JPS58195768A - Metallic hydride device - Google Patents

Metallic hydride device

Info

Publication number
JPS58195768A
JPS58195768A JP57079751A JP7975182A JPS58195768A JP S58195768 A JPS58195768 A JP S58195768A JP 57079751 A JP57079751 A JP 57079751A JP 7975182 A JP7975182 A JP 7975182A JP S58195768 A JPS58195768 A JP S58195768A
Authority
JP
Japan
Prior art keywords
medium
metal hydride
temperature
closed
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57079751A
Other languages
Japanese (ja)
Other versions
JPS6329184B2 (en
Inventor
西崎 倫義
稔 宮本
和明 宮本
健 吉田
克彦 山路
泰詩 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP57079751A priority Critical patent/JPS58195768A/en
Publication of JPS58195768A publication Critical patent/JPS58195768A/en
Publication of JPS6329184B2 publication Critical patent/JPS6329184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は金属水素化物、装置に関する。[Detailed description of the invention] The present invention relates to metal hydrides and devices.

ある種の金属や合金2.発熱的に水素を吸蔵して金属水
素化物を形成し また、この金属水素化物h<−q□、
□よ8.、貴よ7.。6ゎ、お9、近年、このような金
属水素化物の特性を利用したヒートポンプ等、種々の金
属水素化物装置が提案されている。
Certain metals and alloys2. It absorbs hydrogen exothermically to form a metal hydride, and this metal hydride h<-q□,
□Yo8. , You 7. . 6. In recent years, various metal hydride devices such as heat pumps that utilize the characteristics of metal hydrides have been proposed.

第1図は、作動温度領域において平衡分解圧の小さい第
1の金属水素化物(以下、MHIと称する。)と平衡分
解圧の大きい第2の金属水素化物(以下、MB2と称す
る。)を組合せて作動対とし、所謂右回リサイクルによ
って冷熱出力又は温熱出力を得る装置の作動を示すサイ
クル線図であり、横軸は絶対温度Tの逆数を示し、縦軸
は金属水素化物の平衡分解圧Pの対数を示す。
Figure 1 shows a combination of a first metal hydride (hereinafter referred to as MHI) with a low equilibrium decomposition pressure and a second metal hydride (hereinafter referred to as MB2) with a high equilibrium decomposition pressure in the operating temperature range. 1 is a cycle diagram showing the operation of a device that obtains cold output or thermal output through so-called right-handed recycling, in which the horizontal axis represents the reciprocal of the absolute temperature T, and the vertical axis represents the equilibrium decomposition pressure P of metal hydrides. indicates the logarithm of

当初、MHIは十分に水素を吸蔵した状態(点D)にあ
り、MB2は十分に水素を放出した状態(点C)にある
として上記サイクルを説明する。
Initially, the above cycle will be explained assuming that MHI is in a state in which it has sufficiently absorbed hydrogen (point D) and MB2 is in a state in which it has sufficiently released hydrogen (point C).

原理的には、先ず、MHIを温度THの高温熱媒により
加熱し、MB2を温度TMの中温熱媒に接続すると、M
HIは吸熱的に水素を放出しく点A)、この水素を’M
H2が発熱的に吸蔵する(点B)。水素移動羨完了した
後、MHIを温度TM”の中温熱媒に切換1えて接続す
ると共に、MB2を温度TLの低温熱媒に切換えて接続
すると、MB2は吸熱的に水素を放出しく点C)、この
水素をMHIが発熱的に吸蔵する(点D)。再び、MH
Iを高温熱媒に接続し、MB2を中温熱媒に接続すれば
、新しいサイクルが開始される。
In principle, first, MHI is heated by a high-temperature heat medium at a temperature TH, and MB2 is connected to a medium-temperature heat medium at a temperature TM.
HI emits hydrogen endothermically at point A), and this hydrogen is
H2 is exothermically occluded (point B). After hydrogen transfer is completed, when MHI is switched to a medium temperature heating medium with temperature TM and connected, and MB2 is switched to and connected to a low temperature heating medium with temperature TL, MB2 endothermically releases hydrogen (point C). , MHI absorbs this hydrogen exothermically (point D). Again, MH
A new cycle is started by connecting I to the high temperature heat medium and MB2 to the medium temperature heat medium.

ここに、高温熱媒を駆動熱源とすれば、低温熱媒を冷却
負荷として冷熱出力を得ることができ(点C)、また、
中温熱媒を加熱負荷として温熱出力を得ることができる
(点B及び/又はD)。従って、別の作動対に上記と同
じサイクルを半サイクル遅れで行なわせれば、冷熱出力
又は温熱出力を各作動対から交互に得ることができ、冷
熱出′力は冷房に利用することができ、また、温熱出力
は暖房や給湯に利用することができる。
Here, if the high-temperature heat medium is used as the driving heat source, the cold output can be obtained by using the low-temperature heat medium as the cooling load (point C), and
Thermal output can be obtained by using the intermediate temperature heating medium as the heating load (points B and/or D). Therefore, if another working pair is made to perform the same cycle as above with a half-cycle delay, cooling output or heating output can be obtained alternately from each working pair, and the cooling output can be used for cooling. Additionally, the thermal output can be used for space heating and hot water supply.

