JPS58196079A - Electrostrictive effect element - Google Patents

Electrostrictive effect element

Info

Publication number
JPS58196079A
JPS58196079A JP57079039A JP7903982A JPS58196079A JP S58196079 A JPS58196079 A JP S58196079A JP 57079039 A JP57079039 A JP 57079039A JP 7903982 A JP7903982 A JP 7903982A JP S58196079 A JPS58196079 A JP S58196079A
Authority
JP
Japan
Prior art keywords
electrostrictive
electrode
porcelain
powder
internal electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57079039A
Other languages
Japanese (ja)
Other versions
JPH049390B2 (en
Inventor
Masatomo Yonezawa
米沢 正智
Sadayuki Takahashi
高橋 貞行
Atsushi Ochi
篤 越智
Takeshi Yano
健 矢野
Takeshige Hamatsuki
浜付 武重
Izumi Fukui
福井 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57079039A priority Critical patent/JPS58196079A/en
Priority to EP83104556A priority patent/EP0094078B1/en
Priority to DE8383104556T priority patent/DE3378393D1/en
Priority to AU14422/83A priority patent/AU553391B2/en
Priority to CA000427828A priority patent/CA1206193A/en
Priority to US06/493,583 priority patent/US4523121A/en
Publication of JPS58196079A publication Critical patent/JPS58196079A/en
Publication of JPH049390B2 publication Critical patent/JPH049390B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides

Abstract

PURPOSE:To increase the adhesion strength by a method wherein ceramics material sintered at a low temperature is used as internal electrodes beside metallic constituents, in an electrostrictive effect element having the ceramics material showing electrostrictive effect and the internal electrodes. CONSTITUTION:The paste which turns the internal electrode 2 is printed over a film of the electrostrictive material 1 composed of lead magnesiumniobate and lead titanate by a screen printing method. As the material for the electrode 2, the mixture of the platinum paste and ceramics powder is used. For this powder, that which can be sintered at a temperature lower than that for the electrostrictive material 1 is used. Next, the material 1 whereon the electrode 2 is printed is instered. Then, the electrodes 2 are connected by lead wires 3, and thus the electrode terminals A and B are taken out.

Description

【発明の詳細な説明】 本発明は積層磁器コンデンサ型の電歪効果素子に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multilayer ceramic capacitor type electrostrictive element.

電歪効果素子とは大きな電歪効果を示す材料に電圧を印
加して機械歪を発生させる素子である。
An electrostrictive effect element is an element that generates mechanical strain by applying voltage to a material that exhibits a large electrostrictive effect.

電歪効果には縦効果と横効果とが存在し、電界と平行方
向に歪が発生する場合を縦効果と呼び、電界と垂直方向
に歪が発生する場合を横効果という。
There are two types of electrostrictive effects: a longitudinal effect and a transverse effect. When strain occurs in a direction parallel to the electric field, it is called a longitudinal effect, and when strain occurs in a direction perpendicular to the electric field, it is called a transverse effect.

そして一般的には縦効果の方が大きい。縦効果を利用し
て低電圧で大きな歪を発生させるためには電歪効果を示
す材料に設けられた対向する電極間距離を短かくすれば
よい。しかし単に電極間距離を短かくしただけでは歪を
大きく出来ても総変位量を大きくする事が出来ない。こ
の欠点を改善して低電圧で大きな変位量を得るために積
層磁器コンデンサ型の構造が提案されている。
And in general, the vertical effect is larger. In order to generate a large strain at low voltage using the longitudinal effect, the distance between opposing electrodes provided on a material exhibiting an electrostrictive effect may be shortened. However, simply shortening the distance between the electrodes cannot increase the total amount of displacement even if the strain can be increased. In order to improve this drawback and obtain a large amount of displacement at low voltage, a multilayer ceramic capacitor type structure has been proposed.

第1図(a) 、 (blは上記積層磁器コンデンサ型
構造を有する電歪効果素子のうち本発、E!A者らが提
案した構造の例を示している。第1図は電歪効果を示す
磁器材料lと内部電極2、が交互に積層され、リードI
fij3が各内部電極を一層おきに電気的に接続してい
る状態を示している。
Figure 1 (a) and (bl) show an example of the structure of the electrostrictive effect element having the above-mentioned laminated ceramic capacitor type structure, which was proposed by E!A et al. The porcelain material I and the internal electrode 2 are alternately laminated, and the lead I
fij3 shows a state in which each internal electrode is electrically connected every other layer.

