JPS58174544A - Super fine grain ferrite steel - Google Patents

Super fine grain ferrite steel

Info

Publication number
JPS58174544A
JPS58174544A JP5564882A JP5564882A JPS58174544A JP S58174544 A JPS58174544 A JP S58174544A JP 5564882 A JP5564882 A JP 5564882A JP 5564882 A JP5564882 A JP 5564882A JP S58174544 A JPS58174544 A JP S58174544A
Authority
JP
Japan
Prior art keywords
steel
ferrite
grain
transformation
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5564882A
Other languages
Japanese (ja)
Other versions
JPS6239228B2 (en
Inventor
Hiroshi Yada
浩 矢田
Giichi Matsumura
義一 松村
Hiroe Nakajima
中島 浩衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5564882A priority Critical patent/JPS58174544A/en
Priority to US06/481,453 priority patent/US4466842A/en
Priority to DE3312257A priority patent/DE3312257A1/en
Priority to FR8305500A priority patent/FR2524493B1/en
Publication of JPS58174544A publication Critical patent/JPS58174544A/en
Publication of JPS6239228B2 publication Critical patent/JPS6239228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the super fine grain ferrite steel consisting of metallographical structure including many equiaxed ferrite grain surrounded with great inclination grain boundary, by working, in a hot state, low alloy steel by regulating C content without alloying any special element. CONSTITUTION:The steel slab containing not more than 0.3% C, alloy content excepting C of not more than 3%, and not practically containing Nb, Ta, Mo and W, is rolled within a range of temperature practically consisting of austenite range near the transformation point Ar3 with continuous rolling, etc. When processed in this hot rolling, the transformation and recrystallization of austenite are promoted and the grain size is reduced. The super fine grain ferrite steel of metallographical structure including not less than 70% of equiaxed ferrite crystal surrounded with great inclination grain boundary of not more than 4mum in average particle size can be provided as rolled in a hot state thereby. This steel member is excellent in characteristics such as tensile strength, yield stress, etc. and has sufficient ductility and workability as practical steel.

Description

【発明の詳細な説明】 本発明は、超細粒7エ2イト鋼、特に熱関圧嬌ま\で、
しかもNb等の特殊な合金元素を含まない亜共析鋼を主
体とし次層細粒フェライト鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an ultra-fine-grained 7-eight steel, especially a heat-resistant compressor,
Moreover, it relates to a next-layer fine-grained ferritic steel that is mainly composed of hypo-eutectoid steel that does not contain special alloying elements such as Nb.

従来よシフエライト系の鋼材を細粒化する試みは種々性
われてきた。即ち、7エツイト系銅材の細粒化は降伏応
力の上昇(引張強さも)と靭性(破壊遷移温&)の向上
を同時にもたらす唯一の方法であシ、その細粒化の為、
特殊な熱処mを行う方法噂Nb、 MOなど特殊な合金
元素を添加する方法、tたは、その両者を併合する方法
等が行われてきた。
Various attempts have been made to refine the grains of sipherite steel. In other words, refining the grains of the 7-ethite copper material is the only way to increase yield stress (also tensile strength) and improve toughness (fracture transition temperature &) at the same time.
Rumor has it that special heat treatment methods have been used, such as adding special alloying elements such as Nb and MO, or combining the two.

しかしながら、実用的な亜共析鋼で工業的に成立しうる
方法で、4JI以下の超細粒鋼を提供する方法は末だか
つて得られていなかった。
However, a method of providing ultra-fine grain steel of 4JI or less by a method that is industrially viable for practical hypoeutectoid steel has not yet been achieved.

本発明は、このような工業的に得られる画期的彦超細粒
鋼に関するもので、その特徴とするところは、O:0.
3X以下、C以外の合金含有量3X以下であって、冥質
的にNb、 Ta、 Mo、 Wt金含有ない熱間圧延
鋼材で、平均粒径4μ以下の大傾角粒界K11lれた等
軸フェライト結晶粒t−70X以上含有する金属組織よ
りなる超細粒フ%以下、さらに詳細に説明する。
The present invention relates to such a revolutionary Hiko ultra-fine grain steel that can be obtained industrially, and is characterized by O:0.
3X or less, a hot rolled steel material with an alloy content other than C of 3X or less, which does not subtly contain Nb, Ta, Mo, or Wt gold, and is equiaxed with a large angle grain boundary K11l with an average grain size of 4μ or less. The ultra-fine grains consisting of a metal structure containing ferrite crystal grains t-70X or more will be explained in more detail.