上記のように1対の作動対を用いる装置は所謂4ボンベ
型装置として知られており、金属水素化物は熱交換器を
なす密閉容器に充填され、各密閉容器は管路により供給
される熱媒にて交互に加熱冷却されて、作動対の間で水
素の吸蔵放出反応を行なう。即ち、MHI及びMB2を
それぞれ第1及び第2の密閉容器に充填すると共に、開
閉制御可能な電磁弁等の制御弁を備えた連通管にて容器
間を水素が移動し得るように連通して第1の作動対とな
し、同様にMHI及びMB2をそれぞれ第3及び第4の
密閉容器に充填すると共に、水素が移動し得るように連
通して第2の作動対となすのである。
The device using one working pair as described above is known as a so-called four-cylinder device, in which the metal hydride is filled in closed containers that form a heat exchanger, and each closed container receives heat supplied by a pipe line. They are alternately heated and cooled in a medium to perform a hydrogen storage and release reaction between the working pair. That is, MHI and MB2 are filled into first and second closed containers, respectively, and the containers are communicated with each other through a communication pipe equipped with a control valve such as a solenoid valve that can be opened and closed so that hydrogen can move between the containers. Similarly, MHI and MB2 are filled in third and fourth closed containers, respectively, and communicated so that hydrogen can be transferred to form a second working pair.

しかし、このような装置においては、例えば、冷熱出力
を得る場合、先に説明した作動からも明らかなように、
第1の作動対においてMHIからのMB2への水素移動
が終了した後、MHIを温度TM’ の中温熱媒に接続
すると(点D) 、MB2からMHIへの水素移動が開
始さ゛れ、MB2は水素の吸熱的放出により冷熱を出力
するが、MB2及びその密閉容器自体が温度TLに冷却
するのに(点B−C)上記冷熱出力が消費されるので、
取得できる冷熱出力が減少する。同様に、第2の作動対
においては、MB2からMHIへの水素移動が終了した
後は、MHIを高温熱媒に、また、MB2を中温熱媒に
それぞれ接続して所定の温度にまで加熱するが、特にM
HIを温度THに加熱するために(点D−A)多くの熱
エネルギーの入力を要する。このように、上記装置にお
いては多量の熱エネルギーを要して、冷熱出力の一部が
装置自体の冷却に消費されるので、装置の成績係数が小
さくなる問題がある。
However, in such a device, for example, when obtaining cold output, as is clear from the operation explained above,
After hydrogen transfer from MHI to MB2 is completed in the first working pair, when MHI is connected to a medium-temperature heating medium at temperature TM' (point D), hydrogen transfer from MB2 to MHI starts, and MB2 becomes hydrogen. Outputs cold energy by endothermic release of MB2 and its closed container itself (points B-C), so the above cold energy output is consumed to cool down MB2 and its closed container itself to temperature TL (points B-C).
The available cooling output will be reduced. Similarly, in the second working pair, after hydrogen transfer from MB2 to MHI is completed, MHI is connected to a high temperature heating medium and MB2 is connected to a medium temperature heating medium to heat them to a predetermined temperature. But especially M
It takes a lot of thermal energy input to heat HI to temperature TH (point DA). As described above, the above-mentioned apparatus requires a large amount of thermal energy, and a part of the cooling output is consumed for cooling the apparatus itself, so there is a problem that the coefficient of performance of the apparatus becomes small.

高温熱媒を駆動熱源とし、中温熱媒を加熱負荷として、
特にMH2から温熱出力を得る場合にも、MHIを温度
TM’から温度TI(に加熱するのに多くの熱エネルギ
ー人力を要すると共に、MH2が水素を吸蔵して温熱を
出力するときもその出力の一部がMH2を温度TLから
温度TMに加熱するのに(点C−B)消費されるので、
同様に装置の成績係数が小さくなる。
The high temperature heat medium is used as the driving heat source, and the medium temperature heat medium is used as the heating load.
In particular, when obtaining thermal output from MH2, it requires a lot of thermal energy and human power to heat MHI from temperature TM' to temperature TI (temperature TI), and when MH2 absorbs hydrogen and outputs thermal heat, the output also decreases. A part of it is consumed in heating MH2 from temperature TL to temperature TM (point C-B), so
Similarly, the coefficient of performance of the device becomes smaller.

本発明は上記の問題を解決するためになされたものであ
って、熱エネルギーの入力を少なくして、高い成績係数
を有する金属、杢素化物装置を提供することを目的とす
る。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a metal/heater oxide device which requires less thermal energy input and has a high coefficient of performance.

