JPS58182869A - Insulated gate field effect semiconductor device and manufacture thereof - Google Patents

Insulated gate field effect semiconductor device and manufacture thereof

Info

Publication number
JPS58182869A
JPS58182869A JP6535282A JP6535282A JPS58182869A JP S58182869 A JPS58182869 A JP S58182869A JP 6535282 A JP6535282 A JP 6535282A JP 6535282 A JP6535282 A JP 6535282A JP S58182869 A JPS58182869 A JP S58182869A
Authority
JP
Japan
Prior art keywords
film
gate electrode
source
region
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6535282A
Other languages
Japanese (ja)
Inventor
Shinji Shimizu
真二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6535282A priority Critical patent/JPS58182869A/en
Publication of JPS58182869A publication Critical patent/JPS58182869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To minimize the size of an element by processing twice an Si3N4 film as an oxidation resistant mask and effectively self-aligning a gate electrode to a field SiO2 film and source, drain regions. CONSTITUTION:A gate oxidized film 2, a polysilicon film 3 and an Si3N4 film 4 are sequentially laminated on a P type silicon substrate 1, etched, and boron ions are implanted, thereby forming a channel stopper ion implanted region 5. The periphery of an Si3N4 film 4 is oxidized, an element isolating field SiO2 film 6 is grown, the Si3N4 film 4 and the film 3 are etched, and the gate electrode forming laminate is allowed to remain. Phosphorus or As ion beam 7 is emitted to implant ions to the substrate 1. The periphery of the film 4 is oxidized, an SiO2 film 10 for covering an N type source region 8 and a drain region 9 is grown, the second electrode 11 is formed, a phosphorus glass film 12 is covered, and aluminum source and drain electrode wirings 13, 14 are formed.

Description

【発明の詳細な説明】 本発明は絶縁ゲート型電界効果半導体装置、特にMIS
FET(Metal  In5ulator Sem1
conduc−tor F”1eld Effect 
’l’ransistor )及びその製造方法に関T
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect semiconductor device, particularly an MIS.
FET (Metal In5lator Sem1
conductor F”1eld Effect
'l'ransistor) and its manufacturing method
It is something that

従来のM I S F E Tにおいては、シリコンケ
ート構造にする場合、ソース及びドレイン領域はゲート
電極をマスクとしてイオン打込みで形成されるためにゲ
ート電極とは自己整合的(セルファライン)となる。し
かし、ゲート電極の端部は一般にフィールド5i02膜
上に延在させているので、その端部はフィールドSiO
*膜に対してセルファラインとはならず、加工時に一定
のマスク合せ余裕を必賛とし、これがフィールドSi0
g膜の面積縮小(従ってチップサイズの減小)の1つの
障害となっていることが分った。また、ソース又はドレ
イン領域側へゲート電極配線を延長する場合、他の配線
との接続に大きな面積を必要とする。
In a conventional MISFET, when forming a silicon gate structure, the source and drain regions are formed by ion implantation using the gate electrode as a mask, so that they are self-aligned (self-aligned) with the gate electrode. However, since the end of the gate electrode is generally extended over the field 5i02 film, the end of the gate electrode is
*There is no self-alignment line for the film, and a certain mask alignment allowance is required during processing, and this is the field Si0
It has been found that this is one of the obstacles to reducing the area of the g film (and therefore reducing the chip size). Further, when extending the gate electrode wiring toward the source or drain region, a large area is required for connection with other wiring.

従って、本発明の目的は、各領域間をセルフアラインメ
ントに配置して菓子を最小寸法となすことにある。
Accordingly, it is an object of the present invention to provide self-alignment between the regions to achieve the smallest confectionery size.

以下、本発明の実施例を図面について詳細に説明する。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施例によるM I S F E Tをその製造プロ
セスに沿って説明すると、まず第1A図及び第2A図の
ように、P型シリコン基板1の一王面全体に、公知の半
導体技術に従ってゲート酸化膜2.ポリシリコン膜3及
びSi、、N4膜4を順次積層せしめる。
To explain the manufacturing process of the MISFET according to this embodiment, first, as shown in FIGS. 1A and 2A, gates are formed on the entire surface of the P-type silicon substrate 1 according to known semiconductor technology. Oxide film 2. A polysilicon film 3 and Si, N4 films 4 are sequentially laminated.