本発明銅は上述のような超細粒フェライト銅であるが、
本発明で細粒7エ2イトと呼ぶ組繊は粒の形の着るしい
伸長杜仲わず、はソ等方的であ夛。
The copper of the present invention is ultra-fine ferrite copper as described above,
In the present invention, the composite fibers referred to as fine-grained 7E2ite have a grain shape that is elongated and isotropic.

また、原則として、いわゆる大傾角粒界で囲まれた結晶
粒からなる組織を指し、亜結晶粒界(小傾向粒界)紘粒
界と見なしていない。
In addition, as a general rule, it refers to a structure consisting of crystal grains surrounded by so-called high-angle grain boundaries, and is not considered to be a subgrain boundary (small tendency grain boundary).

か\る本発明鋼の組成範囲を決定した主なる理由線機の
とシシである。
This is the main reason for determining the composition range of the steel of the present invention.

即ち、炭素量は0.3X以下に規定したが、一般に炭素
量が大となると、7エ2イト量が必然的に減少し、パー
2イトfが増加する0本発明鋼では通常の状態図からの
予想以上に7エライトが生成するが。炭素が0.3 X
超になると、パー2イト等の他の組織の量が増加し、フ
ェライト量70X以上を得ることが困難になるので、上
記成分範囲とじ九。
In other words, although the carbon content was specified to be 0.3X or less, in general, as the carbon content increases, the 7E2ite amount inevitably decreases and the Par2ite f increases, which is the normal phase diagram for the steel of the present invention. 7 elites are generated more than expected. Carbon is 0.3
If the amount exceeds 70X, the amount of other structures such as per2ite increases, making it difficult to obtain a ferrite amount of 70X or more, so the above component range is limited.

本発明鋼は原則として炭素以外O合金元素の有無に拘ら
ず得られるが、熱間加工の最適fM度が700〜900
℃の間であって、しかもAr5変態点く対し、Ar1+
5Q℃〜人rs+too℃の間が望ましいという関係が
あるO″e、 Ar3変態点を合金元素で調節した方が
望ましい場合が多い、しかし1合金元素の合計量が、S
、$を超えるとAr5が低くなシすぎて細粒が得られに
く\なるので炭素以外の合金含有量を3X以下にし次。
In principle, the steel of the present invention can be obtained with or without O alloying elements other than carbon, but the optimum fM degree of hot working is 700 to 900.
℃, and Ar5 transformation point, Ar1+
It is often desirable to adjust the O''e and Ar3 transformation points with alloying elements, but the total amount of one alloying element is
If it exceeds $, Ar5 will be too low and it will be difficult to obtain fine grains, so the content of alloys other than carbon is set to 3X or less.

なお、これらの合金元素としてasls Mn、 □r
等の1illII量が大きく鋼中に通常含まれ:8元麿
で4、通常強客上昇を九は延性、靭性の向上に寄与する
ものが多い。
In addition, these alloying elements include asls Mn, □r
A large amount of 1illII, etc., is usually contained in steel: 8% of 4%, and 9% of steel usually contributes to improving ductility and toughness.

t*、 Nb、 TI、 MO,W等はいずれもオース
テナイトの再結晶および変態を遅らせる元素として知ら
れている0本発明鋼では熱間加工時にオーステナイトの
変態および再結晶を促して細粒化するものであるから%
Nb、 Ta、 Mo、 W等はこれを阻害する元素で
あるので、本発明鋼には含まれてはならないのである。
t*, Nb, TI, MO, W, etc. are all known as elements that retard the recrystallization and transformation of austenite.In the steel of the present invention, the transformation and recrystallization of austenite are promoted during hot working to make the grains finer. Because it is a thing%
Nb, Ta, Mo, W, etc. are elements that inhibit this, so they must not be included in the steel of the present invention.

か\る組成の鋼を次のような製造方法によって製造する
Steel with the above composition is manufactured by the following manufacturing method.