本発明の金属水素化物装置は、作動温度領域において平
衡分解圧の小さしζ−1の金属水素化物を充填した第1
の密閉容器と平衡分解圧の大きい第2の金属水素化物を
充填した第2の密閉容器を水素が移動し得るように連通
して第1の作動対となし、第1の金属水素化物を充填し
た第3の密閉容器と第2の金属水素化物を充填した第4
の密閉容器を水素が移動し得るように連通して第2の作
動対となし、第1及び第3の密閉容器を熱媒管路により
それぞれ高温熱媒と中温熱媒とに熱交換可能かつ切換え
可能に接続すると共に、第2及び第4の密閉容器を熱媒
管路によりそれぞれ中温熱媒と低温熱媒とに熱交換可能
かつ切換え可能に接続し、第1の作動対において第1の
密閉容器の第1の金属水素化物から水素を吸熱的に放出
させて、これを第2の密閉容器の第2の金属水素化物に
発熱的に吸蔵させると同時に、第2の作動対において第
4の密閉容器の第2の金属水素化物から水素を吸熱的に
放出させて、9れを第3の密閉容器の第1の金属水素化
物に発熱、;的に吸蔵させ、次に、第1.11111 の作動対において第・2の密閉容器の第2の金属水素化
物に水素を吸熱的″に放出させて、これを第1の密閉容
器の第1の金属水素化物に発熱的に吸蔵させると同時に
、第2の作動対において第3の密閉容器の第1の金属水
素化物から水素を吸熱的に放出させて、これを第4の密
閉容器の第2の金属水素化物に発熱的に吸蔵させるサイ
クルを有する金属水素化物装置において、第1及び第3
の密閉容器に高温又は中温熱媒を循環供給する前記熱媒
管路にバイパス管路を設けると共に、第1と第3の密閉
容器の間に熱交換可能に連結管路を設けて、高温及び中
温熱媒から遮断して第1と第3の密閉容器の間に閉じた
ループの第1の熱交換管路を形成すると共に、第2と第
4の密閉容器に中温又は低温熱媒を循環供給する前記熱
媒管路にバイパス管路を設けると共に、第2と第4の密
閉容器の間に熱交換可能に連結管路を設けて、中温及び
低温熱媒から遮断して第2と第4の密閉容器の間に閉し
たループの第2の熱交換管路を形成し、第1の密閉容器
の第1の金属水素化物の水素の放出又は吸蔵が終了し、
第3の密閉容器の第1の金属水素化物の水素の吸蔵又は
放出が終了した後に、上記閉じたループの第1の熱交換
管路により第1と第3の密閉容器の間で熱交換させると
共に、第2の密閉容器の第2の金属水素化物の水素の放
出又は吸蔵が終了し、第4の密閉容器の第2の金属水素
化物の水素の吸蔵又は放出が終了した後に、上記閉じた
ループの第2の熱交換管路により第2と第4の密閉容器
の間で熱交換させるようにしたことを特徴とするもので
ある。
The metal hydride device of the present invention has a first reactor filled with a metal hydride having a small equilibrium decomposition pressure of
The closed container and the second closed container filled with a second metal hydride having a high equilibrium decomposition pressure are connected so that hydrogen can move, forming a first working pair, and the second sealed container is filled with the first metal hydride. a third sealed container filled with the second metal hydride and a fourth sealed container filled with the second metal hydride.
The closed containers are connected to each other so that hydrogen can move therethrough to form a second working pair, and the first and third closed containers are capable of exchanging heat with a high-temperature heat medium and a medium-temperature heat medium through heat medium pipes, respectively. and the second and fourth closed containers are connected in a heat exchangeable and switchable manner to a medium-temperature heat medium and a low-temperature heat medium, respectively, by means of heat medium conduits, and in the first working pair, the first Hydrogen is endothermically released from the first metal hydride in the closed container and exothermically occluded in the second metal hydride in the second closed container, and at the same time, a fourth metal hydride is released in the second working pair. Hydrogen is endothermically released from the second metal hydride in the sealed container, and hydrogen is exothermically absorbed into the first metal hydride in the third sealed container, and then hydrogen is absorbed into the first metal hydride in the third sealed container. In the working pair of 11111, hydrogen is endothermically released from the second metal hydride in the second sealed container, and hydrogen is exothermically occluded in the first metal hydride in the first sealed container. At the same time, in the second working pair, hydrogen is endothermically released from the first metal hydride in the third closed container, and hydrogen is exothermically occluded in the second metal hydride in the fourth closed container. In a metal hydride apparatus having a cycle, the first and third
A bypass pipe is provided in the heat medium pipe that circulates and supplies a high temperature or medium temperature heat medium to the sealed container, and a connecting pipe is provided between the first and third sealed containers to enable heat exchange. A first heat exchange pipe of a closed loop is formed between the first and third sealed containers by being cut off from the medium temperature heating medium, and the medium temperature or low temperature heating medium is circulated through the second and fourth sealed containers. A bypass pipe line is provided in the heat medium pipe line to be supplied, and a connecting pipe line is provided between the second and fourth sealed containers to enable heat exchange, so that the second and fourth closed containers are isolated from the medium temperature and low temperature heat medium. forming a second heat exchange conduit in a closed loop between the four sealed containers, and the hydrogen release or occlusion of the first metal hydride in the first sealed container is completed;
After the first metal hydride in the third closed container has finished absorbing or desorbing hydrogen, heat is exchanged between the first and third closed containers through the first heat exchange pipe of the closed loop. At the same time, after the second metal hydride in the second sealed container has finished releasing or storing hydrogen, and the second metal hydride in the fourth sealed container has finished storing or releasing hydrogen, the closed container is closed. It is characterized in that heat is exchanged between the second and fourth closed containers using the second heat exchange pipe line of the loop.

第2図は本発明の金属水素化物装置の好ましい実施例を
示す装置回路図である。
FIG. 2 is a device circuit diagram showing a preferred embodiment of the metal hydride device of the present invention.