第1図(mlは素子の側面図であり、第1図(b)は素
子の断面と同形状の内部電極を示している。本素子は電
極端子A、B間に直流バイアスを印加すると鍋さlの積
層方向に伸びる。この様な構造の素子では電極間距離を
数μm〜数lOμm8度にする事が容易でかつ積層数を
増せば高さlを高く出来る。
Figure 1 (ml is a side view of the element, and Figure 1 (b) shows the internal electrodes that have the same shape as the cross section of the element. When a direct current bias is applied between electrode terminals A and B, this element In an element having such a structure, it is easy to set the distance between the electrodes to several micrometers to several 10 micrometers at 8 degrees, and the height l can be increased by increasing the number of stacked layers.

従って低電圧で大きな変位量が得られる電歪効果素子と
なる。
Therefore, it becomes an electrostrictive element that can obtain a large amount of displacement with a low voltage.

しかし通常内部電極用材料としては白金やパラジウム等
の金属材料が使用されるが、これら金属材料は一般には
電歪効果を示す磁器材料とは化学反応を起こさないため
内部電極と磁器との接合強度はitシ強くないのが普通
である。従って電歪効果素子を大きく変形させたシ、あ
るいは断続的に長期間駆動すると内部電極と磁器材料と
の接合面から機械的に破壊する場合がある。
However, metal materials such as platinum and palladium are usually used as materials for internal electrodes, but these metal materials generally do not cause chemical reactions with porcelain materials that exhibit electrostrictive effects, so the bond between the internal electrodes and the porcelain is strong. Usually, it is not strong. Therefore, if the electrostrictive effect element is greatly deformed or if it is driven intermittently for a long period of time, it may be mechanically destroyed at the bonding surface between the internal electrode and the ceramic material.

本発明の目的は内部電極とi器との接着強度を増大させ
、内部電極と磁器とが交互に積層された電歪効果素子の
機械的破壊に至るまでの寿命を延ばすことを目的として
いる、 4方積層磁器コンデンサにおいては、その内部電極中に
そのコンデンサの銹電体磁器と同一の磁器粉末を混入せ
しめ、該内部i電極と磁器の熱膨張係数を近似させ該磁
器中の夛う、り発生を抑制する方法が知られており、こ
の場合この他の効果として内部電極と磁器との接着強度
が増大すると報告されている。(%開昭56−1628
21 )しかしこのような内部電極が第1図に示したよ
うな構造の、その積層方向に機械的変位をくり返す電歪
効果素子においても有効であるかどうかは全く不明であ
る。
The purpose of the present invention is to increase the adhesive strength between the internal electrodes and the i-shape, and to extend the life of an electrostrictive element in which internal electrodes and ceramics are alternately laminated until mechanical breakdown occurs. In a four-way laminated porcelain capacitor, the same porcelain powder as the electric porcelain of the capacitor is mixed into the internal electrode to approximate the coefficient of thermal expansion of the internal i-electrode and the porcelain. A method for suppressing the occurrence is known, and in this case, it has been reported that another effect is an increase in the adhesive strength between the internal electrode and the porcelain. (% Kaisho 56-1628
21) However, it is completely unclear whether such an internal electrode is effective in an electrostrictive element having a structure as shown in FIG. 1, in which mechanical displacement is repeated in the stacking direction.