(ポリシリコン膜3とSi、N4膜4の間に酸化膜を挿
入してもよい。)ポリシリコン膜3にはリン処理等で不
純物をドープして低抵抗化しておく。
(An oxide film may be inserted between the polysilicon film 3 and the Si, N4 film 4.) The polysilicon film 3 is doped with impurities by phosphorus treatment or the like to lower its resistance.

次いで第1B図及び第2B図のように、菓子領域を決め
ろマスクパターンを用いて5t8N、膜4、更に必安ど
あれば下部のポリシリコン膜3及びゲート酸化膜2を同
一バタ・−ンにエツチングする。
Next, as shown in Figures 1B and 2B, define the confectionery area. Using a mask pattern, 5t8N, film 4, and if necessary, lower polysilicon film 3 and gate oxide film 2 are formed in the same pattern. Etching.

この状態でP型不純物、例えばボロンをイオン打込みし
、チャネルストッパ用のイオン打込み領域5を形成する
。なお、以下の図面ではそのイオン打込み領域は説明の
簡略化のために図不省略する。
In this state, a P-type impurity such as boron is ion-implanted to form an ion-implanted region 5 for a channel stopper. Note that in the following drawings, the ion implantation region is omitted for the sake of simplification of explanation.

次いで第1C図及び第2C図のように、公知の選択酸化
技術であるLOCO8(Local Ox+datio
nof  Si 1icon )によって、耐酸化膜と
してのSi3N4膜4の周囲を酸化せしめ、素子分離用
のフィールド5in2膜6を成長させる。
Next, as shown in FIGS. 1C and 2C, LOCO8 (Local Ox+datio
The periphery of the Si3N4 film 4 as an oxidation-resistant film is oxidized by using oxidation-resistant film 4, and a field 5in2 film 6 for element isolation is grown.

次いで第1D図及び第2D図のよりに、Si、N。Next, as shown in FIGS. 1D and 2D, Si and N were added.

膜4及びポリシリコン膜3をその幅方向に同一パターン
にエツチングし、中間位置にゲート電極形状にSi、N
、膜4とポリシリコン膜3との積層体を残す。そして、
N i)不純物、例えはリン又はAsのイオンビーム7
を照射し、上記積層体及びフィールド5iQ2膜6をマ
スクとして基板1にイオン打込みを行なう。
The film 4 and the polysilicon film 3 are etched in the same pattern in the width direction, and Si, N is etched in the shape of a gate electrode at an intermediate position.
, leaving a stack of the film 4 and the polysilicon film 3. and,
Ni) Ion beam 7 of impurities, e.g. phosphorus or As
is irradiated, and ions are implanted into the substrate 1 using the stacked body and the field 5iQ2 film 6 as a mask.

次いで第1E図及び第2E図のように、公知の熱酸化技
術によってSi、N4膜4の周囲を酸化し、N+型ソー
ス領域8及びドレイン領域9上を覆う5iOz膜10を
成長させる。
Next, as shown in FIGS. 1E and 2E, the periphery of the Si, N4 film 4 is oxidized by a known thermal oxidation technique, and a 5iOz film 10 covering the N+ type source region 8 and drain region 9 is grown.

次いで第1F図及び第2F図のように、ゲート電極3十
〇〕si、N4膜4をエツチングで除去した後、露出し
たゲート電極3上に第2電極11(例えばMo、 W、
 ’l’a等の高融点金族配線又は場合によってはA−
e配置)を公知の蒸着及びパターニングによって形成す
る。更に、公知の化学的気相成長技術でリンガラス膜1
2を被増後、フォトエツチングで加工し、形成されたコ
ンタクトホールにA、、eのソース及びドレイ/を極配
線13,14を設ける。
Next, as shown in FIGS. 1F and 2F, after removing the gate electrode 300] Si and the N4 film 4 by etching, a second electrode 11 (for example, Mo, W, etc.) is deposited on the exposed gate electrode 3.
Refractory metal wiring such as 'l'a or in some cases A-
e arrangement) is formed by known vapor deposition and patterning. Furthermore, a phosphorus glass film 1 is formed using a known chemical vapor deposition technique.
2 is increased, it is processed by photoetching, and electrode wirings 13 and 14 are provided for the sources and drains of A, , and e in the contact holes formed.

工程を単純化したいのならば、リンガラス膜12を級着
せず、上記5i02膜10にコンタクトホールを形成し
、金属配線をソース、ゲート、ドレイン領域におこなっ
てもよい。
If it is desired to simplify the process, contact holes may be formed in the 5i02 film 10 and metal wiring may be provided in the source, gate, and drain regions without depositing the phosphorus glass film 12.

このようにして作成されたMISFETによれは、ゲー
ト電極3の幅(チャネル幅とほぼ同じ)がフィールド5
ift膜6で囲まれた素子領域の幅とほぼ同じに設けら
れ、かつフィールド5iO1膜6及びソース領域8.ド
レイン領域9に対しセルファラインに形成されている。
In the MISFET created in this way, the width of the gate electrode 3 (almost the same as the channel width) is the width of the field 5.
The width of the field 5iO1 film 6 and the source region 8 . A self-alignment line is formed with respect to the drain region 9.

特に従来のMISFET ETに比較して、ゲート電極
3の端部(チャネル幅方向)はフィールド5iQ2膜6
−トに延在せず、菓子領域端と一致しているために、ゲ
ート電極3の端部を決めるマスク合せ時の合せ余裕は必
要ではなく、トランジスタのアイソレーション領域(フ
ィールド5in2膜6)の面積を最小にでき、テンプサ
イズの縮小を図ることができる。しかも、第2の電極配
線11は比較的自由に設けることができ、ゲート電極3
とのコンタクトをその真上でとれることからその接続に
大きな面積は不要となり、このことも菓子サイズの縮小
に寄与している。
In particular, compared to the conventional MISFET ET, the end of the gate electrode 3 (in the channel width direction) is connected to the field 5iQ2 film 6.
- Since it does not extend to the edge of the gate electrode 3 and coincides with the edge of the confectionery area, there is no need for alignment margin when aligning the mask to determine the edge of the gate electrode 3, and the isolation area of the transistor (field 5in2 film 6) The area can be minimized and the template size can be reduced. Moreover, the second electrode wiring 11 can be provided relatively freely, and the gate electrode 3
Since the contact can be made directly above the confectionery, a large area is not required for the connection, which also contributes to reducing the size of the confectionery.

また、製造プロセスについても、上記した如く、耐酸化
マスクとしてのSi8N4膜を2回加工することによっ
て、ゲート電極とフィールド5i02膜及びソース、ド
レイン領域とのセルファラインを確実に実現できるよう
にしていることが%徴的である。
Furthermore, regarding the manufacturing process, as mentioned above, by processing the Si8N4 film as an oxidation-resistant mask twice, it is possible to reliably realize a self-alignment between the gate electrode, the field 5i02 film, and the source and drain regions. This is a typical characteristic.

以上述べた実施例は本発明の技術的思想に基いて更に変
形可能であり、例えは素子のパターンや、各半導体領域
の導を型、使用不純動程等を変えてよい。また、本発明
によるMISFETl”は高集積化メモリ等の各椙テバ
イスに適用可能である。
The embodiments described above can be further modified based on the technical idea of the present invention, for example, the element pattern, conductivity type of each semiconductor region, used impurity range, etc. may be changed. Furthermore, the MISFET 1'' according to the present invention can be applied to various types of devices such as highly integrated memories.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであって、第1A図〜
第1F図はMISFETを製造プロセス111に示す各
断面図、第2A図〜第2F図は第1A図〜第1F図に対
応する各平面図(但、第2F図はリンガラス膜及びA1
配紬を省略している。)である。 なお、図面に示した符号において、3・・・ポリシリコ
ン膜又はゲート電極、4・・・Sl、N4膜、6・・・
フィールドSiQ!膜、8及び9・・・ソース又はドレ
イン領域、10・・・SiQ、膜、11・・・第2の電
極配線である。 第1AID    第2A図 グ
The drawings show embodiments of the present invention, and include Figures 1A to 1A.
FIG. 1F is each cross-sectional view showing the MISFET in the manufacturing process 111, and FIGS. 2A to 2F are plan views corresponding to FIGS.
The pongee is omitted. ). In addition, in the symbols shown in the drawings, 3...polysilicon film or gate electrode, 4...Sl, N4 film, 6...
Field SiQ! Films 8 and 9: Source or drain region, 10: SiQ, film, 11: Second electrode wiring. 1st AID Figure 2A

Claims (1)