先ず、冷熱を得る場合について説明する。それぞれ熱交
換器をなす密閉容器1及び3にはMHIが充填され、駆
動熱源をなす温度THの高温熱媒5に制御弁11及び1
2を備えた熱媒管路21によりそれぞれ切換え可能かつ
熱交換可能に接続されていると共に、例えば、水を熱媒
とする温度TM゛の中温熱媒6に上記制御弁を備えた熱
媒管路22によりそれぞれ切換え可能かつ熱交換可能に
接続λれている。高温熱媒管路及び中温熱媒管路はそれ
ぞれ熱媒ポンプ31及び32を有し、制御弁により管路
が選択されて所定の密閉容器に熱媒0 を交互に循環して供給する。一方、密閉容器2及び4に
はそれぞれMH2が充填され、温度TMの中温熱媒7に
制御弁13及び14を備えた管路23によりそれぞれ切
換え可能かつ熱交換可能に接続されていると共に、例え
ば、冷水を熱媒とする低温負荷をなす温度TLの低温熱
媒8に上記制御弁を備えた熱媒管路24によりそれぞれ
切換え可能かつ熱交換可能に接続されている。上記中温
熱媒管路及び低温熱媒管路にもそれぞれ熱媒ポンプ33
及び34が配設され、上記制御弁13及び14によって
管路を選択して所定の密閉容器に熱媒を交互に循環して
供給する。
First, the case of obtaining cold heat will be explained. Closed containers 1 and 3 forming heat exchangers are filled with MHI, and control valves 11 and 1 are connected to a high temperature heat medium 5 having a temperature TH forming a driving heat source.
The heat medium pipes 21 are connected to each other in a switchable and heat exchangeable manner by heat medium pipes 21 having heat medium pipes 2, and are provided with the control valve to a medium temperature heat medium 6 having a temperature TM' using water as a heat medium, for example. They are each connected in a switchable and heat exchangeable manner by means of channels 22. The high-temperature heat medium conduit and the medium-temperature heat medium conduit each have heat medium pumps 31 and 32, and the conduits are selected by a control valve to alternately circulate and supply heat medium 0 to a predetermined closed container. On the other hand, the closed containers 2 and 4 are each filled with MH2, and are connected to the intermediate temperature heat medium 7 of the temperature TM through a pipe line 23 equipped with control valves 13 and 14, respectively, in a switchable and heat exchangeable manner, and, for example, , are connected to a low-temperature heat medium 8 having a temperature TL, which constitutes a low-temperature load using cold water as a heat medium, through a heat medium pipe 24 equipped with the control valve, respectively, in a switchable and heat exchangeable manner. The medium temperature heat medium pipe and the low temperature heat medium pipe are also each provided with a heat medium pump 33.
and 34 are provided, and the control valves 13 and 14 select a pipe line to alternately circulate and supply the heating medium to a predetermined closed container.

更に、密閉容器1と2とは電磁弁のような開閉制御可能
な制御弁15を備えた連通管41により連通されて第1
の作動対をなし、同様に密閉容器3と4も制御弁16を
備えた連通管42により開閉制御可能に連通され考・、
□第2の作動対をなす。
Further, the closed containers 1 and 2 are communicated with each other through a communication pipe 41 equipped with a control valve 15 such as a solenoid valve that can be opened and closed.
Similarly, the closed containers 3 and 4 are connected to each other through a communication pipe 42 equipped with a control valve 16 so that opening and closing can be controlled.
□ Forms the second working pair.

本発明においては、雨j・□1と第3の密閉容器の間に
開閉制御可能な制御・・Qj%17を備えた連結管路2
5が設けられると共に、第1と第3の密閉容器に1 高温又は中温熱媒を循環して供給する熱媒管路にバイパ
ス管路27が設けられて、上記連結管路25とバイパス
管路27とにより第1と第3の密閉容器の間に閉じたル
ープを形成する第1の熱交換管路が形成される。図示し
た装置回路においては、第1の密閉容器への熱媒管路の
入口と第3の密閉容器の熱媒管路の出口との間にバイパ
ス管路27を設けているが、バイパス管路はこれに限定
されるものではなく、熱媒管路の一部を共有して、第1
と第3の密閉容器を連結する連結管路と共に、第1と第
3の密閉容器の間に閉じたループ状管路を形成すればよ
い。
In the present invention, between the rain j・□1 and the third sealed container there is a connecting pipe 2 equipped with a control capable of opening/closing...Qj%17.
5 is provided, and a bypass pipe 27 is provided in the heat medium pipe that circulates and supplies high-temperature or medium-temperature heat medium 1 to the first and third closed containers, and a bypass pipe 27 is provided to connect the connecting pipe 25 and the bypass pipe. 27 form a first heat exchange line forming a closed loop between the first and third closed containers. In the illustrated device circuit, a bypass pipe 27 is provided between the inlet of the heat medium pipe to the first closed container and the outlet of the heat medium pipe to the third closed container. is not limited to this, but shares a part of the heat medium pipe, and
What is necessary is just to form a closed loop-shaped conduit between the first and third closed containers together with a connecting conduit that connects the first and third closed containers.

同様に、第2と第4の密閉容器の間にも開閉制御可能な
制御弁1′8を備えた連結管路26が設けられると共に
、第′2と第4の密閉容器に中温又は低温熱媒を循環し
て供給する熱媒管路にバイパス1 管路28が設けられ、第2と第4の密閉容器の間にも閉
じたルーfiを形成する第2の熱交換管路が形成される
。   。
Similarly, a connecting pipe 26 equipped with a control valve 1'8 capable of opening and closing is provided between the second and fourth sealed containers, and a medium- or low-temperature heat source is provided between the second and fourth sealed containers. A bypass 1 pipe 28 is provided in the heat medium pipe that circulates and supplies the medium, and a second heat exchange pipe that forms a closed loop is also formed between the second and fourth closed containers. Ru. .

上記閉じたループ状熱交換管路のそれぞれには2 容器間熱交換ポンプ35及び36が配設され、後述する
サイクルに基づいて同期的に駆動され、第1と第3の密
閉容器の間、並びに第2と第4の密閉容器の間でそれぞ
れ熱媒を循環させることにより熱交換が行なわれる。な
お、各熱媒管路及び熱交換管路には必要に応じて逆止弁
51乃至56が設けられる。
Two inter-vessel heat exchange pumps 35 and 36 are disposed in each of the closed loop heat exchange pipes, and are driven synchronously based on a cycle to be described later, between the first and third closed vessels. In addition, heat exchange is performed by circulating a heat medium between the second and fourth closed containers. Note that check valves 51 to 56 are provided in each heat medium pipe and heat exchange pipe as necessary.

