JPS6269094A - Heat transport system utilizing metal hydride - Google Patents

Heat transport system utilizing metal hydride

Info

Publication number
JPS6269094A
JPS6269094A JP60206292A JP20629285A JPS6269094A JP S6269094 A JPS6269094 A JP S6269094A JP 60206292 A JP60206292 A JP 60206292A JP 20629285 A JP20629285 A JP 20629285A JP S6269094 A JPS6269094 A JP S6269094A
Authority
JP
Japan
Prior art keywords
heat
metal hydride
hydrogen
reproduction unit
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60206292A
Other languages
Japanese (ja)
Other versions
JPH0441271B2 (en
Inventor
Kenji Nasako
名迫 賢二
Ikuro Yonezu
育郎 米津
Naojiro Honda
本田 直二郎
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60206292A priority Critical patent/JPS6269094A/en
Publication of JPS6269094A publication Critical patent/JPS6269094A/en
Publication of JPH0441271B2 publication Critical patent/JPH0441271B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To make a utilizing heat temperature level equal to a generated heat temperature level by converting heat generated at heat generating portions into a hydrogen gas which is chemical energy by a metal hydride, transporting the hydrogen gas, and reproducing the heat at heat utilizing portions. CONSTITUTION:A metal hydride filled in a metal hydride vessel 7A generates a hydrogen dissociation reaction by the supply of heat, and hydrogen generated is transported to a metal hydride vessel 9A within a heat reproduction unit 9 through a hydrogen pipeline 10A. The transported hydrogen reacts with a meal hydride 8 filled in the vessel 9A, the reaction heat is recovered through a heat medium pipeline 16, and supplied to a thermal load 5 via a heat storage tank 2. Simultaneously with the heat transport using the hydrogen gas, a heat medium is supplied from a low quality heat source to other metal hydride vessel 9B within the heat reproduction unit 9, and hydrogen is returned to the other metal hydride vessel 7B in the heat reproduction unit 7 via a hydrogen pipeline 10B. By successively changing the vessels 7A and 7B in the heat reproduction unit 7 over to the vessels 9A and 9B within the heat reproduction unit 9, heat collected by a heat collector 1 can be continuously transported to the thermal load 5.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は金属水素化物を利用した熱輸送システムに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a heat transport system using metal hydrides.

(ロ)従来の技術 従来、太陽熱集熱器や地熱等のローカルエネルギーの熱
輸送方法は、例えば第3図に示すように、集熱器1で集
熱した熱を一旦菩熱槽2に貯え、熱媒配管3.4を用い
て蓄熱槽2と熱負荷5の間に熱媒を@環させる方法であ
った。
(b) Conventional technology Conventionally, heat transport methods for local energy such as solar heat collectors and geothermal heat have been used, for example, as shown in Fig. 3, in which heat collected by a heat collector 1 is temporarily stored in a heat tank 2. , a method of circulating a heat medium between the heat storage tank 2 and the heat load 5 using the heat medium piping 3.4.

しかし、この上うな熱媒を用いた方法では、輸送中に大
きな熱損失が生じて熱媒の温度時Fをもたらし、熱発生
個所での比較的高質の熱が熱利用個所では低質の熱に変
化し、エネルギー的に非常に大きな損失を伴っていた。
However, in the method using such a heating medium, a large heat loss occurs during transportation and the temperature of the heating medium becomes F. , and was accompanied by a huge loss in terms of energy.

特に産業用プロセス等において利用する熱は、総熱量と
共に、熱の温度レベルは非常に重要な役割を果し、質の
低];シた熱は利用価値が無くなるので、熱媒配管の断
熱には極めて断熱効果の高い断熱処理を施さなければな
らなかった。
In particular, the heat used in industrial processes, etc., as well as the total heat amount, the temperature level of the heat plays a very important role, and the quality is low. It was necessary to apply heat-insulating treatment with extremely high thermal insulation effects.