上記鋼に鉄鋼のAr5変態点近傍で実質的にオーステナ
イト域よシなる温度域において、連続圧延でIAパスX
は2パス以上の合計圧下率8o・−以上、ある−は、1
秒以内の短時間であればl /(スまたは2ノス以上の
合計圧下率50%以上の圧延を行い、圧延により−mを
起させることにょシ、微細なフェライト結晶粒を生成せ
しめる。
The above steel is subjected to IA pass
The total reduction rate of 2 passes or more is 8o・- or more, and the - is 1
For a short time of less than 1 second, rolling is performed at a total reduction rate of 50% or more at l/(s) or 2 nos or more, and -m is caused by rolling to generate fine ferrite crystal grains.

史に詳述すると、上記鋼を通常のArs&B点(鋼かオ
ーステナイト域である温度から徐冷途中で7エライト変
態を開始する温度を指し、以下単に人rsと云う)とA
r1[11点く同様に徐冷途中でパーライト変態を開始
する温度を指し、・以下単にArlと云う)を基準とし
て(人r1+50℃)〜(Ar5+100℃)の間で1
/すまたは2点ス以上の合計圧下率を80X以上または
1秒以内の短時間に5ON以上の圧下を行6゜ 本発fjAKよる細粒化法は圧延によジオーステナイト
相に加わる歪によりフェライト変態を誘起あるいは促進
させると言う原理に基く、従って圧延は鋼の成分によっ
て熱力学的に定まる平衡変態点(Ae5)以下であって
かつ通常Oオーステナイト相が冷却途中で変態を開始す
る温f(人16)以上のIll!よシ開始され、 Ar
s点よりらi勺低くはない温度で終了する0通常の変態
においては変態が開始進行する次めの駆動力は過冷却で
あるから変態開始温度λr5は鋼板の板厚や冷却速贋に
よって変化する。この様な変態では7工之イト粒の数は
変態前のオーステナイト相の粒界面積や変態核とな〕得
る高歪を持つ死点の密f岬によって決ま夛、特K11m
粒化対策がとられて杜いない場合のフェライト粒径社8
〜10声mFKが普通である。加工歪もまた変態の開始
、進行の駆動力となり、この事は加工歪が残留するオー
ステナイトのAr15点は残留しない場合よ)も上昇す
る参によってよく知られている。ところか、圧延の橡な
加工がオーステナイトに対して与えられた瞬間にあるい
は非常に短い時間の後にフェライト変態が起る様な条件
下において、変態したフェライト粒が非常に微細である
事は従来知られていなかつ九新事実であシ、本発明は加
工歪を変態の駆動力として徹底的に利用するという新規
なものである。 Ars点直上で加工を受け−hi−ス
テナイトの粒界に微細なフェライト粒が加工後直ちKt
7’ta短い時間後に析出し、さらに加工歪が加えられ
るとフェライト粒と未変態オーステナイFの界面KIT
L、いフェライト粒が析出するという過程を繰夛返し、
加工歪が十分大きければ圧延終了時に全面が新しいフェ
ライト粒るには冷却速度20℃/sec以上の範囲で冷
却し、600℃以下の温度に至らしめるのが望ましい。
To explain the history in detail, the above-mentioned steel has a normal Ars & B point (refers to the temperature at which the 7-elite transformation starts during gradual cooling from a temperature in the austenite region of the steel, hereinafter simply referred to as Ars) and A
1 between (r1+50℃) and (Ar5+100℃) based on r1 [point 11, which similarly refers to the temperature at which pearlite transformation begins during slow cooling, and hereinafter simply referred to as Arl).
A total rolling reduction of 80X or higher at two or more points or a rolling reduction of 5ON or higher in a short period of less than 1 second is carried out.6゜The grain refining method using fjAK is a ferrite process due to the strain applied to the diaustenite phase during rolling. Based on the principle of inducing or promoting transformation, rolling is carried out at a temperature f( Ill more than 16) people! Yoshishi started, Ar
The transformation starts at a temperature that is no lower than the point s. In normal transformation, the next driving force for the transformation to proceed is supercooling, so the transformation start temperature λr5 varies depending on the thickness of the steel plate and the cooling rate. do. In this kind of transformation, the number of 7-item grains is determined by the grain boundary area of the austenite phase before transformation and the dense cape of the dead center with high strain, which becomes the transformation nucleus.
Ferrite particle size company 8 when granulation countermeasures are not taken
~10 voices mFK is normal. Working strain also becomes a driving force for the initiation and progression of transformation, and this is well known from the fact that the Ar15 point of austenite, where working strain remains, also increases (in the case where it does not remain). However, it has been known that under conditions where ferrite transformation occurs at the moment or after a very short time when austenite is subjected to rough rolling, the transformed ferrite grains are extremely fine. The present invention is novel in that it thoroughly utilizes machining strain as a driving force for transformation. Immediately after processing, fine ferrite grains are formed at grain boundaries of -hi-stenite immediately above the Ars point.
KIT precipitates after a short time of 7'ta, and when further processing strain is applied, the interface between ferrite grains and untransformed austenite F
L, repeating the process of precipitation of ferrite grains,
If the processing strain is sufficiently large, it is desirable to cool the material at a cooling rate of 20° C./sec or higher to reach a temperature of 600° C. or lower in order to produce new ferrite grains on the entire surface at the end of rolling.