なお、図面には温度TM’ とTMの2種の中温熱媒6
及び7が示されているが、これらの温度は同じであって
も何ら支障はない。
In addition, the drawing shows two types of medium-temperature heating medium 6 at temperatures TM' and TM.
and 7 are shown, but there is no problem even if these temperatures are the same.

次に、上記装置の作動を冷熱出力を得る場合について第
3図に示すサイクル線図によって説明する。
Next, the operation of the above-mentioned apparatus will be explained with reference to the cycle diagram shown in FIG. 3 for obtaining a cold output.

密閉容器l、2.3及び4はそれぞれ点り、C8A及び
Bにあって、水素移動が終了した時点をサイクルの出発
点とする。従って、密閉容器3は高温熱媒に加熱されて
温度THにあり、密閉容器lは中温熱媒により温度TM
’ に保たれている。また、密閉容器4は中温熱媒によ
り温度TMに保たれており、密閉容器2は低温熱媒に接
続されてい3 て温度TLにある。
The closed vessels 1, 2.3 and 4 are turned on and are at C8A and B, respectively, and the cycle starts when the hydrogen transfer is completed. Therefore, the closed container 3 is heated by the high-temperature heating medium to a temperature TH, and the closed container 1 is heated to a temperature TM by the medium-temperature heating medium.
' is maintained. Further, the closed container 4 is maintained at a temperature TM by a medium-temperature heating medium, and the closed container 2 is connected to a low-temperature heating medium and is at a temperature TL.

ここで、すべての熱媒ポンプ31乃至34の運転を止め
て各密閉容器への熱媒の供給を停止すると共に、各制御
弁17及び18を開けて連結管路25及び26を開放し
、第1と第2の各熱交換管路の容器間熱交換ポンプ35
及び36を駆動すると、第1と第3の密閉容器の間で第
1の熱交換管路により熱線が循環されて熱交換が行なわ
れる。
Here, the operation of all the heat medium pumps 31 to 34 is stopped to stop the supply of heat medium to each closed container, and the control valves 17 and 18 are opened to open the connecting pipes 25 and 26. Inter-vessel heat exchange pump 35 for each of the first and second heat exchange pipes
When 36 and 36 are driven, a hot wire is circulated between the first and third closed containers by the first heat exchange pipe line, thereby performing heat exchange.

この結果、密閉容器1は温度TFに加熱されると共に、
密閉容器3は温度TEに冷却される。即ち、サイクル線
図上で密閉容器l中のMHIは予熱されて点りから点F
に至り、密閉容器3中のMHIは予冷されて点Aから点
Eに至る。同時に、温度TLの密閉容器2と温度TMの
密閉容器4との間で第2の熱交換管路により熱媒が循環
されて熱交換が行なわれ、密閉容器2は温度TKに加熱
され、密閉容器4は温度TGに冷却される。即ち、密閉
容器2及び4のMH2はそれぞれ予冷又は予熱されて点
C及びBから点K及びGに至る。
As a result, the closed container 1 is heated to the temperature TF, and
The closed container 3 is cooled to a temperature TE. That is, on the cycle diagram, the MHI in the closed container l is preheated and moves from point F to point F.
The MHI in the sealed container 3 is precooled and moves from point A to point E. At the same time, a heat medium is circulated through the second heat exchange pipe between the closed container 2 at temperature TL and the closed container 4 at temperature TM to perform heat exchange, and the closed container 2 is heated to a temperature TK, and the closed container 4 is sealed. Container 4 is cooled to temperature TG. That is, the MH2 in the closed containers 2 and 4 are precooled or preheated, respectively, from points C and B to points K and G.

このようにして、第1と第3の密閉容器の間で4 熱交換が行なわれると共に、第2と第4の密閉容器の間
で熱交換が行なわれて、それぞれが予熱又は予冷された
後、容器間熱交換ポンプ35及び36を停止し、制御弁
17及び18を閉じて、密閉容器間の熱交換を止める。
In this way, heat exchange is performed between the first and third closed containers, and heat exchange is also performed between the second and fourth closed containers, so that each of them is preheated or precooled. , the inter-vessel heat exchange pumps 35 and 36 are stopped, the control valves 17 and 18 are closed, and heat exchange between the closed vessels is stopped.

次いで、再び熱媒ポンプ31及び32を駆動して、高温
熱媒5を密閉容器lに供給して温度THに加熱し、MH
Iを点Fから点Aに至らせ、一方、密閉容器3について
は、再び中温熱媒6を供給して温度TEからTM’ に
冷却する。
Next, the heat medium pumps 31 and 32 are driven again to supply the high temperature heat medium 5 to the closed container l and heat it to the temperature TH.
I is brought from point F to point A, while the closed container 3 is cooled from the temperature TE to TM' by supplying the medium temperature heat medium 6 again.

次いで、密閉容器1を温度THに保ち、密閉容器3を温
度TM”に保ちつつ制御弁15を開けば、密閉容器1の
MHIが吸熱的に放出した水素は連通管41により温度
TKにある密閉容器2に流入し、一方、温度TGの密閉
容器4のMH2が放出した水素は連通管42により温度
TM’ の密閉容器3に流入する。この結果、密閉容器
2においては、MH2の水素吸蔵によ鮮温度がTKから
TMに上昇し、一方、密閉容1鼾は吸熱的に水素を放出
し、温度TLに達する。ここで、熱媒ポンプ35 3及び34を駆動して、温度TMの中温熱媒7を容器2
に供給してその温度を一定に保つと共に、低温熱媒8を
密閉容器4に供給して、低温熱媒に冷熱を出力させる。
Next, by opening the control valve 15 while keeping the closed container 1 at the temperature TH and the closed container 3 at the temperature TM, the hydrogen released endothermically by the MHI in the closed container 1 is transferred to the closed container at the temperature TK through the communication pipe 41. On the other hand, the hydrogen released by MH2 in the closed container 4 at the temperature TG flows into the closed container 3 at the temperature TM' through the communication pipe 42. As a result, in the closed container 2, hydrogen storage of MH2 is prevented. The refrigerant temperature rises from TK to TM, while the closed vessel 1 emits hydrogen endothermically and reaches the temperature TL.Here, the heat medium pumps 353 and 34 are driven to bring the temperature to TM. Heat medium 7 is placed in container 2
At the same time, the low temperature heat medium 8 is supplied to the closed container 4 to cause the low temperature heat medium to output cold heat.