更に、太陽熱を利用したシステムでは、エネルギー密度
が小さいため集熱面積が大きくなり、熱利用個所があま
り離れていなくても熱媒配管が長くなる傾向にある。同
時に太陽熱集熱温度が高くなるに従い集熱効率は低くな
るため、できるだけ集熱温度が低く、温度レベルの低下
が小さい熱輸送か望まれていた。しかし、これまで熱媒
による熱輸送より優る方法は提案されていなかった。
Furthermore, in systems using solar heat, the energy density is low, so the heat collection area is large, and the heat medium piping tends to be long even if the heat utilization points are not very far apart. At the same time, as the solar heat collection temperature increases, the heat collection efficiency decreases, so it has been desired to have a heat transport system that keeps the heat collection temperature as low as possible and reduces the drop in temperature level. However, no method superior to heat transport using a heating medium has been proposed so far.

(ハ)発明が解決しようとする問題点 本発明は、金属水素化物を利用することにより、熱発生
個所から熱利用個所まで温度レベルの低下がなく、効率
良く熱輸送できる熱輸送システムを提供することを目的
とする。
(c) Problems to be Solved by the Invention The present invention provides a heat transport system that uses metal hydrides to efficiently transport heat without decreasing the temperature level from the heat generation point to the heat utilization point. The purpose is to

(ニ)問題点を解決するための手段 このため本発明は、熱発生個所と熱利用個所のそれぞれ
に2台の金属水素化物容器を設置して水素配管で連結し
、熱発生個所で生じる熱を=一方の金属水素化物容器に
与えて水素を発生させ、これを一方の水素配管を介して
熱利用個所に送り、一方の金属水素化物容器を介して熱
を取り出し利用すると同時に、廃熱を利用して熱利用個
所側の他方の金属水素化物容器から他方の水素配管を介
して熱発生個所側の他方の冷却した金属水素化物容器に
水素を戻す操作を交互に切り換えて連続して行なうよう
にしたことを特徴としている4(ホ)作用 熱発生個所で発生する熱を、金属水素化物により化学エ
ネルギーである水素ガスに変換、l1g4送し、熱利用
個所で熱を再生するために、利用熱温度レベルを発生熱
温度レベルと全く同一にすることが可能となる。
(d) Means for solving the problem Therefore, the present invention provides two metal hydride containers that are installed at each of the heat generation location and the heat utilization location and connected by hydrogen piping, so that the heat generated at the heat generation location is = Generate hydrogen by supplying it to one metal hydride container, send it to a heat utilization point through one hydrogen pipe, extract and use heat through one metal hydride container, and at the same time generate waste heat. The operation of returning hydrogen from the other metal hydride container on the heat utilization area side to the other cooled metal hydride container on the heat generation area side via the other hydrogen piping is carried out in an alternating manner. 4. (e) The heat generated at the heat generating point is converted into hydrogen gas, which is chemical energy, using a metal hydride, and the heat is sent to the heat utilization point and used to regenerate the heat. It becomes possible to make the heat temperature level exactly the same as the generated heat temperature level.

また、熱輸送は水素ガスにより行なわれるため、輸送中
の熱損失は水素ガスの顕熱損失に限られる。
Furthermore, since heat transport is performed by hydrogen gas, heat loss during transport is limited to sensible heat loss of hydrogen gas.

そのため、輸送配管の距離は、はとんど問題とならない
。同時に、@送中の熱損失が小さいために、断熱効果の
高い断熱処理は必要とされず、安全面からの断熱処理(
水素ガスの顕:係tこより熱発生個所の近くの配管が高
温になる)だけで良いようになる。
Therefore, the distance of the transportation piping is rarely a problem. At the same time, because the heat loss during transport is small, heat insulation treatment with high heat insulation effect is not required, and heat insulation treatment (
The hydrogen gas only needs to be exposed (the pipes near the heat generation point will become hotter).