その後は、要求される特性に応じて種々の熱履歴を取る
ことができる。
After that, various thermal histories can be taken depending on the required characteristics.

例えば1強度向上の為には室温附近まで急冷すればよい
し、また、加工性の改善のためKは。
For example, in order to improve the strength by 1, it is sufficient to rapidly cool it to around room temperature, and in order to improve the workability, K can be used.

400℃前後まで急冷後、その温度から徐冷して同浴炭
素を析出させればよい。
After rapidly cooling to around 400° C., carbon may be precipitated in the same bath by slowly cooling from that temperature.

以下、本発明鋼の実施例について説明する。Examples of the steel of the present invention will be described below.

第1表で示す成分を含有する転炉溶製鋼で厚さ200■
のCOスラブを製造し、このスラブを1100 ℃に加
熱し、ホラシストリップミルで熱間圧延した。粗圧延は
5パスで200■よシ5〇−まで圧延し、仕上圧延6ノ
ンスで5雪まで圧延した。仕上圧延で最終2ノ々スを1
秒以内58Xの圧下を加えた例をA(本発明)とし、1
.同最終・臂スを:□1′1゜ 2秒以内27Nの圧下を加え九例¥t′B(比較例)と
した。
Converter melted steel containing the ingredients shown in Table 1 with a thickness of 200mm
This slab was heated to 1100° C. and hot rolled in a Horasis strip mill. Rough rolling was performed in 5 passes to a thickness of 200 mm and 50 mm, and finish rolling was performed to a thickness of 5 mm in 6 nonces. Finish rolling to make the final 2 noses 1
An example in which a pressure of 58X was applied within seconds is referred to as A (the present invention), and 1
.. A pressure of 27 N was applied to the final armpit within 2 seconds of □1'1° to give 9 examples ¥t'B (comparative example).

本発明の望ましい仕上温度は、2mの鋼の変態点から人
の場合は680〜870℃であり、Bの場合は660〜
890℃である。水冷開始は圧延終了後約lf$後であ
′)た、夫々の仕上パススケジ為−ルを第211に示す 第1表 第  2  !!! m上oIRylih /ぐススケシ凰−ルによって製造
し九本ga羽鋼の組織1機械的性質を第3表に示す。
The desired finishing temperature of the present invention is from the transformation point of 2m steel to 680-870°C for steel, and 660-870°C for B.
The temperature is 890°C. The water cooling started approximately lf$ after the end of rolling.The finishing pass schedule for each is shown in Table 1, Section 2! ! ! Table 3 shows the microstructure 1 mechanical properties of the nine-gauge steel produced by the same method.

この表で、試験A!〜4.8〜10が本発明鋼であって
その内、試験JEI、2.4,8.iΩが仕上圧延螢o
soo℃以下までの冷却速度が20C/see以上で擬
造した例であp1比較例の試験ム5は圧延温度が高く(
通常条件)、ベーナイト中マルテンサイ)O焼入組織の
量が多くてフェライト量が40Xと低く、強度が高いが
延性が低くなってシシ、試験A6は仕上圧延温度が低く
s 7エライト圧延になっているので、比較的粗いフエ
ツイトーハーツイトが引會伸にされた加工組織でナシグ
レンを書むが平均フェライト粒径は大きく。
In this table, test A! -4.8 to 10 are the steels of the present invention, among which test JEI, 2.4, 8. iΩ is finish rolling
Test M5 of p1 comparative example, which is an example of fabrication with a cooling rate of 20C/see or higher to soo℃ or below, has a high rolling temperature (
(normal conditions), bainite and martensitic) O quenched structure has a large amount and the amount of ferrite is low at 40X, and the strength is high but the ductility is low. Therefore, the relatively coarse ferrite grains are formed into a processed structure in which the ferrite grains are stretched and stretched, but the average ferrite grain size is large.