以上で半サイクルが完了するが、後半の半サイクルにお
いても異なる密閉容器間で同し作動が繰返される。
This completes the half cycle, but the same operation is repeated between different closed containers in the latter half cycle.

以上のように、本発明の装置によれば、第1の作動対を
なす第1と第2の密閉容器間で、及び第2の作動対をな
す第3と第4の密閉容器間で水素移動が終了した後、第
1と第3の密閉容器の間、並びに第2と第4の密閉容器
の間でそれぞれ熱交換させて、各密閉容器を次の水素の
吸蔵材しくは放出に備えて予冷若しくは予熱するので、
密閉容器自体の加熱に要する熱エネルギーが少なてすむ
と共に、金属水素化物の冷熱出力のうち、金属水素化物
自体とこれを充填した密閉容器の冷却に消□ゾ 費される冷熱量が少なくなるので、装置の成績係数が向
上する。また、密閉容器間の熱交換管路は熱媒管路を一
部共有しそ構成されているので、配置6 管が簡単である。
As described above, according to the device of the present invention, hydrogen is transferred between the first and second closed containers forming the first working pair and between the third and fourth closed containers forming the second working pair. After the transfer is completed, heat is exchanged between the first and third sealed containers and between the second and fourth sealed containers to prepare each sealed container for the next hydrogen storage or release. to pre-cool or pre-heat the
The thermal energy required to heat the sealed container itself is reduced, and the amount of cold energy consumed for cooling the metal hydride itself and the sealed container filled with it is also reduced. , the coefficient of performance of the device is improved. Further, since the heat exchange pipes between the closed containers share a part of the heat medium pipe, the arrangement of the six pipes is simple.

右回りサイクルにより温熱出力を得る場合も同様である
ことは容易に理解されよう。
It will be easily understood that the same applies to the case where thermal output is obtained by a clockwise cycle.

本発明は第4図に示す所謂左回リサイクルによって作動
する装置についても同様に通用される。
The present invention is also applicable to the device shown in FIG. 4 which operates by so-called left-handed recycling.

第4図においては、第3図と比べれば明らかなように、
A−Hの水素移動を低温側で行ない、C−Dの水素移動
を高温側で行なって、A−B−C−Dのサイクルを形成
するので、第1の作動対の密閉容器1と第2の作動対の
密閉容器3は高温熱媒及び中温熱媒にそれぞれ切換え可
能かつ熱交換可能に接続され、第1の作動対の密閉容器
2と第2の作動対の密閉容器4は中温熱媒及び低温熱媒
にそれぞれ切換え可能かつ熱交換可能に接続される。
In Figure 4, as is clear from comparison with Figure 3,
Hydrogen transfer of A-H is performed on the low temperature side and hydrogen transfer of C-D is performed on the high temperature side, forming an A-B-C-D cycle. The closed containers 3 of the second working pair are connected to the high temperature heat medium and the medium temperature heat medium in a switchable and heat exchangeable manner, respectively, and the closed containers 2 of the first working pair and the closed containers 4 of the second working pair are connected to the medium temperature heat medium. and a low-temperature heating medium, respectively, in a switchable and heat exchangeable manner.

このような装置においては、例えば、中温熱媒を駆動熱
源とし、低温熱媒を水又は大気のような熱媒を用いる冷
却器とすれば、高温熱媒に温熱出力を得ることができる
。従って、この装置においても、各作動対の間で水素移
動が完了した後、第1と第3の密閉容器の間、並びに第
2と第4の密閉7 容器の間でそれぞれ熱交換させることにより、特にMH
Iを温度TMから温度THに加熱する際に入力熱エネル
ギーが少なくてすむ。
In such a device, for example, if a medium-temperature heat medium is used as the drive heat source and a cooler is used that uses a heat medium such as water or air as the low-temperature heat medium, thermal output can be obtained from the high-temperature heat medium. Therefore, in this device as well, after hydrogen transfer is completed between each working pair, heat exchange is performed between the first and third closed containers and between the second and fourth closed containers, respectively. , especially M.H.
Less input thermal energy is required when heating I from temperature TM to temperature TH.

更に、本発明においては、第2図に示すように、各熱媒
管路に制御弁61乃至64を設けると共に、この制御弁
を経て各熱媒管路の出口と入口を結ぶ第2のバイパス管
路71乃至74を設けることができる。この装置におい
ては、各作動対間で水素移動が完了した後に前記のよう
に所定の密閉容器間で熱交換させる際に、熱媒ポンプの
運転を続けても、熱媒を密閉容器に供給しないで、上記
第2のバイパス管路により循環させ、一方、容器間熱交
換ポンプを駆動して密閉容器間で熱媒を循環させるので
ある。一般にポンプはその駆動開始時に大電力を消費す
るが、金属水素化物装置においては通常1時間に数回の
容器間熱交換を行なうので、このたびに熱媒ポンプの運
転を停止し、再駆動すれば、電力消費量が非富に大きく
なる。しかし、本発明に従って上記のように、熱媒制御
弁と第2のバイパス管路によって、熱媒ポンプの運転を
続8 けても熱媒を密閉容器に供給しない循環管路を形成する
ことにより、電力の不要な消費を避けることができる。
Furthermore, in the present invention, as shown in FIG. 2, control valves 61 to 64 are provided in each heat medium pipe, and a second bypass connects the outlet and inlet of each heat medium pipe through the control valve. Conduits 71 to 74 can be provided. In this device, when the heat exchange is performed between the predetermined closed containers as described above after the hydrogen transfer is completed between each working pair, even if the heat medium pump continues to operate, the heat medium is not supplied to the closed containers. Then, the heat medium is circulated through the second bypass pipe, and the inter-vessel heat exchange pump is driven to circulate the heat medium between the closed vessels. Pumps generally consume a large amount of electricity when they start operating, but in metal hydride equipment, heat exchange between containers is usually performed several times an hour, so the heat medium pump must be stopped and restarted each time. For example, electricity consumption will be higher for the less wealthy. However, according to the present invention, as described above, the heat medium control valve and the second bypass line form a circulation line that does not supply the heat medium to the closed container even if the heat medium pump continues to operate. , unnecessary consumption of power can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置における作動を説明するためのサイ
クル線図、第2図は本発明の装置の回路構成図、第3図
は本発明の装置の作動を説明するためのサイクル線図、
第4図は他のサイクル線図である。 1.2.3.4・・・密閉容器、5・・・高温熱媒、6
.7・・・中温熱媒、8・・・低温熱媒、11.12、
】3.14.15.16.17.18・・・制御弁、2
1.22.23.24・・・熱媒管路、25.26・・
・連結管路、27.28・・・バイパス管路、41.4
2・・・連通管。 特許出願人・)積水化学工業株式会社 1代表者藤沼基利 9 第3図 1 第4図 1/7− 手続補市占(方式) 1.・J) F+の大小 昭fi157年 特 許  i第797!il 号2、
晃−の名称 金属水成化物装置 3、補11をする者 ゛Jシ1′1身の関係  特許出願人
FIG. 1 is a cycle diagram for explaining the operation of the conventional device, FIG. 2 is a circuit diagram of the device of the present invention, and FIG. 3 is a cycle diagram for explaining the operation of the device of the present invention.
FIG. 4 is another cycle diagram. 1.2.3.4... Sealed container, 5... High temperature heat medium, 6
.. 7...Medium temperature heating medium, 8...Low temperature heating medium, 11.12,
]3.14.15.16.17.18...Control valve, 2
1.22.23.24...heat medium pipe, 25.26...
・Connection pipe line, 27.28... Bypass pipe line, 41.4
2...Communication pipe. Patent Applicant: Sekisui Chemical Co., Ltd. 1 Representative Mototoshi Fujinuma 9 Figure 3 1 Figure 4 1/7 - Supplementary Procedures (Method) 1.・J) F+'s large and small 157th year patent i No. 797! il issue 2,
Akira's name: Person who operates metal aqueous compound device 3, supplement 11 Personal relationship: Patent applicant

Claims (1)

【特許請求の範囲】[Claims] (11作動温度領域において平衡分解圧の小さい第1の
金属水素化物を充填した第1の密閉容器と平衡分解圧の
大きい第2の金属水素化物を充填した!2の密閉容器を
水素が移動し得るように連通して第1の作動対となし、
第1の金属水素化物を充填した第3の密閉容器と第2の
金属水素化物を充填した第4の密閉容器を水素が移動し
得るように連通して第2の作動対となし、第1及び第3
の密閉容器を熱媒管路によりそれぞ、れ高温熱媒と中温
熱媒とに熱交換可能かつ切換え可能に接続すると共に、
第2及び第4の密閉容器を熱媒管路によりそれぞれ中温
熱媒と低温熱媒とに熱交換可能かつ切換え可能に接続し
、第1の作動対において第1の密閉容器の第1の金属水
素化物から水素を吸熱的に放出させて、これを第2の密
閉容1の第2の金属水素化物に発熱的に吸蔵させると同
時に、第2の作動対において第4の密閉容器の第2の金
属水素化物から水素を吸熱的に放出させて、これを第3
の密閉容器の第1の金属水素化物に発熱的に吸蔵させ、
次に、第1の作動対において第2の密閉容器の第2の金
属水素化物に水素を吸熱的に放出させて、これを第1の
密閉容器の第1の金属水素化物に発熱的に吸蔵させると
同時に、第2の作動対において第3の密閉容器の第1の
金属水素化物から水素を吸熱的に放出させて、これを第
4の密閉容器の第2の金属水素化物に発熱的に吸蔵させ
るサイクルを有する金属水素化物装置において、第1及
び第3の密閉容器に高温又は中温熱媒を循環供給する前
記熱媒管路にバイパス管路を設けると共に、第1と第3
の密閉容器の間に熱交換可能に連結管路を設けて、高温
及び中温熱媒から遮断して第1と第3の密閉容器の間に
閉じたループの第1の熱交換管路を形成すると共に、第
2と第4の密閉容器に中温又は低温熱媒を循環供給する
前記熱媒管路にバイパス管路を設けると共に、第2と第
4の密閉容器の間に熱交換可能に連結管路を設けて、中
温及び低温熱媒から遮断して第2と第4の密閉容器の間
に閉じたループの第2の熱交換管路を形成し、第1の密
閉容器の第1の金属水素化物の水素の放出又は吸蔵が終
了し、第3の密閉容器の第1の金属水素化物の水素の吸
蔵又は放出が終了した後に、上記閉じたループの第1の
熱交換管路により第1と第3の密閉容器の間で熱交換さ
せると共に、第2の密閉容器の第2の金属水素化物の水
素の放出又は吸蔵が終了し、第4の密閉容器の第2の金
属水素化物の水素の吸蔵又は放出が終了した後に、上記
閉じたループの第2の熱交換管路により第2と第4の密
閉容器の間で熱交換させるようにしたことを特徴とする
金属水素化物装置。
(Hydrogen moves between the first closed container filled with a first metal hydride with a low equilibrium decomposition pressure and the second closed container filled with a second metal hydride with a high equilibrium decomposition pressure in the 11 operating temperature range. in communication with the first actuating pair so as to obtain;
A third sealed container filled with the first metal hydride and a fourth sealed container filled with the second metal hydride are communicated so that hydrogen can move therethrough to form a second working pair; and third
The sealed containers are respectively connected to a high temperature heat medium and a medium temperature heat medium by heat medium pipes in a heat exchangeable and switchable manner, and
The second and fourth sealed containers are connected to a medium-temperature heating medium and a low-temperature heating medium, respectively, by heating medium pipes in a heat exchangeable and switchable manner, and in the first working pair, the first metal of the first sealed container is Hydrogen is endothermically released from the hydride and exothermically stored in the second metal hydride in the second closed container 1, while the second metal hydride in the fourth closed container 1 is simultaneously released in the second working pair. Hydrogen is released endothermically from the metal hydride of
exothermically occluded in a first metal hydride in a sealed container;
Next, in the first working pair, hydrogen is endothermically released from the second metal hydride in the second sealed container, and hydrogen is exothermically occluded in the first metal hydride in the first sealed container. At the same time, hydrogen is endothermically released from the first metal hydride in the third sealed container in the second working pair, and is exothermically transferred to the second metal hydride in the fourth sealed container. In a metal hydride apparatus having an occlusion cycle, a bypass pipe is provided in the heat medium pipe that circulates and supplies a high temperature or medium temperature heat medium to the first and third closed containers;
A connecting pipe is provided between the closed containers to enable heat exchange, and a first heat exchange pipe of a closed loop is formed between the first and third closed containers by being isolated from the high-temperature and medium-temperature heating medium. At the same time, a bypass pipe is provided in the heat medium pipe that circulates and supplies medium-temperature or low-temperature heat medium to the second and fourth closed containers, and the second and fourth closed containers are connected for heat exchange. A conduit is provided to form a second heat exchange conduit in a closed loop between the second and fourth closed vessels in isolation from the medium and low temperature heat transfer medium, and After the hydrogen storage or desorption of the metal hydride is completed and the hydrogen storage or desorption of the first metal hydride in the third closed container is completed, the first heat exchange pipe of the closed loop At the same time, heat is exchanged between the first and third sealed containers, the release or storage of hydrogen in the second metal hydride in the second sealed container is completed, and the second metal hydride in the fourth sealed container finishes. A metal hydride device characterized in that after hydrogen storage or release is completed, heat is exchanged between the second and fourth closed containers through the closed loop second heat exchange pipe.
JP57079751A 1982-05-11 1982-05-11 Metallic hydride device Granted JPS58195768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57079751A JPS58195768A (en) 1982-05-11 1982-05-11 Metallic hydride device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57079751A JPS58195768A (en) 1982-05-11 1982-05-11 Metallic hydride device

Publications (2)

Publication Number Publication Date
JPS58195768A true JPS58195768A (en) 1983-11-15
JPS6329184B2 JPS6329184B2 (en) 1988-06-13

Family

ID=13698923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57079751A Granted JPS58195768A (en) 1982-05-11 1982-05-11 Metallic hydride device

Country Status (1)

Country Link
JP (1) JPS58195768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269094A (en) * 1985-09-20 1987-03-30 Sanyo Electric Co Ltd Heat transport system utilizing metal hydride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269094A (en) * 1985-09-20 1987-03-30 Sanyo Electric Co Ltd Heat transport system utilizing metal hydride
JPH0441271B2 (en) * 1985-09-20 1992-07-07 Sanyo Electric Co

Also Published As

Publication number Publication date
JPS6329184B2 (en) 1988-06-13

Similar Documents

Publication Publication Date Title
US4523635A (en) Metal hydride heat pump system
JPH046357A (en) Operation method of heat utilizing apparatus using hydrogen-occlusion alloy
JPS58195768A (en) Metallic hydride device
JP3114154B2 (en) Cold and / or hot air generator utilizing solid-gas reaction
JPS634111B2 (en)
JPH109709A (en) Metal hydride adsorption type thermally driven refrigerating machine
JP3059964B1 (en) Solar powered refrigerator and its operation method
CN112629149B (en) Device for refrigerating or heating liquid
JP2642830B2 (en) Cooling device
JPH02110263A (en) Heat-utilizing system utilizing hydrogen storage alloy and operation thereof
JPH02242054A (en) Hydrogen occluded alloy-based heat application system
JP2703360B2 (en) Heat-driven chiller using metal hydride
JPS633233B2 (en)
JPS6186542A (en) Intermittent operation type heat pump device
JPS6329182B2 (en)
JPS58173358A (en) Metal hydride device
JPS6047517B2 (en) metal hydride equipment
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride
JPH04165271A (en) Cold-heat generating system
JPS6096802A (en) Steam generator
JPS61134551A (en) Metallic hydride heat pump device
JPS6115346B2 (en)
JPS5935002A (en) Device of metal hydride
JPH0493593A (en) Heat application system utilizing hydrogen storage alloy
JPH0784966B2 (en) Heat pump using metal hydride and control method thereof