【特許請求の範囲】 1、 フィールド酸化膜によって囲まnた領域内にこの
領域の幅方向にその幅分だゆゲート電極が設けられ、こ
のゲート電極と前記フィールド酸化膜とによって囲まれ
た領域にソース及びドレイン領域が夫々形成されており
、前記ゲート電極と前記フィールド酸化膜と前記ソース
及びドレイン領域とが互いに自己整合的に形成されてい
ることを特徴とする絶縁ゲート型電界効果半導体装置。 2、半導体基体の一王面の全体に亘ってゲート絶縁膜と
ゲート電極材料1と耐酸化マスク層とを順次積層し、次
いで少な(とも前記耐酸化マスク層を加工して島状に残
し、次いで酸化処理してこの島状耐酸化マスク層の周囲
にフィールド酸化膜を成長させ、次いで前記島状耐酸化
マスク層と下部のゲート電極材料層とを同一パターンに
加工してゲート電極形状の積層体として残し、次いでこ
の積層体と前記フィールド酸化膜とをマスクとして前記
半導体基体にソース及びドレインg4域形成用の不純物
を導入することを特徴とする絶縁ゲート型電界効果半導
体装置の製造方法。
[Claims] 1. A gate electrode is provided in a region surrounded by the field oxide film in the width direction of this region, and a gate electrode is provided in the region surrounded by the gate electrode and the field oxide film. An insulated gate field effect semiconductor device, wherein source and drain regions are respectively formed, and the gate electrode, the field oxide film, and the source and drain regions are formed in self-alignment with each other. 2. A gate insulating film, a gate electrode material 1, and an oxidation-resistant mask layer are sequentially laminated over the entire surface of the semiconductor substrate, and then a small amount of the oxidation-resistant mask layer is processed to leave an island shape; Next, a field oxide film is grown around this island-shaped oxidation-resistant mask layer by oxidation treatment, and then the island-shaped oxidation-resistant mask layer and the lower gate electrode material layer are processed into the same pattern to form a stack of gate electrode shapes. A method for manufacturing an insulated gate field effect semiconductor device, characterized in that impurities for forming a source and drain region g4 are introduced into the semiconductor substrate using the stacked body and the field oxide film as a mask.
JP6535282A 1982-04-21 1982-04-21 Insulated gate field effect semiconductor device and manufacture thereof Pending JPS58182869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6535282A JPS58182869A (en) 1982-04-21 1982-04-21 Insulated gate field effect semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6535282A JPS58182869A (en) 1982-04-21 1982-04-21 Insulated gate field effect semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58182869A true JPS58182869A (en) 1983-10-25

Family

ID=13284470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6535282A Pending JPS58182869A (en) 1982-04-21 1982-04-21 Insulated gate field effect semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58182869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936157A (en) * 1988-04-22 1990-06-26 Koyo Seiko Co., Ltd. Rack and pinion type steering apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936157A (en) * 1988-04-22 1990-06-26 Koyo Seiko Co., Ltd. Rack and pinion type steering apparatus

Similar Documents

Publication Publication Date Title
EP0370809A2 (en) Thin-film soi mosfet and method of manufacturing thereof
US5407837A (en) Method of making a thin film transistor
US4939154A (en) Method of fabricating an insulated gate semiconductor device having a self-aligned gate
JPH0575117A (en) Semiconductor device and manufacture thereof
JP2619340B2 (en) High voltage transistor structure of semiconductor device and method of manufacturing the same
CA1191973A (en) Process for making complementary transistors
JP2510599B2 (en) Field effect transistor
US6800528B2 (en) Method of fabricating LDMOS semiconductor devices
US8034695B2 (en) Semiconductor device and method of manufacturing the same
JPS6251216A (en) Manufacture of semiconductor device
JPH0738095A (en) Semiconductor device and its manufacturing method
JPS58182869A (en) Insulated gate field effect semiconductor device and manufacture thereof
JPH10163338A (en) Semiconductor device and its manufacturing method
JPS59231864A (en) Semiconductor device
US5620911A (en) Method for fabricating a metal field effect transistor having a recessed gate
EP0017934A2 (en) Method of manufacturing insulated-gate field-effect transistors
JP3148227B2 (en) Method for manufacturing semiconductor device
JP2807718B2 (en) Semiconductor device and manufacturing method thereof
JP3848782B2 (en) Manufacturing method of semiconductor device
KR960012262B1 (en) Mos transistor manufacturing method
KR100240096B1 (en) Method for manufacturing semiconductor device
JPS62169480A (en) Semiconductor device and manufacture thereof
JPH06232394A (en) Manufacture of semiconductor device
JP2966037B2 (en) Method for manufacturing semiconductor device
JPH04133438A (en) Semiconductor device and manufacture thereof