従って、延性がや中不足し、強度も低くなっている。ま
九試験A7,11は圧下量が不足しているため冷却中に
変態して、フェライト粒は十分細くなく、パーライトや
ベイナイトの第2相が40XS度も占め、強度は中子上
昇するが延性は十分ではない。
Therefore, the ductility is somewhat insufficient and the strength is also low. In Tests A7 and 11, the rolling reduction was insufficient, so the ferrite grains were transformed during cooling, the ferrite grains were not thin enough, and the second phase of pearlite and bainite occupied 40XS degrees, and although the core strength increased, the ductility decreased. is not enough.

に詳1llKII!@する。Details 1llKII! @do.

112図は、試験A4の光学顕微鏡組織であって、殆ん
どが超微細等釉粒フェライト粒からなっていることがわ
かる。この組織をj!に拡大して示したのが第3図の電
子顕微鏡組織であシ、白熱のコントラストのある微細等
軸結晶粒(フェライト)からなることを明らかにしてい
る。この組繊は、そ0粒径が4μ以下のフェライト粒が
70X以上含まれておシ、更にそ0粒界が奈會大傾角す
なわち隣接し合う結晶粒の結晶方位が大きく異なってい
る状態の粒界になっている0粒径が小さくなると。
Figure 112 shows the optical microscopic structure of Test A4, and it can be seen that most of the structure consists of ultra-fine glazed ferrite grains. This organization! The electron microscope structure shown in Figure 3 is enlarged to reveal that it is composed of fine equiaxed crystal grains (ferrite) with an incandescent contrast. This composite fiber contains 70X or more of ferrite grains with a zero grain size of 4μ or less, and furthermore, the zero grain boundaries have a large tilt angle, that is, the crystal orientations of adjacent crystal grains are greatly different. When the zero grain size at grain boundaries becomes smaller.

強度及び靭性が向上するが、嬉1図に示すように。Strength and toughness are improved, as shown in Figure 1.

平均粒径が4−以下になると通常0petchの関係式
によって予測され九億に比し、急激に降伏応力及び靭性
が良くなるのである。11超塑性等の超細粒鋼のIWI
P性が現われるのも4声以下である。
When the average grain size becomes 4 or less, the yield stress and toughness improve rapidly compared to 900 million, which is predicted by the 0petch relational expression. 11 IWI of ultra-fine grain steel such as superplasticity
P-ness also appears in 4 tones or less.

このような現象は本発明鋼の如き、熱間圧延材の超微細
フェライト鋼において始めて得られた結果である。即ち
、鋼組織の平均粒径が4μ以下であると共に、その粒界
が大傾角粒界の場合にのみ現われるのであ)、例えば7
工ライト組織の鋼を熱間て加工し九ときに生ずみ亜結晶
粒組織のような場合嬬、夏結晶粒間の方位が僅かしか異
ならない小傾向粒界であるため機械的性質に対する細粒
化の効果は必ずし4十分に現われないのである。
Such a phenomenon was first obtained in a hot-rolled ultrafine ferritic steel such as the steel of the present invention. In other words, it appears only when the average grain size of the steel structure is 4μ or less and the grain boundaries are large-angle grain boundaries), for example, 7
In the case of a subgrain structure, which occurs when steel with a light structure is hot-processed, the grain boundaries have a slight tendency to differ slightly in orientation between the grains, so the fine grains have a negative effect on mechanical properties. The effects of change are not necessarily fully manifested.

たソシ、本発明鋼は圧延後の組織であ・るので。However, the steel of the present invention has a structure after rolling.

このような大傾向粒昇で囲まれた粒内に更に、下部構造
として転位置[0上昇と亜結晶粒の形成があることは当
然であゐ。
It is a matter of course that within the grains surrounded by such large tendency grain ascension, there is further dislocation [0 uplift and subgrain formation] as a substructure.