(へ)実施例 以下、本発明の実施例を図面を参照して説明する。(f) Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る熱輸送システムの概念
構成図を示したもので、第3図と同一符号は同一または
相当部分を示す。図において、熱発生個所には、集熱器
1の近傍に金1/1水素(に物6を収納した2つの金属
水素化物容器7A、7Bからなる熱輸送ユニット7が設
置される。一方、熱利用個所には、暖房器具等の熱負荷
5の近傍に金属水素化物8を収納した2つの金属水素化
物容器9A 、 9Bからなる熱再生ユニット9が設置
される。これら金属水素化物容器7A、9Aおよび7B
と9Bとのl1flを連結して2本の水素配管10A、
IOBが配設されている。
FIG. 1 shows a conceptual configuration diagram of a heat transport system according to an embodiment of the present invention, and the same reference numerals as in FIG. 3 indicate the same or corresponding parts. In the figure, a heat transport unit 7 consisting of two metal hydride containers 7A and 7B containing gold 1/1 hydrogen (nitrogen 6) is installed near the heat collector 1 at the heat generation location. In the heat utilization area, a heat regeneration unit 9 consisting of two metal hydride containers 9A and 9B containing a metal hydride 8 is installed near a heat load 5 such as a heating appliance.These metal hydride containers 7A, 9A and 7B
Connect l1fl of and 9B to create two hydrogen pipes 10A,
IOB is installed.

また、熱発生個所側の金属水素化物容器7A、7Bには
、三方切替弁11を介して集熱器1に接続される熱媒配
管12が、外部の耐圧容器を気密に貫通して集熱器1か
ら内部に熱媒を流し、金属水素化物6に熱を供給し得る
ように配管されている。また、同様にして金属水素化物
容器7A、7Bには、三方切替弁13を介して水源に接
続される冷却水配管14が。
In addition, in the metal hydride containers 7A and 7B on the side where heat is generated, a heat medium pipe 12 connected to the heat collector 1 via a three-way switching valve 11 airtightly penetrates the external pressure-resistant container to collect heat. Piping is provided so that a heat medium can flow inside from the vessel 1 to supply heat to the metal hydride 6. Similarly, the metal hydride containers 7A and 7B have cooling water pipes 14 connected to a water source via a three-way switching valve 13.

耐圧容器を気密に貫通して内部に冷却水を流し。Cooling water is passed through the pressure container airtight inside.

金属水素化物6を冷却し得るように配管されている。Piping is provided so that the metal hydride 6 can be cooled.

一方、熱利用個所側の金属水素化物容器9A、9Bには
、三方切替弁15を介して蓄熱槽2に接続される熱媒配
管16が、耐圧容器を気密に貫通して内部に熱媒を流し
、金属水素化物8から発生する熱を蓄熱槽2に取り出し
得るように配管されている。
On the other hand, in the metal hydride containers 9A and 9B on the heat utilization side, a heat medium pipe 16 connected to the heat storage tank 2 via a three-way switching valve 15 passes through the pressure container in an airtight manner and supplies the heat medium inside. It is piped so that the heat generated from the metal hydride 8 can be taken out to the heat storage tank 2.

また、同様にして金属水素化物容器9A、9Bには、三
方切替弁17を介して、低質熱源である廃熱源に接続さ
れる熱媒配管18が耐圧容器を気密に貫通して内部に熱
媒を流し、金属水素化物8に熱を供給し得るように配管
されている。
Similarly, in the metal hydride containers 9A and 9B, a heat medium pipe 18 connected to a waste heat source, which is a low-quality heat source, is connected to a waste heat source, which is a low-quality heat source, through a three-way switching valve 17. is piped so that heat can be supplied to the metal hydride 8.