すなわち本発明者らは電歪効果を示す磁器材料と内部電
極とが交互に積層され、該内部電極が一層おきに接続さ
れている構造の電歪効果素子において、その内部電極と
して金属主成分の他に該素子を構成する磁器材料よシ低
温で焼結する磁器材料粉末を混入せしめた内部電極を用
いることにより、従来の内部電極をそのまま用いる場合
に比べさらには内部電極中に該素子を構成する磁器と同
一の粉末を混入せしめた場合に比べても電歪効果素子の
機械的破壊に至るまでの4命を大幅に改善できることを
見出したものである。該電歪効果素子を構成する磁器材
料よシ低温で焼結する磁器材料粉末を内部電極中に混入
させた場合、焼成時に該電極中の磁器粉末の一部あるい
は全部が液相の状態となシ素子を構成する磁器と同一の
粉末を混入させた場合に比べ、さらに拡散しやすくなり
内部電極と該磁器との密着性が高まる。
That is, the present inventors have developed an electrostrictive element having a structure in which ceramic materials exhibiting an electrostrictive effect and internal electrodes are alternately laminated, and the internal electrodes are connected every other layer. In addition, by using an internal electrode mixed with porcelain material powder that is sintered at a lower temperature than the porcelain material constituting the element, it is possible to construct the element in the internal electrode more easily than when using the conventional internal electrode as it is. It has been discovered that even when the same powder as used in porcelain is mixed in, the lifespan of the electrostrictive element until mechanical destruction can be significantly improved. When porcelain material powder that is sintered at a lower temperature than the porcelain material constituting the electrostrictive element is mixed into the internal electrode, part or all of the porcelain powder in the electrode becomes a liquid phase during firing. Compared to the case where the same powder as the porcelain constituting the element is mixed, diffusion becomes easier and the adhesion between the internal electrode and the porcelain increases.

以下実施例に従って本発明の詳細な説明を行なう。The present invention will be described in detail below according to Examples.

実施例 電歪効果素子の磁器材料としてマグネシウムニオブ酸鉛
pb(Mg、/sNb、l)0.とチタン酸鉛PbTi
0゜の固溶体を用い本発明の効果を実験的に検証した。
Example Magnesium lead niobate pb (Mg, /sNb, l) 0. and lead titanate PbTi
The effects of the present invention were experimentally verified using a 0° solid solution.

Pb (Mg、、 Nb、、 ) 0.とPbT10.
とをモル比で65対35になる様に出発の原料粉末を秤
量し、800℃で2時間仮焼した。この仮焼粉末に適量
の有機バインダを混合し、有機溶媒中に分散させ泥漿を
得た。泥漿をドクターブレード法によシマイラーフィル
ム上に数100ミクロンの厚みになる様に塗布した後乾
燥させた。このグリーンシートをマイラーフィルムから
剥離した後、所定の大きさに切断し内部電極となるペー
ストをスクリーン印刷法で印刷した。内部電極の材料と
しては白金ペーストにθ〜25重量パーセントの磁器粉
末を混合したものを用いた。この白金ペーストに混入さ
せる磁器粉末はPb (Mg、、 Nb、、 ) 0.
とPbTiO3とを混合した仮焼粉末でその比率はモル
比で9対lである。なお、この組成は先に上げた65対
35の組成よシ約80℃低い温度で焼結出来る特徴があ
る。
Pb (Mg, , Nb, , ) 0. and PbT10.
The starting raw material powder was weighed so that the molar ratio was 65:35, and calcined at 800°C for 2 hours. An appropriate amount of organic binder was mixed with this calcined powder and dispersed in an organic solvent to obtain a slurry. The slurry was applied onto the Shimmerer film to a thickness of several 100 microns by a doctor blade method and then dried. After this green sheet was peeled from the Mylar film, it was cut into a predetermined size and a paste that would become the internal electrodes was printed using a screen printing method. As the material for the internal electrodes, a mixture of platinum paste and 25 weight percent of porcelain powder was used. The porcelain powder to be mixed into this platinum paste is Pb (Mg, , Nb, , ) 0.
The calcined powder is a mixture of PbTiO3 and PbTiO3 in a molar ratio of 9:1. This composition has the characteristic that it can be sintered at a temperature approximately 80° C. lower than the 65:35 composition mentioned above.

次に電極ペーストを印刷したフィルムを重ねて熱プレス
によシ一体成型した後1280℃の温度で1時間焼結し
た。焼結後先の第1図に示した様な形状に切断加工した
。得られた素子の寸法は第1図においてa−3msJx
lOimで各内部電極間の距離は250ミクロンである
。層状に形成した内部電極間を一層おきttcv−ド線
によシミ気的に接続して、2つの電極端子A、Bを取プ
だし、最高電圧400V、周波数1000 Hzの半波
整流した正弦波パルスを印加して素子の寿命試験を行な
った。また内部電極材料として白金ペーストに素子を構
成するff1区材料と同一組成の仮焼宋を混合したもの
を使用し走電歪効果素子も同様に作製し、同様の方法で
寿命試験を行なった。これらの電歪効果素子が機械的破
壊に至るまでに印加したパルス数と内部電極中に混入さ
せた磁器粉末の量との関係を第2図に示す。
Next, the films printed with the electrode paste were stacked and integrally molded using a hot press, and then sintered at a temperature of 1280° C. for 1 hour. After sintering, it was cut into the shape shown in Figure 1 above. The dimensions of the obtained element are a-3msJx in Figure 1.
The distance between each internal electrode at lOim is 250 microns. The internal electrodes formed in a layered manner are connected in a layered manner with a TTCV-D wire, two electrode terminals A and B are taken out, and a half-wave rectified sine wave with a maximum voltage of 400 V and a frequency of 1000 Hz is generated. A life test of the device was conducted by applying a pulse. Further, an electrotactic strain effect element was prepared in the same manner using platinum paste mixed with calcined song having the same composition as the FF1 material constituting the element as the internal electrode material, and a life test was conducted in the same manner. FIG. 2 shows the relationship between the number of pulses applied until these electrostrictive elements reach mechanical breakdown and the amount of porcelain powder mixed into the internal electrodes.

第2図において1は素子を構成する磁器材料よシ低い温
度で焼結するPb(Mg、、Nb、、 )OlとPbT
i0゜とのモル比が9対lの組成の磁器材料仮焼粉床が
混合された電極材料を使用した場合の特性で、1音′2
は素子を構成する磁器材料と同一の仮焼粉床が混合され
た電極材料を使用した場合の特性である。第2図から明
らかな様に本発明の方法を適用すると内部電極と磁器材
料との接合強度が強化され、電歪効果素子の寿命が大き
く伸びることが判かる。また内部電極ペースト作製時に
これに混入させる磁器粉末は40重量−以下が望ましい
。これよシ多く混入せしめると素子の変位置がやや低下
する傾向を有する。またa器粉末の粒径は1〜2μm以
下が望ましい。
In Fig. 2, 1 indicates Pb (Mg, , Nb, , )Ol and PbT, which are sintered at a lower temperature than the porcelain materials constituting the element.
Characteristics when using an electrode material mixed with a porcelain material calcined powder bed with a molar ratio of 9 to l with i0°, 1 sound '2
is the characteristic when using an electrode material in which the same calcined powder bed as the porcelain material constituting the element is mixed. As is clear from FIG. 2, when the method of the present invention is applied, the bonding strength between the internal electrode and the ceramic material is strengthened, and the life of the electrostrictive element is greatly extended. Further, it is desirable that the amount of porcelain powder mixed into the internal electrode paste at the time of preparation is 40% by weight or less. If more than this amount is mixed, the displacement of the element tends to decrease somewhat. Further, the particle size of the A-type powder is preferably 1 to 2 μm or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図体) 、 (b)は電歪効果を示す材料と内部電
極が交互に積層された電歪効果素子の構造の例を示す。 図中番号lは電歪効果を示す材料、2は内部電極、3は
内部電極間を電気的に接続するリード線を示している。 第2図は第1図に示した構造の電歪効果素子において内
部電極に混入させた磁器粉末量と素子寿命との関係を示
す図。 牙 l 図 第2図 0     10     20     30イ反*
を紡Xめ滉合畳(重量%)
Figure 1) and (b) show an example of the structure of an electrostrictive element in which materials exhibiting an electrostrictive effect and internal electrodes are alternately laminated. In the figure, number 1 indicates a material exhibiting an electrostrictive effect, 2 indicates an internal electrode, and 3 indicates a lead wire that electrically connects the internal electrodes. FIG. 2 is a diagram showing the relationship between the amount of porcelain powder mixed into the internal electrode and the element life in the electrostrictive effect element having the structure shown in FIG. 1. Fang l Fig. 2 0 10 20 30 i counter*
Spun and combined tatami (weight%)

Claims (1)

【特許請求の範囲】[Claims] 電歪効果を示す磁器材料と内部電極とが交互に積層され
、該内部電極が一層おきに接続されている構造の電歪効
果素子において、その内部電極として金属主成分の他に
前記磁器材料よシ低温で焼結する磁器材料粉末を混入せ
しめた内部電極を用いることを特徴とする電歪効果素子
In an electrostrictive element having a structure in which ceramic materials exhibiting an electrostrictive effect and internal electrodes are alternately laminated and the internal electrodes are connected every other layer, the internal electrodes include a main component other than the ceramic material. An electrostrictive effect element characterized by using an internal electrode mixed with porcelain material powder that is sintered at low temperatures.
JP57079039A 1982-05-11 1982-05-11 Electrostrictive effect element Granted JPS58196079A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57079039A JPS58196079A (en) 1982-05-11 1982-05-11 Electrostrictive effect element
EP83104556A EP0094078B1 (en) 1982-05-11 1983-05-09 Multilayer electrostrictive element which withstands repeated application of pulses
DE8383104556T DE3378393D1 (en) 1982-05-11 1983-05-09 Multilayer electrostrictive element which withstands repeated application of pulses
AU14422/83A AU553391B2 (en) 1982-05-11 1983-05-10 Multilayer electrostrictive element
CA000427828A CA1206193A (en) 1982-05-11 1983-05-10 Multilayer electrostrictive element which withstands repeated application of pulses
US06/493,583 US4523121A (en) 1982-05-11 1983-05-11 Multilayer electrostrictive element which withstands repeated application of pulses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57079039A JPS58196079A (en) 1982-05-11 1982-05-11 Electrostrictive effect element

Publications (2)

Publication Number Publication Date
JPS58196079A true JPS58196079A (en) 1983-11-15
JPH049390B2 JPH049390B2 (en) 1992-02-20

Family

ID=13678772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57079039A Granted JPS58196079A (en) 1982-05-11 1982-05-11 Electrostrictive effect element

Country Status (1)

Country Link
JP (1) JPS58196079A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412678A (en) * 1990-05-01 1992-01-17 Ngk Insulators Ltd Piezoelectric/electrostriction actuator
US5120377A (en) * 1989-07-25 1992-06-09 Alps Electric Co., Ltd. Method of manufacturing laminated ceramic material
WO2006112096A1 (en) * 2005-04-06 2006-10-26 Murata Manufacturing Co., Ltd Conductive paste and laminated ceramic electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120377A (en) * 1989-07-25 1992-06-09 Alps Electric Co., Ltd. Method of manufacturing laminated ceramic material
JPH0412678A (en) * 1990-05-01 1992-01-17 Ngk Insulators Ltd Piezoelectric/electrostriction actuator
WO2006112096A1 (en) * 2005-04-06 2006-10-26 Murata Manufacturing Co., Ltd Conductive paste and laminated ceramic electronic component

Also Published As

Publication number Publication date
JPH049390B2 (en) 1992-02-20

Similar Documents

Publication Publication Date Title
JPH04299588A (en) Electrostriction effect element
JPH01161709A (en) Laminated ceramic component
JPH08274381A (en) Stacked piezoelectric actuator and its manufacture
JP2893741B2 (en) Electrostrictive effect element
JP2951129B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP2994492B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JPS6334636B2 (en)
JPS58196079A (en) Electrostrictive effect element
JPS6178180A (en) Piezo-electric ceramic deflection element and making thereof
JPH03283581A (en) Laminated piezoelectric actuator element
JPH055387B2 (en)
JPS59122200A (en) Method for connecting electrically internal electrode of electrostrictive element
JPS59115579A (en) Electrostrictive effect element and manufacture thereof
JPH10199709A (en) Multilayer type varistor
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JPH06181343A (en) Laminated displacement element and manufacture thereof
JPH04273183A (en) Piezoelectric effect element and electrostriction effect element and its manufacture
JPH0256822B2 (en)
JPH0451992B2 (en)
JP3080033B2 (en) Multilayer piezoelectric transformer
JPH04274378A (en) Peizoelectric/electrostrictive effect element
JPH02266578A (en) Electrostrictive effect element
JPH0294484A (en) Laminated piezoelectric element
JPH02164085A (en) Electrostriction effect element
JPS58196070A (en) Electrostrictive effect element