またbll械的lI性は、一般に微小部分の特性の平均
として現われるO″ejii細粒組織が大部分を占めて
いないと、そo**を十分示さないが1本発明鋼は70
X以上、製造条件によっては100X近い細粒7エライ
トが容J&に得られ、か\る条件にも合致しているので
ある。
In addition, the mechanical properties do not exhibit sufficient ** unless the O''ejii fine grain structure, which generally appears as an average of the properties of minute parts, occupies the majority, but the steel of the present invention has 70
Depending on the production conditions, fine-grained 7-elite of approximately 100X can be obtained in a volume of J&, which also satisfies these conditions.

なお、本発明鋼の上記IIi細粒組織紘、炭素量に拘ら
ず%7エライト粒が圧倒的に多く、パーライト等の第2
1111が少いことが特像となっている。
In addition, in the above-mentioned IIIi fine grain structure of the steel of the present invention, %7 elite grains are overwhelmingly large regardless of the carbon content, and secondary grains such as pearlite are present.
A special feature is the small number of 1111.

このような本発明鋼に対し、比較例の試験A50#I紘
第411で示す光学顕微鏡組織のように、フェライト量
紘約40Xt、かな(、残#)Fiベイナイトとマルテ
ンサイト組織であって、延性の不良の原因になっている
。tた、試験A6(D鋼は第5図の光学顕微鏡組織で明
らかな如く、フェライト量は85X程度あるが、加工さ
れた伸長組織となっておル、延性不良1強度不足の原因
となっている。
For such the steel of the present invention, as shown in the optical microscopic structure shown in Comparative Example Test A50#I Hiro No. 411, the ferrite amount was about 40Xt, Kana (remaining #) Fi bainite and martensite structure, This causes poor ductility. In addition, test A6 (D steel has an amount of ferrite of about 85X, as is clear from the optical microscope structure in Figure 5, but it has a processed elongated structure, which causes poor ductility and insufficient strength. There is.

上記の説明では製品としてホットストリップを製造する
場合について記述したが、本発明の鋼材は厚板圧延、線
材圧延、熱間押出等の場合でも得られることは明らかで
ある。
In the above description, the case where hot strip is manufactured as a product has been described, but it is clear that the steel material of the present invention can also be obtained by plate rolling, wire rod rolling, hot extrusion, etc.

以上、詳述した如く、本発明鋼は少くとも5゜神/−以
上の抗張力を有し、まえ、40kp/−以上の降伏応力
を有するとともに、実用鋼として十分な延性と加工性を
有するのみならず、特定の温度域(600メ800℃)
において、超塑性現象を呈し、著しい延性向上と曳好な
摩擦接合性を有するのである。
As described in detail above, the steel of the present invention has a tensile strength of at least 5°/- or more, a yield stress of 40 kp/- or more, and sufficient ductility and workability as a practical steel. within a specific temperature range (600m 800℃)
It exhibits a superplastic phenomenon and has significantly improved ductility and good friction bonding properties.

:。:.

しかも、か\る特性・會有する鋼材を亜共析鋼管主体と
した鋼材を素材として、熱間圧延ま\で得ることができ
るので、その工業的効果は甚大である。
Moreover, since steel materials having such properties and properties can be obtained by hot rolling using steel materials mainly made of hypo-eutectoid steel pipes, the industrial effects thereof are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図社粒後と降伏応カ、靭性の関係wJ%第211〜
第51I紘金属組織の顕微鏡写真で1wE281は本発
明鋼の光学顕微鏡写真、第3図は本発明鋼の電子顕微鏡
写真、第4m、第5wiは比較鋼の光学顕微鏡写真であ
る。 代理人 弁履士 秋 沢 政 光 他24 265 萬20 嵩3圓 /θ屏 晶4図   一 孔5図 、:)Q、g (金  円)                昭和、
□年 。月。2B特許庁 長 官 殿 1、事件の表示 特願昭57−第 55648 号 3、補正をする者 事件との関係 出願人 住所(居所) 東京都千代田区大手町2丁目6番3号氏
名(名称)  (665)新日本製鐵株式会社4、代 
理 人 居 所 東京都中央区日本橋兜町12番1号大洋ビル4
18′の日付昭和  年  月: 日(発送)5゛ 拒
絶理由通知                 、、。 6、補正により増加する発明の数  なし補正の内容 明細書を下記の通力訂正する。 (1)第2頁末行、「向粒界)」をr角粒界)」と訂正
する。 (2)  第4買初行、「る元素で、」を「る元素を指
すが、これは」と訂正する。 (3)第4頁第6行、「テナイトの変態および再結晶・
・・」を「テナイトのフェライトへの変態および或いは
これとフェライトの再結晶・・・」と訂正する。 (4)第4頁末行、「(鋼か−・・」を「(鋼が・・・
」と訂正する。 (5)第5頁第10行〜第12行、「従って圧延は・・
・以下であってかつ」を「従って細粒化に有効な圧延は
」と訂正する。 (6)第5頁下から7行目、「温度よル開始され、」を
「温度から」と訂正する。 (7)第5頁下から6行目、「温度で終了する。」を「
温度の範囲内となる。」と訂正する。 (8)第5頁下から5行目〜3行目、「過冷却であるか
ら・・・変化する。」を「過冷却でアク、」と訂正する
。 (9)第5頁下から3行目、「・・・の数は変」を「・
・・の数は主として変」と訂正する。 0〔第5頁下から2行目〜末行、「粒界面積や・・・密
度等」を1粒径」と訂正する。 0υ 第6頁第2行、「8〜10μ程度J°を「8〜1
0μ程度以上」と訂正する。 (121第6頁第3行〜第4行、「この事は・・・加工
歪が残留する」を「従って」と訂正する。 0′5  第6頁第4行〜第6行、rAr3点は・・・
知られている。」をrArg点が上昇する。」と訂正す
る。 04)第6頁第8行〜第9行、「起る様な・・・におい
て、」を「起る事と、このとき、」と訂正する。 09  第10頁第3表中、試験45のフェライト量(
チ)である「30」を「40」と訂正する。 aQ  第14頁下から4行目〜3行目、「鋼材を・・
・主体とした鋼材を」を「鋼材を合金元素の少い亜共析
鋼を」と訂正する。 −26’t
Figure 1 Relationship between grain size, yield stress, and toughness wJ% No. 211~
In the micrographs of the 51I Hiro metal structure, 1wE281 is an optical micrograph of the steel of the invention, FIG. 3 is an electron micrograph of the steel of the invention, and No. 4m and 5wi are optical micrographs of the comparative steel. Agent: Masamitsu Aki Sawa et al. 24 265 20 Volume 3 yen / θ folding crystal 4 diagrams 1 hole 5 diagrams, :) Q, g (gold yen) Showa,
□year. Month. 2B Director General of the Japan Patent Office 1. Indication of the case Patent Application No. 55648/1983 3. Person making the amendment Relationship to the case Applicant Address (Residence) 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (Name) ) (665) Nippon Steel Corporation 4.
Address: Taiyo Building 4, 12-1 Nihonbashi Kabutocho, Chuo-ku, Tokyo
Date of 18' Showa Month: Day (Delivery) 5゛ Notification of reasons for refusal,,. 6. Number of inventions increased by amendment The description of contents of the amendment shall be amended as follows. (1) On the last line of page 2, ``proposed grain boundary)'' is corrected to ``r-angle grain boundary)''. (2) In the 4th purchase first line, ``In the element ru,'' is corrected to ``It refers to the element ru, but this.'' (3) Page 4, line 6, “Transformation and recrystallization of tenite
"..." is corrected to "transformation of tenite to ferrite and/or recrystallization of this and ferrite...". (4) On the last line of the fourth page, "(Hagane...") was replaced with "(Hagane...")
” he corrected. (5) Page 5, lines 10 to 12, “Therefore, rolling...
・Correct "The following is the same and" to "Therefore, rolling is effective for grain refinement." (6) In the 7th line from the bottom of page 5, "Starts from the temperature" is corrected to "From the temperature." (7) In the 6th line from the bottom of page 5, “Terminate at temperature.”
Within the temperature range. ” he corrected. (8) On page 5, lines 5 to 3 from the bottom, "It changes because it's supercooled." is corrected to "It's dark because of supercooling." (9) On the 5th page, 3rd line from the bottom, "The number of... is different" is changed to "・
The number of... is mainly strange.'' 0 [On the second to last line from the bottom of page 5, "grain boundary area, density, etc." is corrected to 1 grain size." 0υ Page 6, line 2, ``about 8 to 10 μ J° to ``8 to 1
"About 0μ or more," he corrected. (121, page 6, lines 3 to 4, "This means that machining distortion remains" is corrected to "therefore". 0'5 page 6, lines 4 to 6, rAr 3 points teeth···
Are known. ”, the rArg point rises. ” he corrected. 04) On page 6, lines 8 and 9, correct ``as it happens...'' to ``at this time.'' 09 In Table 3 on page 10, the amount of ferrite in Test 45 (
Correct "30" in h) to "40". aQ Page 14, lines 4-3 from the bottom, “Steel...
・Correct "Mainly made of steel" to "Steel made of hypo-eutectoid steel with few alloying elements."-26't

Claims (1)

【特許請求の範囲】[Claims] (1)  O:0.3X以下%0以外の合金含有量3X
以下であって%実質的にNb、 ’raw MO,w 
t”含有しない熱間圧延鋼材で、平均粒径4#以下の大
傾角粒界KWiまれ九等軸7エ2イト結晶粒t−70X
以上含有する金属組織よりなることを%徴とする超細粒
7エライト鋼。
(1) O: 0.3X or less % Alloy content other than 0 3X
%substantially Nb,'raw MO,w
Hot-rolled steel material that does not contain T'', with large angle grain boundaries KWi rare 9 equiaxed 7E2ite crystal grains t-70X with an average grain size of 4# or less
Ultra-fine-grained 7-elite steel having a metal structure containing the above.
JP5564882A 1982-04-03 1982-04-03 Super fine grain ferrite steel Granted JPS58174544A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5564882A JPS58174544A (en) 1982-04-03 1982-04-03 Super fine grain ferrite steel
US06/481,453 US4466842A (en) 1982-04-03 1983-04-01 Ferritic steel having ultra-fine grains and a method for producing the same
DE3312257A DE3312257A1 (en) 1982-04-03 1983-04-05 FERRITIC STEEL WITH ULTRAFINE GRAIN AND METHOD FOR THE PRODUCTION THEREOF
FR8305500A FR2524493B1 (en) 1982-04-03 1983-04-05 FERRITIC STEEL WITH ULTRA-FINE GRAINS AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5564882A JPS58174544A (en) 1982-04-03 1982-04-03 Super fine grain ferrite steel

Publications (2)

Publication Number Publication Date
JPS58174544A true JPS58174544A (en) 1983-10-13
JPS6239228B2 JPS6239228B2 (en) 1987-08-21

Family

ID=13004639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5564882A Granted JPS58174544A (en) 1982-04-03 1982-04-03 Super fine grain ferrite steel

Country Status (1)

Country Link
JP (1) JPS58174544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221179B1 (en) * 1997-09-11 2001-04-24 Kawasaki Steel Corporation Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221179B1 (en) * 1997-09-11 2001-04-24 Kawasaki Steel Corporation Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate

Also Published As

Publication number Publication date
JPS6239228B2 (en) 1987-08-21

Similar Documents

Publication Publication Date Title
WO2012036312A1 (en) High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
WO1995013405A1 (en) High-strength high-ductility two-phase stainless steel and process for producing the same
JPH09143570A (en) Production of high tensile strength steel plate having extremely fine structure
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JPS5896818A (en) Production of hot-rolled steel material having high strength and excellent low temperature toughness
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JPS58123823A (en) Manufacture of high strength hot rolled steel sheet of super fine grain
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JPH09202919A (en) Production of high tensile strength steel material excellent in toughness at low temperature
JPH10306315A (en) Production of non-heat treated high tensile-strength steel excellent in low temperature toughness
JPS58174544A (en) Super fine grain ferrite steel
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP3359349B2 (en) Structural steel with excellent brittle fracture resistance
JP2662485B2 (en) Steel sheet having good low-temperature toughness and method for producing the same
JP2807592B2 (en) Method for producing structural steel sheet with good brittle fracture resistance
JP2971401B2 (en) Structural steel plate with good brittle fracture resistance
JP3546963B2 (en) Method of manufacturing high-strength hot-rolled steel sheet with excellent workability
JP3348359B2 (en) Structural steel with excellent arrest performance and its manufacturing method
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JPH11323481A (en) Steel with fine grained structure, and its production
JPS58174523A (en) Manufacture of very fine-grained high-strength hot-worked steel material
JPS59205447A (en) Ultra-fine grain ferrite steel and preparation thereof
JPH05271861A (en) Structural steel for welding excellent in brittle fracture propagation arresting characteristic
JPH11323434A (en) Production of thick high tensile strength steel excellent in low temperature toughness