以上の構成で、熱発生個所では、金属水素化物容器7A
を集熱器1に、金属水素化物容器7Bを冷却水源に接続
するように三方切替弁11.13を切替える。一方、熱
利用個所では金属水素化物容器9Aを蓄熱槽2に、金属
水素化物容器9Bを廃熱源に接続するように三方切替弁
15.17を切替える。これにより、集熱器1で集熱さ
れた熱は集熱器1近傍に設置された熱輸送ユニット7内
の1つの金属水素化物容器7Aに供給される。ここで、
金属水素化物容器7A内に充填さ扛た金属水素化物は、
熱の供給により水素尊前反応(吸熱反応)を生じ1発生
した水素は、水素配管10Aにより、熱再生ユニット9
内の一つの金属水素化物容器9Aに輸送される。輸送さ
れた水素は容器9A内に充填された金属水素化物8と反
応しく発熱反応)、その反応熱は熱媒配管16により回
収され、蓄熱槽2を通して、熱負荷5に供給される(熱
輸送過程)。この水素ガスによる熱輸送と同時に熱再生
ユニット9内の他方の金属水素化物容器9Bには、低質
の熱11E((廃熱)から熱媒が供給され、水素配管J
OBを通して集輸送ユニット7内の他方の金属水素化物
容器7Bに水素が戻される(再生過程)。
With the above configuration, at the heat generation location, the metal hydride container 7A
The three-way switching valves 11 and 13 are switched to connect the metal hydride container 7B to the heat collector 1 and the metal hydride container 7B to the cooling water source. On the other hand, in the heat utilization area, the three-way switching valves 15 and 17 are switched to connect the metal hydride container 9A to the heat storage tank 2 and the metal hydride container 9B to the waste heat source. Thereby, the heat collected by the heat collector 1 is supplied to one metal hydride container 7A in the heat transport unit 7 installed near the heat collector 1. here,
The metal hydride filled in the metal hydride container 7A is
The hydrogen produced by the hydrogen pre-reduction reaction (endothermic reaction) caused by the supply of heat is transferred to the heat regeneration unit 9 through the hydrogen pipe 10A.
The metal hydride container 9A is one of the metal hydride containers. The transported hydrogen reacts with the metal hydride 8 filled in the container 9A (an exothermic reaction), and the reaction heat is recovered by the heat medium pipe 16 and supplied to the heat load 5 through the heat storage tank 2 (heat transport process). Simultaneously with this heat transfer by hydrogen gas, a heat medium is supplied from the low-quality heat 11E ((waste heat) to the other metal hydride container 9B in the heat regeneration unit 9, and the hydrogen pipe J
Hydrogen is returned to the other metal hydride container 7B in the collection and transportation unit 7 through the OB (regeneration process).

次に、熱輸送ユニット7および熱再生ユニソ1〜9に収
納される金属水素化物容器7A、9Aは、所定量の水素
(有効水素移!I!llff1)が輸送された後は、再
生過程に切り替わる6同時に、再生過程であった金属水
素化物容器9B、7Bは、熱輸送過程に切り替わり、熱
再生ユニット9内の容器9Bから集熱温度レベルの熱が
回収される。このように、熱輸送ユニット7内の容器7
A、7Bおよび熱再生ユニッ)−9内の容器9A、9B
を順次切り替えることにより、集熱器1により集熱され
た熱を熱負荷5へ連続的に輸送することができる。
Next, after a predetermined amount of hydrogen (effective hydrogen transfer!I!llff1) is transported, the metal hydride containers 7A and 9A housed in the heat transport unit 7 and the heat regeneration Uniso 1 to 9 start the regeneration process. At the same time, the metal hydride containers 9B and 7B, which were in the regeneration process, are switched to the heat transport process, and heat at the heat collection temperature level is recovered from the container 9B in the heat regeneration unit 9. In this way, the container 7 in the heat transport unit 7
A, 7B and heat regeneration unit)-9 containers 9A, 9B
By switching sequentially, the heat collected by the heat collector 1 can be continuously transported to the heat load 5.

このときの熱輸送効率を第3図に示した熱媒を用いた従
来例の場合と比較してみる。この場合、熱負荷を100
,0OOkca Q /hr(温度レベル126〜15
0℃)、熱輸送距離を800m、輸送熱媒量を70 Q
 /min、熱媒輸送配管の断熱材の厚さを5cm、配
管の熱損失総括伝熱係数を0.1kca Q /hr−
m・℃とする。
The heat transport efficiency at this time will be compared with that of the conventional example using the heat medium shown in FIG. In this case, the heat load is 100
,0OOkca Q/hr (temperature level 126~15
0℃), heat transport distance is 800m, transport heat medium amount is 70Q
/min, the thickness of the insulation material of the heat medium transport pipe is 5 cm, and the overall heat loss coefficient of the pipe is 0.1 kca Q /hr-
Let it be m・℃.

