that the plurality of aligned internal electrode non-formed sites 7c are arranged at equal intervals. In this specification, the plurality of internal electrode non-formation sites 7c are arranged at equal intervals in one direction, and the first site 9a has a lattice shape with the internal electrode non-formation sites 7c as lattices. That's it.
As described above, when the first portion 9a has a lattice shape with the internal electrode non-forming portion 7c as a lattice, variation in stress applied in the vicinity of the boundary 7d can be reduced. Therefore, the durability in the vicinity of the boundary 7d between the facing portion 7a and the non-facing portion 7b can be enhanced. As shown in FIGS. 1 and 2, in the present embodiment, the lattice shape of the lattice shape may be arranged in a row or in a plurality of rows.
<第1の実施形態の変形例>
 図3A~図3Cはそれぞれ第1の実施形態の変形例に係る積層型圧電素子1の積層方向に直交する断面図であり、内部電極5,9を含む断面を図示している。なお、図3Bに示す内部電極9を基準としたとき、図3Aは、図3Bに示す内部電極9と積層体7の一方の端面側に隣り合う内部電極9を示している。また、図3Cは、図3Bに示す内部電極9と積層体7の他方の端面側に隣り合う内部電極5を示している。
 ここで、本明細書において、積層体7の端面とは内部電極5,9と圧電体3との積層方向に直交する外面をいい、図1Aにおける上面と下面をいう。
<Modification of First Embodiment>
3A to 3C are cross-sectional views orthogonal to the stacking direction of the multilayer piezoelectric element 1 according to the modification of the first embodiment, and illustrate cross sections including the internal electrodes 5 and 9. When the internal electrode 9 shown in FIG. 3B is used as a reference, FIG. 3A shows the internal electrode 9 shown in FIG. 3B and the internal electrode 9 adjacent to one end face side of the laminate 7. FIG. 3C shows the internal electrode 9 shown in FIG. 3B and the internal electrode 5 adjacent to the other end face side of the stacked body 7.
Here, in this specification, the end surface of the laminated body 7 refers to the outer surface orthogonal to the lamination direction of the internal electrodes 5 and 9 and the piezoelectric body 3, and refers to the upper surface and the lower surface in FIG. 1A.
 本変形例の積層型圧電素子1は、内部電極非形成部位7cが円形である点で、内部電極非形成部位7cが矩形である第1の実施形態の素子1とは異なっている他は、第1の実施形態の素子1と同様に構成される。
 このように、本発明でいう格子形状とは、図3に示すように、格子目が円形の形態も含まれ、図2に示すような格子目が四角形の形態に限られるものではない。また、積層体7の対向部分7aと非対向部分7bとの境界付近にかかる応力を緩和させることができればよいことから、内部電極9の第1の部位9aにおける格子目が、略四角形であって角部が曲線の形状であることも有効である。
The laminated piezoelectric element 1 of this modification is different from the element 1 of the first embodiment in which the internal electrode non-forming part 7c is circular, except that the internal electrode non-forming part 7c is rectangular. The configuration is the same as the element 1 of the first embodiment.
As described above, the lattice shape in the present invention includes a circular shape as shown in FIG. 3, and the lattice shape as shown in FIG. 2 is not limited to a square shape. In addition, since the stress applied to the vicinity of the boundary between the facing portion 7a and the non-facing portion 7b of the multilayer body 7 only needs to be relieved, the lattice in the first portion 9a of the internal electrode 9 is substantially square. It is also effective that the corners have a curved shape.
 また、本発明では、第1の実施形態及びその変形例で示しているように、内部電極非形成部位7cが、内部電極9を平面視したときに対向部分7aと非対向部分7bとの境界7d上に位置することが好ましい。すなわち、内部電極非形成部位7cが対向部分7aと非対向部分7bとに跨って形成されていることが好ましい。この場合、対向部分7aのうち、最も応力の集中しやすい、対向部分7aと非対向部分7bとの境界7dでの駆動力を小さくすることができるので、素子1の耐久性をより高めることができる。 In the present invention, as shown in the first embodiment and its modification, the internal electrode non-forming portion 7c is a boundary between the facing portion 7a and the non-facing portion 7b when the internal electrode 9 is viewed in plan view. 7d is preferred. That is, it is preferable that the internal electrode non-formation site 7c is formed across the facing portion 7a and the non-facing portion 7b. In this case, it is possible to reduce the driving force at the boundary 7d between the facing portion 7a and the non-facing portion 7b where the stress is most likely to concentrate among the facing portions 7a, so that the durability of the element 1 can be further increased. it can.
 また、第1の実施形態及びその変形例では、複数の内部電極9が、第1の部位9aを有している形態を示したが、本発明では、少なくとも1つの内部分極9が第1の部位9aを有していればよい。しかしながら、第1の実施形態及びその変形例で示すように、2つのまたはそれ以上の複数の内部電極9が、第1の部位9aを有していることが好ましい。複数の内部電極9が第1の部位9aを有していることにより、より広範囲に応力を分散させることができるからである。これにより、素子1の耐久性をより高めることができる。 Further, in the first embodiment and the modification thereof, the configuration in which the plurality of internal electrodes 9 have the first portion 9a is shown. However, in the present invention, at least one internal polarization 9 is the first What is necessary is just to have the site | part 9a. However, as shown in the first embodiment and its modifications, it is preferable that two or more internal electrodes 9 have a first portion 9a. This is because the stress can be dispersed in a wider range by the plurality of internal electrodes 9 having the first portion 9a. Thereby, the durability of the element 1 can be further increased.
 さらに、陽極側の外部電極11aと接続された内部電極5,9及び陰極側の外部電極11bと接続された内部電極5,9のそれぞれ少なくとも1つの内部電極9が第1の部位9aを有していることがより好ましい。これにより、応力分布の偏りを小さくすることができるので、素子1の駆動する方向を安定させることができる。 Further, at least one of the internal electrodes 5, 9 connected to the anode-side external electrode 11a and the internal electrodes 5, 9 connected to the cathode-side external electrode 11b has a first portion 9a. More preferably. Thereby, since the bias of the stress distribution can be reduced, the driving direction of the element 1 can be stabilized.
 また、積層方向に隣り合う一対の内部電極5,9が、それぞれ第1の部位9aを有していることがより好ましい。これらの内部電極5,9に挟まれる圧電体3の変位量をより小さくすることができるので、この圧電体3における応力を吸収する効果をより高めることができるからである。 Further, it is more preferable that the pair of internal electrodes 5 and 9 adjacent in the stacking direction each have the first portion 9a. This is because the amount of displacement of the piezoelectric body 3 sandwiched between the internal electrodes 5 and 9 can be further reduced, and the effect of absorbing stress in the piezoelectric body 3 can be further enhanced.
 さらに、全ての内部電極5,9が第1の部位9aを有していることが好ましい。これにより、更に広範囲に応力を分散させることができ、また、応力分布の偏りを更に小さくすることができる。 Furthermore, it is preferable that all the internal electrodes 5, 9 have the first portion 9a. As a result, the stress can be dispersed in a wider range, and the bias of the stress distribution can be further reduced.
<第2の実施形態>
 次に、本発明の第2の実施形態について説明をする。図4A~図4Cは、それぞれ本発明の第2の実施形態にかかる積層型圧電素子1における積層方向に直交する断面図であり、内部電極5を含む断面を図示している。なお、図4Bに示す内部電極9を基準としたとき、図4Aは、図4Bに示す内部電極9と積層体7の一方の端面側に隣り合う内部電極9を示している。また、図4Cは、図4Bに示す内部電極9と積層体7の他方の端面側に隣り合う内部電極5を示している。
<Second Embodiment>
Next, a second embodiment of the present invention will be described. 4A to 4C are cross-sectional views orthogonal to the stacking direction in the multilayer piezoelectric element 1 according to the second embodiment of the present invention, and illustrate cross sections including the internal electrodes 5. When the internal electrode 9 shown in FIG. 4B is used as a reference, FIG. 4A shows the internal electrode 9 shown in FIG. 4B and the internal electrode 9 adjacent to one end face side of the laminate 7. FIG. 4C shows the internal electrode 9 shown in FIG. 4B and the internal electrode 5 adjacent to the other end face side of the multilayer body 7.
 本第2の実施形態の積層型圧電素子は、図4A~図4Cに示すように、内部電極9の第1の部位9aにおける非形成部位7cが、対向部分7aと非対向部分7bとの境界7dと平行に複数の列で配列されている点が第1の実施形態とは異なっている。第1の部位9aにおける非形成部位7cをこのように配列することによって、より広範囲の圧電体3に応力を分散させることができるので、対向部分7aと非対向部分7bとの境界7d近傍における応力分布の偏りを更に小さくすることができる。 In the multilayer piezoelectric element of the second embodiment, as shown in FIGS. 4A to 4C, the non-formed portion 7c in the first portion 9a of the internal electrode 9 is a boundary between the facing portion 7a and the non-facing portion 7b. The point which is arranged in a plurality of rows in parallel with 7d is different from the first embodiment. By arranging the non-formation site 7c in the first site 9a in this way, stress can be dispersed in a wider range of the piezoelectric body 3, and therefore stress in the vicinity of the boundary 7d between the facing portion 7a and the non-facing portion 7b. The distribution bias can be further reduced.
 特に、第1の部位9aにおける非形成部位7cが、対向部分7aと非対向部分7bとの境界7dと平行に複数の列で配列している場合に、この複数の列の1つが対向部分7aと非対向部分7bとの境界7d上に位置することが好ましい。 In particular, when the non-forming portion 7c in the first portion 9a is arranged in a plurality of rows in parallel with the boundary 7d between the facing portion 7a and the non-facing portion 7b, one of the plurality of rows is the facing portion 7a. It is preferably located on the boundary 7d between the non-opposing portion 7b.