その結果、従来の熱媒による熱輸送では、第3図に示す
ように、熱媒配管での熱損失は、熱媒前v3で105,
000kca Q /hr、熱媒配管4で71,000
kca Q /hrとなり、往復で176.000kc
a Q /hrにも達し、熱効率も0.36に低下する
。また、熱媒の温度レベルも熱損失に伴い低下するため
、熱負荷に150℃の熱媒を供給するためには、熱媒)
温度を175℃にしなければならない。
As a result, in the conventional heat transfer using a heat medium, the heat loss in the heat medium piping is 105,
000kca Q/hr, 71,000 for heat medium piping 4
kca Q/hr, 176,000kc round trip.
a Q /hr, and the thermal efficiency also decreases to 0.36. In addition, the temperature level of the heat medium also decreases with heat loss, so in order to supply a heat medium of 150°C to the heat load, it is necessary to
The temperature must be 175°C.

これに対して、金属水素化物を利用した本実施例の熱輸
送では、水素配管での熱損失は小さいために(損失熱量
2,000kca Q /hr以下)、高効率で熱輸送
が可能である。しかし、連続運転のために必要となる熱
輸送ユニットおよび集再生ユニットの2つの金属水素化
物容器の切り替えにより、熱効率は低下し、そのため全
体効率も約0.5となる。
On the other hand, in the heat transport of this example using metal hydride, the heat loss in the hydrogen piping is small (heat loss: 2,000 kca Q /hr or less), so heat transport is possible with high efficiency. . However, due to the switching of the two metal hydride vessels of the heat transport unit and the collection and regeneration unit, which are required for continuous operation, the thermal efficiency is reduced, so that the overall efficiency is also about 0.5.

しかし、熱輸送による温度低下はないために、集熱温度
レベルは150℃で良く、そのため太陽熱集熱効率は高
くなる。
However, since there is no temperature drop due to heat transport, the heat collection temperature level may be 150°C, and therefore the solar heat collection efficiency becomes high.

このように本実施例の水素ガスによる熱輸送は従来の集
媒による熱輸送に比べ、熱効率的に優り。
As described above, the heat transport using hydrogen gas in this embodiment is superior in terms of thermal efficiency compared to the conventional heat transport using a collector.

集熱温度も低く設定できることが判る。It can be seen that the heat collection temperature can also be set low.

第2図は本発明による熱輸送システムスを広大な集熱面
積を有する太陽熱利用装置(例えば、太陽熱発電、太陽
熱利用海水淡水化プラント等)に適用した場合の例であ
る。図示の如く、複数の集熱器群20A 、 20B 
、 20Cにそれぞれ熱輸送ユニット21A。
FIG. 2 shows an example in which the heat transport system according to the present invention is applied to a solar heat utilization device having a vast heat collecting area (for example, solar thermal power generation, a solar heat utilization seawater desalination plant, etc.). As shown in the figure, a plurality of heat collector groups 20A and 20B
, 20C and heat transport unit 21A, respectively.

21[3,21Cを配固し、それぞれに連結される水素
配管22により、熱輸送することにより、有効に太陽熱
を回収することができる。また、それぞれの水素配管2
2は熱再生ユニツ1−23に集中し、熱に再生された後
、蓄熱槽24を経て、熱負荷25に供給される。
21[3 and 21C are consolidated and the heat is transported by the hydrogen pipes 22 connected to each, solar heat can be effectively recovered. In addition, each hydrogen pipe 2
2 is concentrated in the heat regeneration unit 1-23, and after being regenerated into heat, it is supplied to the heat load 25 via the heat storage tank 24.

このように1本発明の熱輸送システムは太陽熱を有効に
利用することができるが、言う迄もなく。
As described above, it goes without saying that the heat transport system of the present invention can effectively utilize solar heat.

長距雛の熱輸送が必要とされる熱利用装置全般において
適用が可能である。
It can be applied to all heat utilization devices that require long-distance heat transport for chicks.

(ト)発明の詳細 な説明したように本発明によれば、熱発生個所で発生す
る熱を金属水素化物により化学エネルギーである水素ガ
スに変換、@送し、熱利用個所で熱を再生するために、
利用熱温度レベルは発生熱温度レベルと全く同一にする
ことが可能である。
(g) As described in detail, according to the present invention, heat generated at a heat generating location is converted into hydrogen gas, which is chemical energy, using a metal hydride, and sent to the heat generating location, and the heat is regenerated at a heat utilization location. for,
The utilized heat temperature level can be exactly the same as the generated heat temperature level.

また、が輸送は水素カスにより行なわれるため、輸送中
の熱損失Iま水素ガスの顕熱損失しこ限られ、そのため
輸送配管の距離はほとんど問題とならない。同時に輸送
中の熱損失は小さいために、断熱効果の高い断、熱処理
は必要とされず1発生熱の温度レベルを保持しながらの
高効率で長距離熱輸送か〒iT能な熱輸送システムが得
られるようになる。
Furthermore, since hydrogen gas is transported by hydrogen gas, the heat loss during transport is limited to the sensible heat loss of the hydrogen gas, and therefore the distance of the transport piping does not matter much. At the same time, since the heat loss during transportation is small, there is no need for highly effective insulation or heat treatment, and a heat transport system capable of highly efficient long-distance heat transport while maintaining the temperature level of the generated heat is available. You will be able to get it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る金属水素化物を((1
用した熱輸送システムの概念図、第2図は本発明の他の
実施例に係る金属水素化物利用輸送システムの概念図、
第3図は従来の熱媒顕熱によるが・輸送システムの概念
図である。 1 ・集熱1(ス、2,24・−・蓄熱槽、3,4,1
6.18・・・熱媒配′l↑、5,25  ・熱負荷、
6,8・・・金属水素化物、7,21A、218.21
C・熱輸送ユニット、7A 、 7B 。 OA 、 913   金属水素化物容器、9,23・
・・熱再生ユニッl−1IOA、IOB  ・水素配管
、11,1.3,15.17・・・三方切替弁、12 
 ・・熱媒管、14  ・・冷却水配管。 20A、20B、20C集熱器群、22  ・水素配管
FIG. 1 shows a metal hydride according to an embodiment of the present invention ((1
FIG. 2 is a conceptual diagram of a transport system using metal hydride according to another embodiment of the present invention,
FIG. 3 is a conceptual diagram of a conventional heat transfer system using sensible heat. 1 ・Heat collection 1 (S, 2, 24... Heat storage tank, 3, 4, 1
6.18... Heat medium distribution'l↑, 5,25 ・Heat load,
6,8...metal hydride, 7,21A, 218.21
C. Heat transport unit, 7A, 7B. OA, 913 Metal hydride container, 9,23・
・・Heat regeneration unit l-1 IOA, IOB ・Hydrogen piping, 11, 1.3, 15.17 ・・Three-way switching valve, 12
・Heat medium pipe, 14 ・Cooling water piping. 20A, 20B, 20C collector group, 22 ・Hydrogen piping.

Claims (1)

【特許請求の範囲】[Claims] 熱発生個所には、第1の切替バルブを介して熱源から熱
媒を流す熱媒配管と、第2の切替バルブを介して冷却水
源から冷却水を流す冷却水配管とを耐圧容器内部に金属
水素化物と共に気密に貫通配置してなる2つの金属水素
化物容器を設置する一方、熱利用個所には、第3の切替
バルブを介して熱負荷へ熱媒を流す熱媒配管と、第4の
切替バルブを介して低質熱源から熱媒を流す熱媒配管と
を耐圧容器内部に金属水素化物と共に気密に貫通配置し
て成る2つの金属水素化物容器を設置すると共に、前記
熱発生個所側と熱利用個所側の各金属水素化物容器をそ
れぞれ水素配管で連結し、前記各切替バルブを切替える
ことにより、前記水素配管で連結される一対の金属水素
化物容器に熱源と熱負荷を接続して熱発生個所側から熱
利用個所側に水素を輸送している間に、前記水素配管で
連結される他の一対の金属水素化物容器に冷却水源と低
質熱源を接続して熱利用個所側から熱発生個所側に水素
を戻す操作を交互に繰り返し実行することを特徴とする
金属水素化物を利用した熱輸送システム。
At the heat generation location, a heat medium pipe that flows a heat medium from a heat source through a first switching valve and a cooling water pipe that flows cooling water from a cooling water source through a second switching valve are installed inside a pressure-resistant container using metal. Two metal hydride containers are installed that are airtightly arranged through the hydride, while a heat medium pipe is installed in the heat utilization area to flow the heat medium to the heat load via the third switching valve, and a fourth metal hydride container is installed. Two metal hydride containers are installed in which a heat medium pipe through which a heat medium flows from a low-quality heat source through a switching valve is airtightly penetrated inside the pressure container together with the metal hydride. By connecting each metal hydride container at the usage site with a hydrogen pipe and switching each of the switching valves, a heat source and a heat load are connected to the pair of metal hydride containers connected by the hydrogen pipe to generate heat. While hydrogen is being transported from the heat utilization point to the heat generation point, a cooling water source and a low-quality heat source are connected to the other pair of metal hydride containers connected by the hydrogen piping, and the hydrogen is transported from the heat utilization point to the heat generation point. A heat transport system using metal hydrides, which is characterized by alternately repeating the operation of returning hydrogen to the side.
JP60206292A 1985-09-20 1985-09-20 Heat transport system utilizing metal hydride Granted JPS6269094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60206292A JPS6269094A (en) 1985-09-20 1985-09-20 Heat transport system utilizing metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60206292A JPS6269094A (en) 1985-09-20 1985-09-20 Heat transport system utilizing metal hydride