 また、図4A~図4Cに示すように、内部電極5が、外部電極11と接続する面以外で露出していない場合、すなわち、積層体7において外部電極11が接続される側面以外の3側面に沿った内部電極5の外周がそれぞれ当該3側面より内側に位置している場合、この第2の実施形態のように非形成部位7cが複数の列で配列されていることが特に有効となる。これは、内部電極5が上記の構造である場合、対向部分7aと非対向部分7bとの境界7dが積層体7の側面に露出しないため、この境界7d部分に応力が集中しやすいからである。内部電極9のうち対向部分7aに位置して素子1の駆動に寄与する部分と、外部電極11と接続する部分との間に第1の部分9aが位置することにより、非形成部位7cで応力を緩和することができる。これにより、内部電極5の周縁部分に応力が集中することを抑制できる。 Further, as shown in FIGS. 4A to 4C, when the internal electrode 5 is not exposed except on the surface connected to the external electrode 11, that is, three side surfaces other than the side surface to which the external electrode 11 is connected in the multilayer body 7. When the outer peripheries of the internal electrodes 5 along the line are positioned inside the three side surfaces, it is particularly effective that the non-formed sites 7c are arranged in a plurality of rows as in the second embodiment. . This is because when the internal electrode 5 has the above-described structure, the boundary 7d between the facing portion 7a and the non-facing portion 7b is not exposed on the side surface of the stacked body 7, and stress tends to concentrate on the boundary 7d portion. . Since the first portion 9a is located between the portion of the internal electrode 9 that is located at the facing portion 7a and contributes to driving the element 1 and the portion that is connected to the external electrode 11, stress is generated at the non-forming portion 7c. Can be relaxed. Thereby, it can suppress that stress concentrates on the peripheral part of the internal electrode 5. FIG.
 図5A~図5Aは、それぞれ図4に示す第2の実施形態の変形例に係る積層型圧電素子1の積層方向に直交する断面図であり、内部電極5,9を含む断面を図示している。なお、図5Bに示す内部電極9を基準としたとき、図5Aは、図5Bに示す内部電極9と積層体7の一方の端面側に隣り合う内部電極9を示している。また、図5Cは、図5Bに示す内部電極9と積層体7の他方の端面側に隣り合う内部電極5を示している。 5A to 5A are cross-sectional views orthogonal to the stacking direction of the multilayer piezoelectric element 1 according to the modification of the second embodiment shown in FIG. 4, and illustrate cross sections including the internal electrodes 5 and 9. Yes. When the internal electrode 9 shown in FIG. 5B is used as a reference, FIG. 5A shows the internal electrode 9 shown in FIG. 5B and the internal electrode 9 adjacent to one end face side of the laminate 7. FIG. 5C shows the internal electrode 9 shown in FIG. 5B and the internal electrode 5 adjacent to the other end face side of the multilayer body 7.
 さらには、図5A~図5Cに示すように、対向部分7aと非対向部分7bとの境界7d上に位置する列を構成する非形成部位7cが、他の非形成部位7cよりも大きいことがより一層好ましい。対向部分7aのうち、最も応力の集中しやすい非対向部分7bとの境界7dでの駆動力を小さくすることができるので、素子1の耐久性をより高めることができるからである。 Furthermore, as shown in FIGS. 5A to 5C, the non-forming portion 7c constituting the row located on the boundary 7d between the facing portion 7a and the non-facing portion 7b may be larger than the other non-forming portions 7c. Even more preferred. This is because the driving force at the boundary 7d between the opposing portion 7a and the non-opposing portion 7b where stress is most likely to concentrate can be reduced, and the durability of the element 1 can be further increased.
<第3の実施形態>
 次に、本発明の第3の実施形態について説明をする。図6A~図6Bは、それぞれ本発明の第3の実施形態にかかる積層型圧電素子1における積層方向に直交する断面図であり、内部電極5を含む断面を図示している。なお、図6Bに示す内部電極9を基準としたとき、図6Aは、図6Bに示す内部電極9と積層方向の一方の端部側に隣り合う内部電極9を示している。また、図6Cは、図6Bに示す内部電極9と積層方向の他方の端部側に隣り合う内部電極5を示している。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. 6A to 6B are cross-sectional views orthogonal to the stacking direction in the multilayer piezoelectric element 1 according to the third embodiment of the present invention, and illustrate a cross section including the internal electrode 5. When the internal electrode 9 shown in FIG. 6B is used as a reference, FIG. 6A shows the internal electrode 9 shown in FIG. 6B and the internal electrode 9 adjacent to one end side in the stacking direction. 6C shows the internal electrode 5 shown in FIG. 6B and the internal electrode 5 adjacent to the other end side in the stacking direction.
 図6に示すように、陽極側及び陰極側の外部電極11a,11bが積層体7の対向する側面にそれぞれ位置し、対向部分7aと非対向部分7bとの境界7dが、互いに離隔する複数の箇所(図6では対向する2箇所)に存在する場合に、複数の内部電極5における少なくとも1つの内部電極9が、それぞれの境界7d上に第1の部位9aを有することが好ましい。すなわち、内部電極非形成部位7cを対向部分7aと一方の非対向部分7bとの境界7dに沿って有する内部電極9が、さらに対向部分7aと他方の非対向部分7bとの境界7dに沿って複数の内部電極非形成部位7cを有することが好ましい。これにより、積層方向に直交する平面上での応力分布の偏りを小さくすることができるからである。 As shown in FIG. 6, the anode-side and cathode-side external electrodes 11a, 11b are respectively located on opposite side surfaces of the multilayer body 7, and a boundary 7d between the facing portion 7a and the non-facing portion 7b is separated from each other. In the case where it is present at two locations (two locations facing each other in FIG. 6), it is preferable that at least one internal electrode 9 of the plurality of internal electrodes 5 has a first portion 9a on each boundary 7d. That is, the internal electrode 9 having the internal electrode non-forming portion 7c along the boundary 7d between the facing portion 7a and the one non-facing portion 7b further extends along the boundary 7d between the facing portion 7a and the other non-facing portion 7b. It is preferable to have a plurality of internal electrode non-formation sites 7c. This is because the bias of the stress distribution on the plane orthogonal to the stacking direction can be reduced.
 さらに、対向部分7aと非対向部分7bとの境界7dが、互いに離隔する複数の箇所に存在する場合に、複数の内部電極5のうち、積層方向に隣り合う一対の内部電極9において、各内部電極9のそれぞれの境界7d上に第1の部位9aが位置することが好ましい。これにより、隣り合う一対の内部電極9において、第1の部位9aが対向して位置することになるので、素子1の駆動軸のぶれが小さくなり、耐久性が高められるからである。 Further, when the boundary 7d between the facing portion 7a and the non-facing portion 7b exists at a plurality of locations separated from each other, among the plurality of internal electrodes 5, the internal electrodes 9 adjacent to each other in the stacking direction It is preferable that the 1st site | part 9a is located on each boundary 7d of the electrode 9. FIG. Thereby, in the pair of adjacent internal electrodes 9, the first portions 9 a are positioned to face each other, so that the drive shaft of the element 1 is less shaken and the durability is improved.
<第4の実施形態>
 次に、本発明の第4の実施形態について説明をする。図7は、本発明の第4の実施形態にかかる積層型圧電素子を示す斜視図である。
<Fourth Embodiment>
Next, a fourth embodiment of the present invention will be described. FIG. 7 is a perspective view showing a multilayer piezoelectric element according to the fourth embodiment of the present invention.
 この第4の実施形態では、図7に示すように、内部電極5のうちの第1の部位9aを有する複数の内部電極9が積層方向に一定の規則にしたがって周期的に配置されており、本発明に係るより好ましい形態である。これにより、素子1全体に加わる応力を積層方向に分散させることができるので、高い耐久性を有する素子1を提供することができる。 In the fourth embodiment, as shown in FIG. 7, the plurality of internal electrodes 9 having the first portion 9a of the internal electrodes 5 are periodically arranged according to a certain rule in the stacking direction, This is a more preferable embodiment according to the present invention. Thereby, since the stress applied to the entire element 1 can be dispersed in the stacking direction, the element 1 having high durability can be provided.
<第5の実施形態>
 次に、本発明の第5の実施形態について説明をする。図8Aは、本発明の第5の実施形態にかかる積層型圧電素子を示す斜視図である。図8Bは、図8Aに示す第5の実施形態におけるA-A断面であって内部電極9を含む断面図である。図8Cは、図8Aに示す第5の実施形態におけるB-B断面であって内部電極9を含む断面図である。
<Fifth Embodiment>
Next, a fifth embodiment of the present invention will be described. FIG. 8A is a perspective view showing a multilayer piezoelectric element according to the fifth embodiment of the present invention. FIG. 8B is a cross-sectional view taken along the line AA in the fifth embodiment shown in FIG. 8A and including the internal electrode 9. FIG. 8C is a cross-sectional view taken along the line BB in the fifth embodiment shown in FIG. 8A and including the internal electrode 9.
 図8に示すように、積層方向に隣り合う一対の内部電極9がそれぞれ第1の部位9aを有し、積層体7の端面に近い内部電極9の第1の部位9aにおける内部電極9の占める比率が、積層体7の端面から遠くにある内部電極9の第1の部位9aにおける内部電極9の占める比率よりも小さいことが好ましい。すなわち、内部電極非形成部位7cを有する一対の内部電極9のうち、積層体7の端面に近い内部電極9の内部電極非形成部位7cの占める比率が、積層体7の端面から遠くに位置する内部電極9の内部電極非形成部位7cの占める比率よりも大きいことが好ましい。 As shown in FIG. 8, a pair of internal electrodes 9 adjacent in the stacking direction each have a first portion 9 a, and the internal electrode 9 occupies the first portion 9 a of the internal electrode 9 close to the end face of the stacked body 7. The ratio is preferably smaller than the ratio occupied by the internal electrode 9 in the first portion 9 a of the internal electrode 9 that is far from the end face of the multilayer body 7. That is, of the pair of internal electrodes 9 having the internal electrode non-formation site 7 c, the ratio of the internal electrode 9 near the end surface of the multilayer body 7 to the internal electrode non-formation site 7 c is located far from the end surface of the multilayer body 7. It is preferable that the ratio of the internal electrode 9 occupied by the internal electrode non-formation site 7c is larger.
 コンデンサ等の通常の積層型電子部品と異なり、積層型圧電素子1は駆動時に素子1自体が連続的に寸法変化を起こす。そして、全ての圧電体3が内部電極5を介して密着して駆動することにより、素子1は一体として大きく駆動変形する。そのため、素子1の端部には相対的に大きな応力がかかる。 Unlike ordinary multilayer electronic components such as capacitors, the multilayer piezoelectric element 1 continuously undergoes dimensional changes when driven. When all the piezoelectric bodies 3 are driven in close contact via the internal electrodes 5, the element 1 is largely driven and deformed integrally. Therefore, a relatively large stress is applied to the end portion of the element 1.
 しかしながら、第1の部位9aの非形成部位7cが上記の形態であることにより、素子1の端面に近い端部における変位量を小さくすることができるので、素子1の当該端部にかかる応力を低減することができる。結果として、素子1の耐久性を向上させることができる。 However, since the non-formation part 7c of the first part 9a is in the above-described form, the amount of displacement at the end part close to the end face of the element 1 can be reduced, so that the stress applied to the end part of the element 1 is reduced. Can be reduced. As a result, the durability of the element 1 can be improved.
 さらに、非形成部位7cが積層体7の端面側に向かって徐々に大きくなっていることがより好ましく、さらにその大きくなる度合いが規則的であることがよりいっそう好ましい。
 既に示したように、積層型圧電素子1は一体として大きく駆動変形するため、素子1の端面に近いほど加わる応力が徐々に増加する。しかしながら、非形成部位7cが端面側に向かって徐々に、又は一定の規則にしたがって徐々に大きくなることにより、素子1の端面に近いほど対向部分7aと非対向部分7bとの境界7dに生じる応力を緩和する効果を徐々に増加させることができるので、素子1の積層方向における応力分布の偏りをより小さくすることができるからである。
Furthermore, it is more preferable that the non-formation site 7c gradually increases toward the end face side of the laminate 7, and it is even more preferable that the degree of increase is regular.
As already shown, since the multilayer piezoelectric element 1 is largely driven and deformed as a unit, the stress applied to the laminated piezoelectric element 1 gradually increases as it is closer to the end face of the element 1. However, the stress generated at the boundary 7d between the facing portion 7a and the non-facing portion 7b becomes closer to the end surface of the element 1 because the non-forming portion 7c gradually increases toward the end surface side or gradually according to a certain rule. This is because the effect of relaxing the stress can be gradually increased, so that the bias of the stress distribution in the stacking direction of the element 1 can be further reduced.
 また、複数の内部電極5のうち、積層方向の最も端面側に位置する内部電極9が、第1の部位9aを有していることが好ましい。素子1の端面に近い端部には比較的大きな応力がかかりやすいが、積層方向の最も端面側に位置する内部電極9が、第1の部位9aを有していることにより、効率よく応力を緩和させることができるからである。結果として、素子1の耐久性をさらに高めることができる。 Moreover, it is preferable that the internal electrode 9 located on the end face side in the stacking direction among the plurality of internal electrodes 5 has the first portion 9a. Although a relatively large stress is likely to be applied to the end portion close to the end surface of the element 1, the internal electrode 9 located on the most end surface side in the stacking direction has the first portion 9a, so that the stress can be efficiently applied. This is because it can be relaxed. As a result, the durability of the element 1 can be further increased.
<第6の実施形態>
 次に、本発明の第6の実施形態について説明をする。図9は、本発明の第6の実施形態にかかる積層型圧電素子を示す斜視図である。図10A~図10Cは、それぞれ図9に示す実施形態における積層方向に直交する断面図であり、内部電極5を含む断面を示している。なお、図10Bに示す内部電極9を基準としたとき、図10Aは、図10Bに示す内部電極9と積層体7の一方の端面側に隣り合う内部電極9を示している。また、図10Cは、図10Bに示す内部電極9と積層体7の他方の端面側に隣り合う内部電極5を示している。
<Sixth Embodiment>
Next, a sixth embodiment of the present invention will be described. FIG. 9 is a perspective view showing a multilayer piezoelectric element according to the sixth embodiment of the present invention. 10A to 10C are cross-sectional views orthogonal to the stacking direction in the embodiment shown in FIG. 9, each showing a cross section including the internal electrode 5. When the internal electrode 9 shown in FIG. 10B is used as a reference, FIG. 10A shows the internal electrode 9 shown in FIG. 10B and the internal electrode 9 adjacent to one end face side of the laminate 7. FIG. 10C shows the internal electrode 9 shown in FIG. 10B and the internal electrode 5 adjacent to the other end face side of the multilayer body 7.
 図9、10に示すように、第6の実施形態の積層型圧電素子1は、複数の圧電体3と複数の内部電極5とを備え、圧電体3と内部電極5とが交互に積層された積層体7を備えている。積層体7は、第1の実施形態等と同様に積層方向に隣り合う正負一対の内部電極5が積層方向に対向する対向部分7aとそれ以外の非対向部分7bとに区分される。複数の内部電極5のうち少なくとも一つの内部電極9は、格子形状であって、第1の部位9cと、第1の部位9cよりも格子目の細かい第2の部位9dとを有する。すなわち、内部電極非形成部位7cを有する内部電極9においてさらに、内部電極非形成部位7cより境界7dから離れた位置に、内部電極非形成部位7cより面積の小さい第2の内部電極非形成部位7eを有する。そして、第1の部位9cは、対向部分7aと非対向部分7bとの境界7d上に位置する。また、積層体7の側面には外部電極11a,11bが位置している。そして、複数の内部電極5は、陽極側及び陰極側の外部電極11a,11bの一方にそれぞれ接続される。 As shown in FIGS. 9 and 10, the multilayer piezoelectric element 1 of the sixth embodiment includes a plurality of piezoelectric bodies 3 and a plurality of internal electrodes 5, and the piezoelectric bodies 3 and the internal electrodes 5 are alternately stacked. The laminated body 7 is provided. As in the first embodiment, the stacked body 7 is divided into a pair of positive and negative internal electrodes 5 adjacent to each other in the stacking direction, a facing portion 7a facing in the stacking direction and the other non-facing portion 7b. At least one internal electrode 9 among the plurality of internal electrodes 5 has a lattice shape, and includes a first portion 9c and a second portion 9d having a finer lattice than the first portion 9c. That is, in the internal electrode 9 having the internal electrode non-forming part 7c, the second internal electrode non-forming part 7e having a smaller area than the internal electrode non-forming part 7c is further away from the boundary 7d than the internal electrode non-forming part 7c. Have And the 1st site | part 9c is located on the boundary 7d of the opposing part 7a and the non-opposing part 7b. In addition, external electrodes 11 a and 11 b are located on the side surface of the multilayer body 7. The plurality of internal electrodes 5 are connected to one of the anode-side and cathode-side external electrodes 11a and 11b, respectively.
 このように、第6の実施形態の積層型圧電素子1では、第1の部位9cの格子目が第2の部位9dよりも格子目が大きいため、第1の部位9cに電圧を印加することにより圧電体3に加わる駆動力は、第2の部位9dに電圧を印加することにより圧電体3に加わる駆動力よりも小さい。そして、第1の部位9cが対向部分7aと非対向部分7bとの境界7d上に位置することにより、対向部分7aのうち、非対向部分7bとの境界7d近傍での駆動力が相対的に小さくなるので、この境界7d付近にかかる応力が集中することを抑制できる。結果、高い耐久性を備えた積層型圧電素子1を提供することができる。 As described above, in the multilayer piezoelectric element 1 according to the sixth embodiment, since the lattice of the first portion 9c is larger than the lattice of the second portion 9d, a voltage is applied to the first portion 9c. Thus, the driving force applied to the piezoelectric body 3 is smaller than the driving force applied to the piezoelectric body 3 by applying a voltage to the second portion 9d. And since the 1st site | part 9c is located on the boundary 7d of the opposing part 7a and the non-opposing part 7b, the driving force in the vicinity of the boundary 7d with the non-opposing part 7b is relatively made among the opposing parts 7a. Since it becomes small, it can suppress that the stress concerning this boundary 7d vicinity concentrates. As a result, the multilayer piezoelectric element 1 having high durability can be provided.
 第1の実施形態から第5の実施形態に示すように、第2の部位9bが非形成部位7c,7eを有していなくても、対向部分7aと非対向部分7bとの境界上又は境界に沿って複数の内部電極非形成部位7cが配置された第1の部位9aを有していることにより、対向部分7aと非対向部分7bとの境界7d付近にかかる応力を小さくすることができる。一方で、第6の実施形態のように、第1の部位9cおよび第2の部位9dがを有している場合には、第1の部位9cおよび第2の部位9dを有する内部電極9と隣接する圧電体3全体の変位量を小さくすることができる。その結果、この圧電体3全体で応力を緩和させることができるので、素子1の端面側の端部にかかる応力を小さくすることができる。 As shown in the first to fifth embodiments, even if the second portion 9b does not have the non-forming portions 7c and 7e, on the boundary or the boundary between the facing portion 7a and the non-facing portion 7b By having the first part 9a in which a plurality of internal electrode non-formation parts 7c are arranged along the surface, the stress applied near the boundary 7d between the facing part 7a and the non-facing part 7b can be reduced. . On the other hand, when the first part 9c and the second part 9d have the first part 9c and the second part 9d as in the sixth embodiment, the internal electrode 9 having the first part 9c and the second part 9d The displacement amount of the entire adjacent piezoelectric body 3 can be reduced. As a result, the stress can be relaxed in the entire piezoelectric body 3, so that the stress applied to the end portion on the end face side of the element 1 can be reduced.
 <第7の実施形態>
 次に、本発明の第7の実施形態について説明をする。図11A~図11Cは、それぞれ本発明の第7の実施形態にかかる積層型圧電素子における積層方向に直交する方向の断面図であり、積層方向に隣り合う内部電極5をそれぞれ含む断面を示している。ここで図11Cに示す断面よりも図11Aに示す断面の方が素子の端面に近い端部側に位置している。
<Seventh Embodiment>
Next, a seventh embodiment of the present invention will be described. 11A to 11C are cross-sectional views in the direction perpendicular to the stacking direction in the stacked piezoelectric element according to the seventh embodiment of the present invention, and show cross sections each including the internal electrode 5 adjacent in the stacking direction. Yes. Here, the cross section shown in FIG. 11A is located closer to the end side of the element than the cross section shown in FIG. 11C.
 図11に示すように、第7の実施形態の積層型圧電素子1は、内部電極9の第2の部位9dにおける格子目が端面側に向かって段階的に粗くなる点が第6の実施形態とは異なっており、この点でより好ましい形態となっている。すなわち、積層体7の端面に近い内部電極9に形成された第2の内部電極非形成部位7eほど、面積が大きい。既に示したように、積層型圧電素子1は一体として大きく駆動変形するため、素子1の端部に近いほど大きな応力が加わる。しかしながら、非形成部位7cが端部側に向かって段階的に粗くなることにより、素子1の端部に近いほど対向部分7aと非対向部分7bとの境界に生じる応力を分散させる効果が大きくなる。これにより、素子1の積層方向における応力分布の偏りをより小さくすることができる。 As shown in FIG. 11, the multilayer piezoelectric element 1 of the seventh embodiment is that the lattice in the second portion 9 d of the internal electrode 9 becomes gradually rough toward the end face side in the sixth embodiment. This is a more preferable form in this respect. That is, the area of the second internal electrode non-forming portion 7e formed on the internal electrode 9 near the end face of the multilayer body 7 is larger. As already shown, since the multilayer piezoelectric element 1 is largely driven and deformed as a unit, a greater stress is applied to the end of the element 1 closer to the end. However, since the non-formation site 7c is gradually roughened toward the end portion, the effect of dispersing the stress generated at the boundary between the facing portion 7a and the non-facing portion 7b increases as the end portion of the element 1 is closer. . Thereby, the bias of the stress distribution in the stacking direction of the element 1 can be further reduced.
 次に、本実施形態にかかる積層型圧電素子1の製法について説明する。 Next, a method for manufacturing the multilayer piezoelectric element 1 according to this embodiment will be described.
 まず、圧電体3となるセラミックグリーンシートを作製する。具体的には、圧電セラミックスの仮焼粉末と、アクリル系、ブチラール系等の有機高分子からなるバインダーと、可塑剤とを混合してスラリーを作製する。そして、このスラリーを周知のドクターブレード法やカレンダーロール法等のテープ成型法を用いることにより、セラミックグリーンシートが作製される。圧電セラミックスとしては圧電特性を有するものであればよく、例えば、PbZrO-PbTiO等からなるペロブスカイト型酸化物などを用いることができる。また、可塑剤としては、フタル酸ジブチル(DBP)、フタル酸ジオクチル(DOP)などを用いることができる。 First, a ceramic green sheet to be the piezoelectric body 3 is produced. Specifically, a calcined powder of piezoelectric ceramic, a binder composed of an acrylic or butyral organic polymer, and a plasticizer are mixed to prepare a slurry. And a ceramic green sheet is produced by using this slurry for tape forming methods, such as a known doctor blade method and a calender roll method. As the piezoelectric ceramic, any material having piezoelectric characteristics may be used. For example, a perovskite oxide made of PbZrO 3 —PbTiO 3 or the like can be used. As the plasticizer, dibutyl phthalate (DBP), dioctyl phthalate (DOP), or the like can be used.
 次に、内部電極5となる導電性ペーストを作製する。具体的には、銀-パラジウム等の金属粉末にバインダー及び可塑剤等を添加混合することで、導電性ペーストを作製することができる。この導電性ペーストを上記のセラミックグリーンシート上にスクリーン印刷法を用いて配設する。さらに、この導電性ペーストがスクリーン印刷されたセラミックグリーンシートを複数積層する。そして、後述するように、焼成することで圧電体3及び内部電極5を備えた積層体7を形成することができる。 Next, a conductive paste to be the internal electrode 5 is produced. Specifically, a conductive paste can be prepared by adding and mixing a binder, a plasticizer, and the like with a metal powder such as silver-palladium. This conductive paste is disposed on the ceramic green sheet using a screen printing method. Further, a plurality of ceramic green sheets on which the conductive paste is screen-printed are stacked. Then, as will be described later, the laminate 7 including the piezoelectric body 3 and the internal electrode 5 can be formed by firing.
 また、格子形状の第1の部位を有する内部電極9は、例えば、スクリーンのパターン形状を変更することによって、形成することができる。格子目の粗さに関しても、このスクリーンのパターン形状を変更することによって変えることができる。 Further, the internal electrode 9 having the lattice-shaped first portion can be formed, for example, by changing the pattern shape of the screen. The lattice roughness can also be changed by changing the pattern shape of the screen.
 なお、積層体7は、上記製法によって作製されるものに限定されることはなく、複数の圧電体3と複数の内部電極5とを交互に積層してなる積層体7を作製できれば、どのような製法によって形成されても良い。 The laminated body 7 is not limited to the one produced by the above manufacturing method, and any method can be used as long as a laminated body 7 in which a plurality of piezoelectric bodies 3 and a plurality of internal electrodes 5 are alternately laminated can be produced. It may be formed by any manufacturing method.
 その後、積層型圧電素子1の外表面に端部が露出する内部電極5,9圧電体3と導通が得られるように外部電極11を形成する。この外部電極11は、ガラス粉末に、バインダーを加えて銀ガラス導電性ペーストを作製し、これを印刷し乾燥接着あるいは、焼き付けることによって得ることができる。 Thereafter, the external electrode 11 is formed so as to be electrically connected to the internal electrodes 5 and 9 and the piezoelectric body 3 whose end portions are exposed on the outer surface of the multilayer piezoelectric element 1. The external electrode 11 can be obtained by adding a binder to glass powder to produce a silver glass conductive paste, printing it, and then drying and bonding or baking.
 次に、シリコーンゴムからなる外装樹脂を含む樹脂溶液に、外部電極11を形成した積層体7を浸漬する。そして、シリコーン樹脂溶液を真空脱気することにより、積層体7の外周側面の凹凸部にシリコーン樹脂を密着させ、その後、シリコーン樹脂溶液から積層体7を引き上げる。これにより、積層体7の側面にシリコーン樹脂(不図示)がコーティングされる。そして、外部電極11に通電部としてリード線を導電性接着剤(不図示)等で接続する。 Next, the laminate 7 on which the external electrode 11 is formed is immersed in a resin solution containing an exterior resin made of silicone rubber. Then, the silicone resin solution is vacuum degassed to bring the silicone resin into close contact with the concavo-convex portions on the outer peripheral side surface of the laminate 7, and then the laminate 7 is pulled up from the silicone resin solution. Thereby, a silicone resin (not shown) is coated on the side surface of the laminate 7. Then, the lead wire is connected to the external electrode 11 as a current-carrying portion with a conductive adhesive (not shown) or the like.
 リード線を介して一対の外部電極11に0.1~3kV/mmの直流電界を印加し、積層体7を分極することによって、実施形態の積層型圧電素子1が完成する。リード線を外部の電圧供給部(不図示)に接続し、リード線及び外部電極11を介して圧電体3に電圧を印加することにより、各圧電体3を逆圧電効果によって大きく変位させることができる。これにより、例えばエンジンに燃料を噴射供給する自動車用燃料噴射弁として機能させることが可能となる。 The multilayer piezoelectric element 1 of the embodiment is completed by applying a DC electric field of 0.1 to 3 kV / mm to the pair of external electrodes 11 via the lead wires to polarize the multilayer body 7. By connecting the lead wire to an external voltage supply unit (not shown) and applying a voltage to the piezoelectric body 3 via the lead wire and the external electrode 11, each piezoelectric body 3 can be largely displaced by the inverse piezoelectric effect. it can. This makes it possible to function as an automobile fuel injection valve that injects and supplies fuel to the engine, for example.
 次に、本発明の一実施形態にかかる流体の噴射装置について説明する。図12は、本発明の一実施形態にかかる噴射装置を示す概略断面図である。 Next, a fluid ejecting apparatus according to an embodiment of the present invention will be described. FIG. 12 is a schematic cross-sectional view showing an injection device according to an embodiment of the present invention.
 図12に示すように、本実施形態の噴射装置21は、一端に噴射孔23を有する収納容器25の内部に上記の実施形態に代表される積層型圧電素子1が収納されている。 As shown in FIG. 12, in the injection device 21 of this embodiment, the multilayer piezoelectric element 1 represented by the above embodiment is stored in a storage container 25 having an injection hole 23 at one end.
 収納容器25内には、噴射孔23を開閉することができるニードルバルブ27が配設されている。噴射孔23には流体通路29がニードルバルブ27の動きに応じて連通可能になるように配設されている。この流体通路29は外部の流体供給源に連結され、流体通路29に常時高圧で流体が供給されている。従って、ニードルバルブ27が噴射孔23を開放すると、流体通路29に供給されていた流体が外部または隣接する容器、例えば内燃機関の燃料室(不図示)に、噴出されるように構成されている。 In the storage container 25, a needle valve 27 capable of opening and closing the injection hole 23 is disposed. A fluid passage 29 is arranged in the injection hole 23 so as to be able to communicate with the movement of the needle valve 27. The fluid passage 29 is connected to an external fluid supply source, and fluid is constantly supplied to the fluid passage 29 at a high pressure. Therefore, when the needle valve 27 opens the injection hole 23, the fluid supplied to the fluid passage 29 is ejected to the outside or an adjacent container, for example, a fuel chamber (not shown) of the internal combustion engine. .
 また、ニードルバルブ27の上端部は内径が大きくなっており、収納容器25に形成されたシリンダ31と摺動可能なピストン33が配置されている。そして、収納容器25内には、上記した積層型圧電素子1が収納されている。 Further, the upper end portion of the needle valve 27 has a large inner diameter, and a cylinder 31 formed in the storage container 25 and a piston 33 that can slide are disposed. In the storage container 25, the multilayer piezoelectric element 1 described above is stored.
 このような噴射装置21では、圧電アクチュエータが電圧を印加されて伸長すると、ピストン33が押圧され、ニードルバルブ27が噴射孔23を閉塞し、流体の供給が停止される。また、電圧の印加が停止されると圧電アクチュエータが収縮し、皿バネ35がピストン33を押し返し、噴射孔23が流体通路29と連通して流体の噴射が行われるようになっている。 In such an injection device 21, when the piezoelectric actuator is extended by applying a voltage, the piston 33 is pressed, the needle valve 27 closes the injection hole 23, and the supply of fluid is stopped. When the application of voltage is stopped, the piezoelectric actuator contracts, the disc spring 35 pushes back the piston 33, and the injection hole 23 communicates with the fluid passage 29 to inject fluid.
 なお、積層型圧電素子1に電圧を印加することによって流体通路29を開放し、電圧の印加を停止することによって流体通路29を閉鎖するように構成しても良い。 Note that the fluid passage 29 may be opened by applying a voltage to the multilayer piezoelectric element 1 and the fluid passage 29 may be closed by stopping the application of the voltage.
 また、本発明の噴射装置21は、噴射孔23を有する容器と、上記の積層型圧電素子1とを備え、容器内に充填された流体を積層型圧電素子1の駆動により噴射孔23から吐出させるように構成されていてもよい。すなわち、積層型圧電素子1が必ずしも容器の内部にある必要はなく、積層型圧電素子1の駆動によって容器の内部に圧力が加わるように構成されていればよい。なお、本発明において、流体とは、燃料、インクなどの他、種々の液状流体(導電性ペースト等)および気体が含まれる。噴射装置21を用いる事によって、流体の流量および噴出タイミングを制御することができる。 Further, the ejection device 21 of the present invention includes a container having the ejection holes 23 and the multilayer piezoelectric element 1 described above, and discharges the fluid filled in the container from the ejection holes 23 by driving the multilayer piezoelectric element 1. You may be comprised so that it may make. That is, the multilayer piezoelectric element 1 does not necessarily have to be inside the container, and may be configured so that pressure is applied to the inside of the container by driving the multilayer piezoelectric element 1. In the present invention, the fluid includes various liquid fluids (such as conductive paste) and gas in addition to fuel and ink. By using the ejection device 21, the flow rate of the fluid and the ejection timing can be controlled.
 本発明の積層型圧電素子1を採用した噴射装置21を内燃機関に用いれば、従来の噴射装置21に比べてエンジン等の内燃機関の燃料室に燃料をより長い期間精度よく噴射させることができる。 When the injection device 21 employing the multilayer piezoelectric element 1 of the present invention is used in an internal combustion engine, fuel can be injected into the fuel chamber of the internal combustion engine such as an engine with a longer period of time with higher accuracy than the conventional injection device 21. .
 次に、本発明の一実施形態にかかる流体噴射システムについて説明する。図13は、本発明の一実施形態にかかる燃料噴射システムを示す概略ブロック図である。 Next, a fluid ejection system according to an embodiment of the present invention will be described. FIG. 13 is a schematic block diagram showing a fuel injection system according to an embodiment of the present invention.
 図13に示すように、本実施形態の流体噴射システム41は、高圧流体を蓄えるコモンレール43と、このコモンレール43に蓄えられた流体を噴射する複数の上記の噴射装置21と、コモンレール43に高圧の流体を供給する圧力ポンプ45と、噴射装置21に駆動信号を与える噴射制御ユニット47と、を備えている。 As shown in FIG. 13, the fluid ejection system 41 of the present embodiment includes a common rail 43 that stores high-pressure fluid, a plurality of the above-described injection devices 21 that inject the fluid stored in the common rail 43, and a high pressure applied to the common rail 43. A pressure pump 45 that supplies fluid and an injection control unit 47 that supplies a drive signal to the injection device 21 are provided.
 噴射制御ユニット47は、外部情報または外部からの信号に基づいて流体噴射の量やタイミングを制御する。例えば、エンジンの燃料噴射に噴射制御ユニットを用いた場合、エンジンの燃焼室内の状況をセンサ等で感知しながら燃料噴射の量やタイミングを制御することができる。圧力ポンプ45は、流体タンク49から流体燃料を高圧でコモンレール43に送り込む役割を果たす。例えばエンジンの燃料噴射システムの場合には1000~2000気圧(約101MPa~約203MPa)程度、好ましくは、1500~1700気圧(約152MPa~約172MPa)程度にしてコモンレール43に流体を送り込む。 The ejection control unit 47 controls the amount and timing of fluid ejection based on external information or an external signal. For example, when an injection control unit is used for fuel injection of the engine, the amount and timing of fuel injection can be controlled while sensing the condition in the combustion chamber of the engine with a sensor or the like. The pressure pump 45 plays a role of feeding fluid fuel from the fluid tank 49 to the common rail 43 at a high pressure. For example, in the case of an engine fuel injection system, the fluid is fed into the common rail 43 at about 1000 to 2000 atmospheres (about 101 MPa to about 203 MPa), preferably about 1500 to 1700 atmospheres (about 152 MPa to about 172 MPa).
 コモンレール43では、圧力ポンプ45から送られてきた燃料を蓄え、適宜噴射装置21に送り込む。噴射装置21は、上述したように噴射孔23から一定の流体を噴射装置21から外部または隣接する容器に噴射する。例えば、エンジンの場合には燃料を燃焼室内に霧状に噴射する。 In the common rail 43, the fuel sent from the pressure pump 45 is stored and sent to the injection device 21 as appropriate. As described above, the injection device 21 injects a certain fluid from the injection hole 23 to the outside or an adjacent container. For example, in the case of an engine, fuel is injected into the combustion chamber in the form of a mist.
 なお、本発明は、上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を行うことは何ら差し支えない。また、本発明は、積層型圧電素子、噴射装置及び燃料噴射システムに関するものであるが、上記の実施形態に限定されるものでなく、圧電特性を利用した素子であれば、実施可能である。 Note that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention. In addition, the present invention relates to a multilayer piezoelectric element, an injection device, and a fuel injection system, but is not limited to the above-described embodiment, and can be implemented as long as the element utilizes piezoelectric characteristics.
 積層型圧電素子を以下のようにして作製した。 A laminated piezoelectric element was produced as follows.
 まず、平均粒径が0.4μmのチタン酸ジルコン酸鉛(PZT)粉末を主成分とする原料粉末、バインダー及び可塑剤を混合したスラリーを作製し、ドクターブレード法で厚み150μmのセラミックグリーンシートを作製した。 First, a slurry is prepared by mixing a raw material powder mainly composed of lead zirconate titanate (PZT) powder having an average particle diameter of 0.4 μm, a binder and a plasticizer, and a ceramic green sheet having a thickness of 150 μm is formed by a doctor blade method. Produced.
 次に、Ag95質量%-Pd5質量%の金属組成である銀-パラジウム合金粉末を含有する原料粉末にバインダーを加えた導電性ペーストを作製した。 Next, a conductive paste was prepared by adding a binder to a raw material powder containing silver-palladium alloy powder having a metal composition of 95% by mass of Ag and 5% by mass of Pd.
 そして、上記セラミックグリーンシートの片面に、上記の導電性ペーストをスクリーン印刷法により30μmの厚みになるように印刷した。そして、導電性ペーストが印刷された各グリーンシートを積層して積層体を作製した。なお、積層数としては、内部電極の数が300となるように積層し、積層体の積層方向の両端部には、導電性ペーストが印刷されていないセラミックグリーンシートのみをそれぞれ20枚積層した。 Then, the conductive paste was printed on one side of the ceramic green sheet to a thickness of 30 μm by screen printing. And each green sheet on which the conductive paste was printed was laminated to produce a laminate. Note that the number of internal electrodes was 300 so that the number of internal electrodes was 300, and only 20 ceramic green sheets on which no conductive paste was printed were stacked at both ends in the stacking direction of the stack.
 試料番号1においては、各内部電極が格子形状の第1の部位を備えておらず、各内部電極の断面積が全て同じとなるように導電性ペーストを印刷した。試料番号2~6においては、積層方向の1、2、299、300番目に位置する内部電極が、表1に示すように格子形状の第1の部位を有するように、導電性ペーストを印刷した。 In Sample No. 1, the conductive paste was printed so that each internal electrode was not provided with the lattice-shaped first portion, and the cross-sectional areas of each internal electrode were all the same. In Sample Nos. 2 to 6, the conductive paste was printed so that the internal electrodes located at 1, 2, 299, and 300th in the stacking direction had the first part of the lattice shape as shown in Table 1. .
 試料番号2では、図2に示すように、格子目が四角形である格子形状の第1の部位が、対向部分と非対向部分との境界上に位置している。また、試料番号3では、図3に示すように、格子目が円形である格子形状の第1の部位が、対向部分と非対向部分との境界上に位置している。また、試料番号4では、図5に示すように、格子目が、対向部分と非対向部分との境界に対して平行に複数の列で配列された形状の第1の部位が、対向部分と非対向部分との境界上に位置している。 In sample number 2, as shown in FIG. 2, the first part of the lattice shape having a square lattice is located on the boundary between the facing part and the non-facing part. In sample number 3, as shown in FIG. 3, the lattice-shaped first portion having a circular lattice is positioned on the boundary between the facing portion and the non-facing portion. In Sample No. 4, as shown in FIG. 5, the first part having a shape in which the lattice is arranged in a plurality of rows parallel to the boundary between the facing part and the non-facing part is the facing part. Located on the boundary with the non-opposing part.
 試料番号5では、図6に示すように、対向部分と非対向部分との境界が、互いに離隔する複数の箇所に存在し、内部電極のそれぞれの境界上に第1の部位が位置している。試料番号6では、図10に示すように、内部電極が、格子形状であって、第1の部位と、第1の部位よりも格子目の細かい第2の部位とを有している。そして、第1の部位が、対向部分と非対向部分との境界上に位置している。 In Sample No. 5, as shown in FIG. 6, the boundary between the facing portion and the non-facing portion exists at a plurality of locations separated from each other, and the first portion is located on each boundary of the internal electrodes. . In Sample No. 6, as shown in FIG. 10, the internal electrode has a lattice shape and has a first portion and a second portion having a finer lattice than the first portion. And the 1st site | part is located on the boundary of an opposing part and a non-opposing part.
 次に、それぞれの試料番号の生積層体に所定の温度で脱バインダー処理を施した後、800~1200℃で焼成して積層体を得た。 Next, the raw laminate of each sample number was subjected to a binder removal treatment at a predetermined temperature, and then fired at 800 to 1200 ° C. to obtain a laminate.
 そして、各々の試料番号の積層体を、所望の寸法に加工した上で外部電極をそれぞれ形成した。まず、銀を主成分とする金属粉末にバインダー、可塑剤、ガラス粉末等を添加混合して外部電極用の導電性ペーストを作製した。この導電性ペーストを、上記積層体の側面の外部電極を形成する箇所にスクリーン印刷等によって印刷した。さらに、600~800℃で焼成して外部電極を形成した。 Then, the laminated body of each sample number was processed into a desired dimension, and then external electrodes were formed. First, a conductive paste for an external electrode was prepared by adding and mixing a binder, a plasticizer, glass powder and the like to a metal powder containing silver as a main component. This conductive paste was printed by screen printing or the like on the side surface of the laminate on which the external electrodes were to be formed. Further, an external electrode was formed by baking at 600 to 800 ° C.
 このようにして作製した試料を用いて駆動評価を行った。駆動評価としては、高速応答性評価と耐久性評価を行なった。まず、外部電極11にリード線を接続し、正極及び負極の外部電極にリード線を介して3kV/mmの直流電界を15分間印加して分極処理を行い、積層型圧電素子を用いた圧電アクチュエータを作製した。得られた圧電アクチュエータに170Vの直流電圧を印加して初期状態の変位量を測定した。 The drive evaluation was performed using the sample thus prepared. As drive evaluation, high-speed response evaluation and durability evaluation were performed. First, a lead wire is connected to the external electrode 11, a 3 kV / mm DC electric field is applied to the positive electrode and the negative external electrode via the lead wire for 15 minutes to perform polarization treatment, and a piezoelectric actuator using a laminated piezoelectric element Was made. A DC voltage of 170 V was applied to the obtained piezoelectric actuator, and the amount of displacement in the initial state was measured.
 高速応答性評価としては、各々の圧電アクチュエータに室温で0V~+170Vの交流電圧を150Hzから徐々に周波数を増加させて印加した。耐久性評価としては、各々の圧電アクチュエータに室温で0V~+170Vの交流電圧を150Hzの周波数で印加して、1×10回まで連続駆動した試験を行なった。












For high-speed response evaluation, an AC voltage of 0 V to +170 V was applied to each piezoelectric actuator at a room temperature with the frequency gradually increased from 150 Hz. For durability evaluation, an AC voltage of 0 V to +170 V was applied to each piezoelectric actuator at a frequency of 150 Hz at room temperature, and a test was continuously performed up to 1 × 10 9 times.












Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、応答性評価を行った結果として、試料番号1の圧電アクチュエータでは、周波数が1kHzを超えた時にうなり音を発していた。これは、試料番号1の積層型圧電素子は、各内部電極が第1の部位を有しておらず、各内部電極の断面積が一定であるため、素子の端部付近に位置する圧電体の変形が大きいからである。素子の端部付近に位置する圧電体の変形が大きいことにより高速応答性が阻害されて、結果、印加した交流電圧の周波数に追従できなかったためと考えられる。 As shown in Table 1, as a result of the responsiveness evaluation, the piezoelectric actuator of sample number 1 emitted a beat sound when the frequency exceeded 1 kHz. This is because the multilayered piezoelectric element of sample number 1 does not have the first portion of each internal electrode, and the cross-sectional area of each internal electrode is constant, so that the piezoelectric body located near the end of the element This is because the deformation of is large. This is probably because the high-speed response was hindered by the large deformation of the piezoelectric body located near the end of the element, and as a result, the frequency of the applied AC voltage could not be followed.
 なお、駆動周波数を確認するために、横河電機株式会社製オシロスコープ「DL1640L」を用いて試料番号1のパルス波形を確認したところ、駆動周波数の整数倍の周波数に相当する箇所に高調波ノイズが確認された。 In order to confirm the drive frequency, the pulse waveform of sample number 1 was confirmed using an oscilloscope “DL1640L” manufactured by Yokogawa Electric Corporation. As a result, harmonic noise was found at a location corresponding to an integer multiple of the drive frequency. confirmed.
 また、表1に示すように、耐久性評価の結果として、試料番号1では、評価試験後の変位量は5μmと、評価試験前と比較して90%近く低下していた。また、試料番号1の圧電アクチュエータでは、素子の一部に剥がれが見られた。 Also, as shown in Table 1, as a result of the durability evaluation, in sample number 1, the displacement after the evaluation test was 5 μm, which was nearly 90% lower than that before the evaluation test. Further, in the piezoelectric actuator of sample number 1, peeling was observed on a part of the element.
 一方、試料番号2~6の圧電アクチュエータでは、剥がれは確認されなかった。また、評価試験後の変位量の低下が、2μm以下であり、評価試験前と比較して変位量の低下は5%以下に抑えられていた。特に、試料番号5及び6の圧電アクチュエータでは、変位量の低下が確認されず、非常に高い耐久性を有していることが分かった。 On the other hand, no peeling was confirmed in the piezoelectric actuators of sample numbers 2 to 6. Moreover, the drop of the displacement amount after the evaluation test was 2 μm or less, and the drop of the displacement amount was suppressed to 5% or less compared to before the evaluation test. In particular, in the piezoelectric actuators of sample numbers 5 and 6, it was found that the displacement amount was not lowered and had very high durability.
 さらに、耐久性評価の後、積層型圧電素子を切断して、積層方向の端部に最も近い1層目の内部電極を、顕微鏡を用いて観察した。試料番号2~6のいずれにおいても、上記の切断面における内部電極の非形成部位7c間に位置する部分の一部が破断していた。このように、内部電極の一部が破断することによって、応力が吸収され、圧電体にクラックが発生することが抑制されるとともに、内部電極の圧電体からの剥離が抑制されていることが確認された。 Further, after the durability evaluation, the multilayer piezoelectric element was cut, and the first internal electrode closest to the end in the stacking direction was observed using a microscope. In any of Sample Nos. 2 to 6, a part of the portion located between the non-formed portions 7c of the internal electrode on the cut surface was broken. As described above, it is confirmed that, when a part of the internal electrode breaks, stress is absorbed, cracking of the piezoelectric body is suppressed, and peeling of the internal electrode from the piezoelectric body is suppressed. It was done.
 なお、試料番号5及び6においては、初期状態の変位量が相対的に小さかった。これは、内部電極において、変位量を小さくして耐久性を向上させる格子形状の部分が多かったことが理由として挙げられる。 In Sample Nos. 5 and 6, the initial displacement was relatively small. This is because the internal electrode has many lattice-shaped portions that reduce the amount of displacement and improve the durability.

Claims (15)

  1.  複数の圧電体と複数の内部電極とを有してなりその圧電体と内部電極とが交互に積層された積層体と、前記積層体の第1の側面に形成された第1の外部電極と、前記積層体の第2の側面に形成された第2の外部電極とを備え、
     前記複数の内部電極が交互に前記第1および第2の外部電極のいずれか一方に接続されるように、前記第1および第2の側面においてそれぞれ前記複数の内部電極は前記第1の外部電極または前記第2の外部電極に接続された前記内部電極と前記第1の側面または前記第2の側面から離れて形成されることにより絶縁分離された前記内部電極とが交互に配置されて、
     前記積層体が、隣り合う前記内部電極が積層方向に対向する対向部分と、前記内部電極の1つ置きに対向してなり前記第1および前記第2の側面に沿って設けられた非対向部分とに区分された積層型圧電素子であって、
     前記複数の内部電極のうち少なくとも一つは、当該内部電極の中に設けられた複数の内部電極非形成部位を前記対向部分と前記非対向部分との境界に沿って有することを特徴とする積層型圧電素子。
    A laminated body having a plurality of piezoelectric bodies and a plurality of internal electrodes, wherein the piezoelectric bodies and the internal electrodes are alternately laminated; and a first external electrode formed on a first side surface of the laminated body; And a second external electrode formed on the second side surface of the laminate,
    The plurality of internal electrodes on the first and second side surfaces are respectively connected to the first external electrodes such that the plurality of internal electrodes are alternately connected to one of the first and second external electrodes. Alternatively, the internal electrodes connected to the second external electrodes and the internal electrodes that are insulated and separated by being formed away from the first side surface or the second side surface are alternately arranged.
    The stacked body includes a facing portion where the adjacent internal electrodes face each other in the stacking direction, and a non-facing portion provided along the first and second side surfaces, facing each other of the internal electrodes. A laminated piezoelectric element divided into
    At least one of the plurality of internal electrodes has a plurality of internal electrode non-formation sites provided in the internal electrode along a boundary between the facing portion and the non-facing portion. Type piezoelectric element.
  2.  前記複数の内部電極非形成部位が前記対向部分と前記非対向部分との前記境界と平行な方向に整列されたことを特徴とする請求項1に記載の積層型圧電素子。 The multilayer piezoelectric element according to claim 1, wherein the plurality of internal electrode non-formation sites are aligned in a direction parallel to the boundary between the facing portion and the non-facing portion.
  3.  前記内部電極非形成部位が前記対向部分と前記非対向部分とに跨って形成されたことを特徴とする請求項1または請求項2に記載の積層型圧電素子。 The multilayer piezoelectric element according to claim 1 or 2, wherein the internal electrode non-formation site is formed across the facing portion and the non-facing portion.
  4.  前記複数の内部電極非形成部位が前記対向部分と前記非対向部分との前記境界と平行な複数の列に整列されたことを特徴とする請求項2または請求項3に記載の積層型圧電素子。 4. The multilayer piezoelectric element according to claim 2, wherein the plurality of internal electrode non-formation sites are arranged in a plurality of rows parallel to the boundary between the facing portion and the non-facing portion. .
  5.  前記複数の内部電極非形成部位が前記対向部分と前記非対向部分との前記境界上と当該境界に平行な1以上の線上に整列され、前記境界上に配列された前記内部電極非形成部位の面積が他の線上に配列された前記内部電極非形成部位の面積より大きいことを特徴とする請求項1に記載の積層型圧電素子。 The plurality of internal electrode non-formation sites are aligned on the boundary between the facing portion and the non-facing portion and on one or more lines parallel to the boundary, and the internal electrode non-formation sites arranged on the boundary 2. The multilayer piezoelectric element according to claim 1, wherein an area of the multilayer piezoelectric element is larger than an area of the internal electrode non-formation portion arranged on another line.
  6.  前記内部電極非形成部位を前記対向部分と一方の前記非対向部分との前記境界に沿って有する前記内部電極がさらに前記対向部分と他方の前記非対向部分との前記境界に沿って前記複数の内部電極非形成部位を有することを特徴とする請求項1乃至請求項5のいずれかに記載の積層型圧電素子。 The internal electrode having the internal electrode non-forming portion along the boundary between the facing portion and one non-facing portion further includes the plurality of the internal electrodes along the boundary between the facing portion and the other non-facing portion. 6. The multilayer piezoelectric element according to claim 1, further comprising an internal electrode non-formation site.
  7.  前記複数の内部電極のうちの2以上の前記内部電極が、前記内部電極非形成部位を含むことを特徴とする請求項1または請求項2に記載の積層型圧電素子。 3. The multilayer piezoelectric element according to claim 1, wherein two or more of the plurality of internal electrodes include the internal electrode non-formation site.
  8.  前記内部電極非形成部位を含む2以上の前記内部電極が積層方向に周期的に配置されていることを特徴とする請求項7に記載の積層型圧電素子。 The multilayer piezoelectric element according to claim 7, wherein two or more internal electrodes including the internal electrode non-formation site are periodically arranged in a stacking direction.
  9.  積層方向に隣り合う一対の前記内部電極が、それぞれ前記内部電極非形成部位を有していることを特徴とする請求項7または請求項8に記載の積層型圧電素子。 The stacked piezoelectric element according to claim 7 or 8, wherein each of the pair of internal electrodes adjacent to each other in the stacking direction has the internal electrode non-forming portion.
  10.  それぞれ前記内部電極非形成部位を有する前記一対の内部電極のうち、前記積層体の端面に近い前記内部電極の前記内部電極非形成部位の占める比率が、前記積層体の端面から遠くに位置する前記内部電極の前記内部電極非形成部位の占める比率よりも大きいことを特徴とする請求項9に記載の積層型圧電素子。 Of the pair of internal electrodes each having the internal electrode non-formation site, the ratio of the internal electrode non-formation site of the internal electrode near the end surface of the multilayer body is located far from the end surface of the multilayer body The multilayer piezoelectric element according to claim 9, wherein the ratio is larger than a ratio of the internal electrode to the portion where the internal electrode is not formed.
  11.  前記複数の内部電極のうち、前記積層体の最も端面側に位置する前記内部電極が、前記内部電極非形成部位を有していることを特徴とする請求項1乃至請求項10のいずれかに記載の積層型圧電素子。 The internal electrode located in the most end surface side of the laminated body among the plurality of internal electrodes has the internal electrode non-formation site. The laminated piezoelectric element described.
  12.  前記内部電極非形成部位を有する前記内部電極においてさらに、前記内部電極非形成部位より前記境界から離れた位置に、当該内部電極非形成部位より面積の小さい第2の内部電極非形成部位を有する請求項1乃至請求項11のいずれかに記載の積層型圧電素子。 The internal electrode having the internal electrode non-formation site further includes a second internal electrode non-formation site having a smaller area than the internal electrode non-formation site at a position away from the boundary from the internal electrode non-formation site. The multilayer piezoelectric element according to any one of claims 1 to 11.
  13.  前記積層体の端面に近い前記内部電極に形成された前記第2の内部電極非形成部位ほど、面積が大きいことを特徴とする請求項12に記載の積層型圧電素子。 The multilayer piezoelectric element according to claim 12, wherein the area of the second internal electrode non-formation part formed on the internal electrode near the end face of the multilayer body is larger.
  14.  請求項1乃至請求項13のいずれかに記載の積層型圧電素子と噴射孔とを備え、前記積層型圧電素子の駆動により前記噴射孔から液体を吐出させることを特徴とする噴射装置。 An injection apparatus comprising the multilayer piezoelectric element according to any one of claims 1 to 13 and an injection hole, wherein liquid is ejected from the injection hole by driving the multilayer piezoelectric element.
  15.  高圧燃料を備えるコモンレールと、このコモンレールに蓄えられた燃料を噴射する請求項14に記載の噴射装置と、前記噴射装置に駆動信号を与える噴射制御システムとを備えたことを特徴とする燃料噴射システム。 15. A fuel injection system comprising: a common rail including high-pressure fuel; an injection device according to claim 14 that injects fuel stored in the common rail; and an injection control system that provides a drive signal to the injection device. .
PCT/JP2009/051253 2008-01-29 2009-01-27 Laminated piezoelectric element, and injector equipped with laminated piezoelectric element and fuel injection system WO2009096381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009551520A JP5154580B2 (en) 2008-01-29 2009-01-27 Multilayer piezoelectric element, injection device including the same, and fuel injection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008017299 2008-01-29
JP2008-017299 2008-01-29

Publications (1)

Publication Number Publication Date
WO2009096381A1 true WO2009096381A1 (en) 2009-08-06

Family

ID=40912734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051253 WO2009096381A1 (en) 2008-01-29 2009-01-27 Laminated piezoelectric element, and injector equipped with laminated piezoelectric element and fuel injection system

Country Status (2)

Country Link
JP (1) JP5154580B2 (en)
WO (1) WO2009096381A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010020192A1 (en) * 2010-05-11 2011-11-17 Epcos Ag Multilayer piezoelectric component has electrode layers near target rupture layers, spaced at preset distance from lateral borders of active region of stack, while remaining electrode layers are made to contact the lateral borders
EP2472620A1 (en) * 2009-08-27 2012-07-04 Kyocera Corporation Multilayer piezoelectric element, and injection apparatus and fuel injection system using same
JP2013012656A (en) * 2011-06-30 2013-01-17 Tdk Corp Piezoelectric element
JP2013012657A (en) * 2011-06-30 2013-01-17 Tdk Corp Piezoelectric element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196076A (en) * 1982-05-11 1983-11-15 Nec Corp Electrostrictive effect element
JPH0235785A (en) * 1988-07-26 1990-02-06 Hitachi Metals Ltd Laminate-type displacement element
JP2005005680A (en) * 2003-05-21 2005-01-06 Denso Corp Piezoelectric actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587334B2 (en) * 1997-03-24 2004-11-10 日立金属株式会社 Multilayer piezoelectric transformer
JP2007157849A (en) * 2005-12-01 2007-06-21 Denso Corp Manufacturing method of stacked piezoelectric element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196076A (en) * 1982-05-11 1983-11-15 Nec Corp Electrostrictive effect element
JPH0235785A (en) * 1988-07-26 1990-02-06 Hitachi Metals Ltd Laminate-type displacement element
JP2005005680A (en) * 2003-05-21 2005-01-06 Denso Corp Piezoelectric actuator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472620A1 (en) * 2009-08-27 2012-07-04 Kyocera Corporation Multilayer piezoelectric element, and injection apparatus and fuel injection system using same
EP2472620A4 (en) * 2009-08-27 2014-08-27 Kyocera Corp Multilayer piezoelectric element, and injection apparatus and fuel injection system using same
DE102010020192A1 (en) * 2010-05-11 2011-11-17 Epcos Ag Multilayer piezoelectric component has electrode layers near target rupture layers, spaced at preset distance from lateral borders of active region of stack, while remaining electrode layers are made to contact the lateral borders
JP2013012656A (en) * 2011-06-30 2013-01-17 Tdk Corp Piezoelectric element
JP2013012657A (en) * 2011-06-30 2013-01-17 Tdk Corp Piezoelectric element
US9070857B2 (en) 2011-06-30 2015-06-30 Tdk Corporation Piezoelectric element

Also Published As

Publication number Publication date
JP5154580B2 (en) 2013-02-27
JPWO2009096381A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5066098B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5421373B2 (en) Multilayer piezoelectric element, injection device using the same, and fuel injection system
JP4933554B2 (en) Multilayer piezoelectric element, injection apparatus and fuel injection system using the same, and method for manufacturing multilayer piezoelectric element
JP5084744B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
WO2012115230A1 (en) Laminated piezoelectric element, injection apparatus provided with same, and fuel injection system provided with same
JPWO2009028444A1 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5084745B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5270578B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5154580B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
WO2013115341A1 (en) Laminated piezoelectric element, injection device provided with same, and fuel injection system
JP2011176187A (en) Laminated piezoelectric element, injection device and fuel injection system having the same
JP2010074033A (en) Stacked piezoelectric element, injection apparatus having the same and fuel injection system
EP2913858B1 (en) Multilayered piezo element, as well as piezo actuator, injection apparatus, and fuel injection system provided with said element
JP5203621B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP4956054B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP5562382B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5274215B2 (en) Multilayer piezoelectric element, injection device, and fuel injection system
JP5133399B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5342846B2 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
WO2012011302A1 (en) Laminated piezoelectric element, and jetting device and fuel jetting system provided with the laminated piezoelectric element
WO2010044396A1 (en) Laminated piezoelectric element, jetting device provided with the laminated piezoelectric element, and fuel jetting system
JP5319196B2 (en) Multilayer piezoelectric element, injection device and fuel injection system using the same
JP5701397B2 (en) Multilayer piezoelectric element, piezoelectric actuator including the same, injection device, and fuel injection system
JPWO2013146984A1 (en) Multilayer piezoelectric element, injection device including the same, and fuel injection system
JP5449433B2 (en) Multilayer piezoelectric element and jetting apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551520

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706324

Country of ref document: EP

Kind code of ref document: A1