Publications (2)

Publication Number Publication Date
JPS6269094A true JPS6269094A (en) 1987-03-30
JPH0441271B2 JPH0441271B2 (en) 1992-07-07

Family

ID=16520886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60206292A Granted JPS6269094A (en) 1985-09-20 1985-09-20 Heat transport system utilizing metal hydride

Country Status (1)

Country Link
JP (1) JPS6269094A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423069A (en) * 1987-07-17 1989-01-25 Sanyo Electric Co Heat pump system
KR20040050758A (en) * 2002-12-09 2004-06-17 엘지전자 주식회사 heating and cooling device for hydrogen storage alloys and method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195768A (en) * 1982-05-11 1983-11-15 積水化学工業株式会社 Metallic hydride device
JPS5945914A (en) * 1982-06-07 1984-03-15 Kuraray Chem Kk Preparation of carbonaceous molecular sieve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195768A (en) * 1982-05-11 1983-11-15 積水化学工業株式会社 Metallic hydride device
JPS5945914A (en) * 1982-06-07 1984-03-15 Kuraray Chem Kk Preparation of carbonaceous molecular sieve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423069A (en) * 1987-07-17 1989-01-25 Sanyo Electric Co Heat pump system
KR20040050758A (en) * 2002-12-09 2004-06-17 엘지전자 주식회사 heating and cooling device for hydrogen storage alloys and method thereof

Also Published As

Publication number Publication date
JPH0441271B2 (en) 1992-07-07

Similar Documents

Publication Publication Date Title
Lovegrove et al. Developing ammonia based thermochemical energy storage for dish power plants
US4085590A (en) Hydride compressor
CA1050777A (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
Dincer et al. Potential thermochemical and hybrid cycles for nuclear‐based hydrogen production
Lovegrove et al. A solar-driven ammonia-based thermochemical energy storage system
Boretti et al. Hydrogen production by solar thermochemical water-splitting cycle via a beam down concentrator
CN208361885U (en) A kind of system that liquid hydrogen is prepared by liquefied natural gas
CN108981201A (en) Supercritical CO2The amino thermochemical energy storage reactor of solar heat power generation system
EP0275619B1 (en) Method and apparatus for generating electric energy using hydrogen storage alloy
JPS6269094A (en) Heat transport system utilizing metal hydride
CN210560792U (en) Amino solar thermochemical solid oxide water electrolysis hydrogen production system
Nomura et al. Development of a metal hydride compressor
JP2004006281A (en) Energy formation device and energy carrier system
DK2984434T3 (en) Thermochemical storage system with improved storage efficiency
Chubb et al. Application of chemical engineering to large scale solar energy
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
JPS62169997A (en) Heat transport system utilizing metal hydride
Chukwu et al. Process simulation of nuclear-based thermochemical hydrogen production with a copperchlorine cycle
Nasako et al. Long-distance heat transport system using a hydrogen compressor
CN211079071U (en) Decarbonizing device for producing methanol synthesis gas
USRE30840E (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
JPH0579893B2 (en)
JPH0788990B2 (en) Heat pump system
Saha et al. AMMONIA-MEDIATED HYDROGEN POWER SYSTEM FOR CLEAN ENERGY TRANSITION
JP2004176740A (en) Hydrogen storage system and portable power supply

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees