JPS6239228B2 - - Google Patents

Info

Publication number
JPS6239228B2
JPS6239228B2 JP5564882A JP5564882A JPS6239228B2 JP S6239228 B2 JPS6239228 B2 JP S6239228B2 JP 5564882 A JP5564882 A JP 5564882A JP 5564882 A JP5564882 A JP 5564882A JP S6239228 B2 JPS6239228 B2 JP S6239228B2
Authority
JP
Japan
Prior art keywords
steel
ferrite
transformation
less
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5564882A
Other languages
Japanese (ja)
Other versions
JPS58174544A (en
Inventor
Hiroshi Yada
Giichi Matsumura
Hiroe Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5564882A priority Critical patent/JPS58174544A/en
Priority to US06/481,453 priority patent/US4466842A/en
Priority to FR8305500A priority patent/FR2524493B1/en
Priority to DE3312257A priority patent/DE3312257A1/en
Publication of JPS58174544A publication Critical patent/JPS58174544A/en
Publication of JPS6239228B2 publication Critical patent/JPS6239228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、超細粒フエライト鋼、特に熱間圧延
まゝで、しかもNb、Ta、Mo、W等の特殊な合金
元素を含まない亜共折鋼を主体とした超細粒フエ
ライト鋼に関するものである。 従来よりフエライト系の鋼材を細粒化する試み
は種々行われてきた。即ち、フエライト系鋼材の
細粒化は降伏応力の上昇(引張強さも)と靭性
(破壊遷移温度)の向上を同時にもたらす唯一の
方法であり、その細粒化の為、特殊な熱処理を行
う方法、Nb、Moなど特殊な合金元素を添加する
方法、または、その両者を併合する方法等が行わ
れてきた。 しかしながら、実用的な亜共折鋼で工業的に成
立しうる方法で、4μ以下の超細粒鋼を提供する
方法は未だかつて得られていなかつた。 本発明は、このような工業的に得られる画期的
な超細粒鋼に関するもので、その特徴とするとこ
ろは、重量%で、C:0.3%以下、Si:1.5%以
下、Mn:2%以下、N:0.002〜0.01%、残部Fe
および不可避的不純物よりなり、その金属組織中
に平均4μm以下の大傾角粒界に囲まれた加工誘
起等軸フエライト結晶粒を体積率で70%以上含む
ことを特徴とする、高強度でしかも延性のすぐれ
た超細粒フエライト鋼である。 以下、さらに詳細に説明する。 本発明鋼は上述のような超細粒フエライト鋼で
あるが、本発明で細粒フエライトと呼ぶ組織は粒
の形の著るしい伸長は伴わず、ほゞ等方的であ
り、また、原則として、いわゆる大傾角粒界で囲
まれた結晶粒からなる組織を指し、亜結晶粒界
(小傾角粒界)は粒界と見なしていない。 かゝる本発明鋼の組成範囲を決定した主なる理
由は次のとおりである。 即ち、炭素量は0.3%以下に規定したが、一般
に炭素量が大となると、フエライト量が必然的に
減少し、パーライト量が増加する。本発明鋼では
通常の状態図からの予想以上にフエライトが生成
するが、炭素が0.3%超になると、パーライト等
の他の組織の量が増加し、フエライト量70%以上
を得ることが困難になるので、上記成分範囲とし
た。 Siは鋼に通常脱酸等の目的で添加され多少は含
有されており、また本発明においてはフエライト
量を増加させる効果があるので故意に添加する場
合もある。しかし、1.5%を超えて添加するとフ
エライト結晶粒が粗大化しやすくなるので1.5%
以下とした。またMnは変態点を調節し加工誘起
変態を起りやすくし、また加工誘起フエライトの
急速な成長を防止することにより細粒化に寄与す
るが2%を超えて添加すると変態温度が下りすぎ
てフエライト量が70%に達しない場合が生ずるの
で2%以下とした。 PおよびSは通常鋼中に多少は含有される元素
であるが、多量に含有されれば鋼の延靭性を損
う、しかし通常の鋼に含まれている量、P0.03%
以下、S0.02%以下程度では本発明の本質に大き
な影響を与えないのでとくにその量の限定を行わ
ない。 Nも不純物元素として鋼中に多少は含有するが
その量は通常0.002〜0.01%程度であり、この範
囲内では本発明鋼の特性にそれほど影響を与えな
い。なおN量が0.002%より少ない場合は加工誘
起変態が本発明におけるより容易に起るようにな
り、また0.1%を超えるととくにAl、Ti等の元素
を含む場合ではやゝ起りにくくなる。 Alは通常脱酸のため鋼中に多少は含まれてい
るが通常含有される程度0.1%以下ならば一般に
本発明鋼の特性に大きい影響を与えることはな
い。 また、Nb、Ta、Mo、W等はいずれもオーステ
ナイトの再結晶および変態を遅らせる元素として
知られている。本発明鋼では熱間加工時にオース
テナイトのフエライトへの変態および或はこれと
フエライトの再結晶を促して細粒化するものであ
るから、Nb、Ta、Mo、W等はこれを阻害する元
素であるので、本発明鋼には含まれてはならない
のである。 かゝる組成の鋼を次のような製造方法によつて
製造する。 上記鋼に該鋼のAr3変態点近傍で実質的にオー
ステナイト域よりなる温度域において、連続圧延
で1パスまたは2パス以上の合計圧下率50%以
上、あるいは、1秒以内の短時間であれば1パス
または2パス以上の合計圧下率50%以上の圧延を
行い、圧延により変態を起させることにより、微
細なフエライト結晶粒を生成せしめる。 更に詳述すると、上記鋼を通常のAr3変態点
(鋼がオーステナイト域である温度から徐冷途中
でフエライト変態を開始する温度を指し、以下単
にAr3と云う)とAr1変態点(同様に徐冷途中で
パーライト変態を開始する温度を指し、以下単に
Ar1と云う)を基準として(Ar1+50℃)〜(Ar3
+100℃)の間で1秒以内に1パスまたは2パス
以上の合計圧下率を50%以上の圧下を行う。 本発明による細粒化法は圧延によりオーステナ
イト相に加わる歪によりフエライト変態を誘起さ
せると言う原理に基く。従つて細粒化に有効な圧
延は鋼の成分によつて熱力学的に定まる平衡変態
点(Ae3)以下であつてかつ通常のオーステナイ
ト相が冷却途中で変態を開始する温度(Ar3)以
上の温度からAf3点前後またはこれよりあまり低
くはない温度の範囲内となる。通常の変態におい
ては変態が開始進行するための駆動力は過冷却で
あり、この様な変態ではフエライト粒の数は主と
して変態前のオーステナイト相の粒径によつて決
まり、特に細粒化対策がとられてはいない場合の
フエライト粒径は8〜10μ程度以上が普通であ
る。加工歪もまた変態の開始・進行の駆動力とな
り、従つてオーステナイトのAr3点が上昇する。
ところが、圧延の様な加工がオーステナイトに対
して与えられた瞬間にあるいは非常に短い時間の
後にフエライト変態が起る事と、このとき、変態
したフエライト粒が非常に微細である事は従来知
られていなかつた新事実であり、本発明は加工歪
を変態の駆動力として徹底的に利用するという新
規なものである。Ar3点直上で加工を受けたオー
ステナイトの粒界に微細なフエライト粒が加工後
直ちにまたは短い時間後に析出し、さらに加工歪
が加えられるとフエライト粒と未変態オーステナ
イトの界面に新しいフエライト粒が析出するとい
う過程を繰り返し、加工歪が十分大きければ圧延
終了時に全面が新しいフエライト粒で覆われると
考えられる。 このとき加工中に発生した変態核は加工直後に
その変態核境界の移動が直ちには止らないこと、
および加工歪(加工により導入された高密度の転
位による)が直ちには回復しないので境界面移動
に対する駆動力がある程度維持されることとのた
めに細粒フエライトは加工後にやゝ成長し、その
体積率も増大する。このような場合実験的に加工
中に変態した動的変態フエライト部と加工に引き
続き成長した準動的フエライト部とを厳密に区別
することは困難であり、実用的にはその必要もな
いので、加工後問題となる温度範囲で1秒程度以
内の時間経過後までの状態までを加工誘起変態と
定義することにする。 また、1パスでも特に大圧下加工の場合、また
とくに2パス以上の多パス加工の場合には加工の
前半あるいは多パスの最終パス以前に生成したフ
エライトが引きつづき加工を受ける結果加工歪を
回復するため再結晶が起る場合がある。実際に1
パスの加工を行つた後1秒程度以下の短時間内に
次の加工を加えるとこれら2パスの合計圧下率が
50%以上と大きい場合には加工中に再結晶核が発
生し加工の前半の状態、あるいは前パス加工後、
次パス加工前の状態に比べてより細粒のフエライ
トが生ずる場合がある。このような場合において
もやはり加工直後の動的(加工中)に生成した再
結晶核が加工直後に連続して起る生長(準動的再
結晶)との区別は困難である。またこのような動
的および準動的な再結晶現象が加わつた組織と前
述の動的および準動的変態のみの組織とは極めて
類似しており、両者を明確に区別するのは困難で
ある。従つて本発明においてはこれらを綜括して
加工誘起フエライトと呼ぶことにした。 このような加工誘起フエライトは極めて微細で
あるとともに以下のような特徴を有する。 形態がほぼ等軸的であつて加工により著しい
延伸が見られないこと。 このことは本発明鋼(試験No.4)の典型的な光
学顕微鏡組織である第1図を見れば明らかであろ
う。これはいわゆる変態加工材の典型例である試
験No.6(第2図)と比べて見れば明らかである。
第2図に示す試験No.6は本発明鋼(試験No.4)と
同一成分であるがやゝ低目の温度域で本発明鋼を
得たよりも低い圧下率で圧下を加えた鋼の光学顕
微鏡写真であり、この図ではフエライトがほぼ圧
延方向(図の左右方向)に延伸しており全体とし
ては粗大なまゝとなつている。このような組織は
加工フエライト組織または動的回復組織と呼ば
れ、特殊な腐食液を用いて観察すれば亜粒界(サ
ブバウンダリー)という組織が観察されるが、こ
れは通常のフエライト粒界(大傾角粒界)と異な
り粒界相互の方位の差が小さく機械的性質に対す
る粒界の効果が全く異なるため細粒による特性向
上が殆んど見られないばかりではなく延伸により
機械的性質が著しい異方性を呈し本発明鋼のよう
なすぐれた特性は一般に得ることがむずかしい。 転位密度が平均して高く一般に不均一である
こと。 一般に冷却中に起る初析フエライト変態におい
ては変態温度600〜700℃と高いため生成したフエ
ライト中に転位が極めて少ないことが特徴であ
る。これに対し第3図に示すように本発明鋼(試
験No.4)においては局部的に転位密度の多い所と
少ない所とがあるが綜合的に見ればかなり高い転
位密度を示している。このような転位密度は変態
温度の低い(500℃程度以下の)ベイナイトまた
はマルテンサイトで観察されるもので、800℃附
近で生成したと考えられるこの図の場合極めて異
常である。この理由は加工中に発生した動的変態
または動的再結晶フエライトは引き続き加工が加
わつて行くため加工の進行と共に転位密度が増加
するためである。このためフエライトの生成の時
期によつて転位密度の差が生じこのような不均一
は様相を呈するのである。 炭化物が細かくほぼ均一に分布すること。 第1図の本発明鋼の組織では炭素量が0.07%で
95%のフエライトが生成し、明確なパーライト組
織は見られていない。後述の試験10では0.12%C
で98%のフエライトが得られている。平衡状態図
から予測される最大フエライト量はこの2つの鋼
でそれぞれ91%および85%であり、本発明鋼では
これをはるかに超えてフエライトが生成してい
る。一方このように光学顕微鏡組織では炭化物を
多量に含むパーライトやベイナイト組織、あるい
は炭素を多量に固溶するマルテンサイト組織は極
めて少量しか見られない場合でも第3図のような
電子顕微鏡観察によると微細粒間の粒界またはそ
の中の転位密度の高い部分に微細な析出物(炭化
物)が観察される。このように炭化物は通常のフ
エライトパーライト鋼等に比べると微細かつ均一
に析出している。このような組織を生ずる理由は
次の通りである。上述のように超細粒フエライト
は通常の変態点附近あるいはそれ以上でしかもそ
の温度では生成しないような多量に生成するがこ
れは変態を促進するエネルギーが単に化学的なも
のではなく加工によつて供給されているためであ
る。また一方で圧延加工のような短い時間内に多
量のフエライトが生成することからわかるように
通常のフエライト変態と異なり炭素の拡散が追い
つかない。(このような場合は炭素の拡散で変態
が起る場合に比べエネルギー的に不利であるが、
この不足分も加工により供給されている)このた
め炭素原子はフエライト中に過飽和に固溶し、加
工後室温まで冷却される過程においてマクロ的に
見ればかなり均一に分布するフエライト粒界ある
いは高密度の転位上に析出するものと考えられ
る。 以上およびに述べたような特徴は通常の初
析フエライトと著るしく異なるものある。Cの拡
散がない点は純鉄等で見られる、いわゆるマツブ
フエライト変態と同様であり、熱間加工中という
極めて短時間に変態が進行する点もこれを符合し
ている。そして転位密度が極めて高いのはこれが
生成と同時に加工を受けるためであり「加工誘起
マツシブフエライト」と呼ぶべき従来鋼の組織と
は全く異なる新らしい組織を有する鋼が創成され
たものである。 また、機械的特性は、一般に微小部分の特性の
平均として現われるので超細粒組織が大部分を占
めていないと、その特性を十分示さないので本発
明鋼は上述のような組織が70%以上としている。 前述のように製造条件によつては炭素量にかか
わらず微細粒組織を100%近くまで生成せしめる
ことができるのが本発明鋼の特徴の一つで、この
比率が多いほど本発明鋼の特徴が強く現われるこ
とは云うまでもない。 しかしてこのような新らしい組織を有する鋼
は、第4図に示すように従来のpetchの関係式に
よる強化および靭化の予想よりとくにすぐれた特
性を示すが、これは上述のような組織均一性が超
微細粒化の効果と重畳したものと考えられる。第
4図に示した特性以外にも耐久性(疲労強度)、
成形加工性(穴拡げ性、プレス成形性)等の点で
もすぐれた特性を示すことが観測されているが、
これは皆上述の組織の特徴に由来するものであ
る。また4μ以上の超微細粒では温間で超塑性効
果が現われる。 本発明鋼の組織は上述の通り加工中もしくは加
工直後に生成するので、加工後の冷却速度を必ず
しも大きくとる必要はないが、加工時未変態部の
強度・靭性への寄与を向上させるため、あるいは
低炭素の場合に起ることがある冷却中の粒成長を
防止するため等の目的で一般には冷却速度20℃/
sec以上の範囲で冷却し、600℃以下の温度に至ら
しめるのが望ましい。 その後は、要求される特性に応じて種々の熱履
歴を取ることができる。
The present invention relates to ultrafine-grained ferrite steel, particularly ultrafine-grained ferrite steel that is hot-rolled and is mainly composed of subeutectic steel that does not contain special alloying elements such as Nb, Ta, Mo, and W. It is. Various attempts have been made to refine the grains of ferritic steel materials. In other words, grain refinement in ferritic steel is the only way to simultaneously increase yield stress (also tensile strength) and improve toughness (fracture transition temperature). , a method of adding special alloying elements such as Nb and Mo, or a method of combining the two. However, a method of providing ultra-fine grained steel of 4 μm or less in an industrially viable manner with practical subeutectic steel has not yet been achieved. The present invention relates to such an epoch-making industrially obtained ultra-fine grain steel, which is characterized by weight percentages of C: 0.3% or less, Si: 1.5% or less, Mn: 2 % or less, N: 0.002 to 0.01%, balance Fe
It has high strength and ductility, and is characterized by containing 70% or more by volume of deformation-induced equiaxed ferrite crystal grains surrounded by large-angle grain boundaries with an average size of 4 μm or less in its metal structure. It is an excellent ultra-fine grained ferrite steel. This will be explained in more detail below. The steel of the present invention is an ultra-fine-grained ferrite steel as described above, but the structure called fine-grained ferrite in the present invention does not involve any significant elongation of the grain shape and is almost isotropic. refers to a structure consisting of crystal grains surrounded by so-called high-angle grain boundaries, and subgrain boundaries (low-angle grain boundaries) are not considered grain boundaries. The main reason for determining the composition range of the steel of the present invention is as follows. That is, although the carbon content was specified to be 0.3% or less, generally as the carbon content increases, the ferrite content inevitably decreases and the pearlite content increases. In the steel of the present invention, more ferrite is generated than expected from the normal phase diagram, but when carbon exceeds 0.3%, the amount of other structures such as pearlite increases, making it difficult to obtain a ferrite amount of 70% or more. Therefore, the above component range was set. Si is usually added to steel for the purpose of deoxidizing and is contained to some extent, and in the present invention, it is sometimes added intentionally because it has the effect of increasing the amount of ferrite. However, if it is added in excess of 1.5%, the ferrite crystal grains tend to become coarse, so 1.5%
The following was made. Furthermore, Mn adjusts the transformation point, making deformation-induced transformation more likely to occur, and contributes to grain refinement by preventing the rapid growth of deformation-induced ferrite, but if it is added in excess of 2%, the transformation temperature drops too much, resulting in ferrite. Since there are cases where the amount does not reach 70%, it is set to 2% or less. P and S are elements that are normally contained in steel to some extent, but if they are contained in large amounts, they impair the ductility of steel, but the amount contained in normal steel, P0.03%.
Hereinafter, the amount of S will not be particularly limited as it will not have a significant effect on the essence of the present invention if it is about 0.02% or less. Although some amount of N is contained in the steel as an impurity element, the amount is usually about 0.002 to 0.01%, and within this range it does not significantly affect the properties of the steel of the present invention. Note that when the amount of N is less than 0.002%, deformation-induced transformation occurs more easily than in the present invention, and when it exceeds 0.1%, it becomes less likely to occur, especially when elements such as Al and Ti are included. Al is usually contained in steel to some extent for deoxidation, but if it is normally contained at 0.1% or less, it generally does not have a large effect on the properties of the steel of the present invention. Further, Nb, Ta, Mo, W, etc. are all known as elements that delay the recrystallization and transformation of austenite. In the steel of the present invention, during hot working, the transformation of austenite into ferrite and/or the recrystallization of ferrite are promoted to make the grains finer, so Nb, Ta, Mo, W, etc. are elements that inhibit this. Therefore, it must not be included in the steel of the present invention. Steel with such a composition is manufactured by the following manufacturing method. The above steel may be continuously rolled at a total reduction rate of 50% or more in one or more passes in a temperature range that is substantially in the austenite region near the Ar 3 transformation point of the steel, or in a short period of less than 1 second. For example, fine ferrite crystal grains are generated by rolling at a total reduction rate of 50% or more in one pass or two or more passes to cause transformation by rolling. To explain in more detail, the above steel has a normal Ar 3 transformation point (the temperature at which the steel starts to undergo ferrite transformation during slow cooling from the temperature at which it is in the austenite region, hereinafter simply referred to as Ar 3 ) and an Ar 1 transformation point (similarly referred to as Ar 3). refers to the temperature at which pearlite transformation begins during slow cooling, and is simply referred to as
(Ar 1 +50℃) ~ ( Ar 3
+100°C) within 1 second with a total rolling reduction rate of 50% or more in 1 pass or 2 passes or more. The grain refining method according to the present invention is based on the principle that ferrite transformation is induced by strain applied to the austenite phase by rolling. Therefore, rolling, which is effective for grain refinement, is performed at a temperature below the equilibrium transformation point (Ae 3 ), which is determined thermodynamically by the steel composition, and at which the normal austenite phase starts to transform during cooling (Ar 3 ). From the above temperatures, the temperature will be around the Af 3 point or not much lower than this. In normal transformation, the driving force for transformation to start and progress is supercooling, and in such transformation, the number of ferrite grains is mainly determined by the grain size of the austenite phase before transformation, and in particular, grain refinement measures are not taken. The ferrite grain size when not removed is usually about 8 to 10 microns or more. Processing strain also acts as a driving force for the initiation and progression of transformation, thus increasing the Ar 3 point of austenite.
However, it has been known that ferrite transformation occurs immediately or after a very short period of time when austenite is subjected to a process such as rolling, and that the transformed ferrite grains are extremely fine. This is a new fact that has never been seen before, and the present invention is novel in that it thoroughly utilizes processing strain as a driving force for transformation. Fine ferrite grains precipitate at the grain boundaries of the austenite processed directly above the three Ar points either immediately or after a short time after processing, and when further processing strain is applied, new ferrite grains precipitate at the interface between the ferrite grains and untransformed austenite. If this process is repeated and the processing strain is sufficiently large, it is thought that the entire surface will be covered with new ferrite grains at the end of rolling. At this time, the transformation nuclei generated during machining do not stop moving at the boundary of the transformation nuclei immediately after machining.
Also, since the processing strain (due to high density dislocations introduced by processing) does not recover immediately, the driving force against the movement of the interface is maintained to some extent, so fine-grained ferrite grows a little after processing, and its volume decreases. rate also increases. In such cases, it is difficult to experimentally strictly distinguish between the dynamically transformed ferrite part that has transformed during processing and the quasi-dynamic ferrite part that has grown following processing, and there is no practical need to do so. The state up to a time period of about 1 second or less in the problematic temperature range after processing is defined as processing-induced transformation. In addition, in the case of high-reduction machining even in one pass, and especially in the case of multi-pass machining of two or more passes, the ferrite generated in the first half of machining or before the final pass of the multi-pass continues to undergo machining, resulting in recovery of machining distortion. Therefore, recrystallization may occur. Actually 1
If the next process is added within a short time of about 1 second or less after completing a pass, the total reduction rate of these two passes will be reduced.
If it is larger than 50%, recrystallization nuclei will occur during machining, resulting in the condition in the first half of machining or after the previous pass machining.
In some cases, finer grained ferrite is produced compared to the state before the next pass processing. Even in such a case, it is difficult to distinguish recrystallization nuclei generated dynamically (during processing) immediately after processing from continuous growth (quasi-dynamic recrystallization) immediately after processing. Furthermore, the structure in which such dynamic and quasi-dynamic recrystallization phenomena are added is extremely similar to the above-mentioned structure in which only dynamic and quasi-dynamic transformation occurs, and it is difficult to clearly distinguish between the two. . Therefore, in the present invention, these are collectively referred to as deformation-induced ferrite. Such processing-induced ferrite is extremely fine and has the following characteristics. The shape is approximately equiaxed and no significant stretching is observed during processing. This will become clear from FIG. 1, which is a typical optical microscopic structure of the steel of the present invention (Test No. 4). This becomes clear when compared with Test No. 6 (Figure 2), which is a typical example of a so-called transformed material.
Test No. 6 shown in Figure 2 is a steel having the same composition as the invention steel (Test No. 4), but rolled at a lower reduction rate than the invention steel obtained at a slightly lower temperature range. This is an optical micrograph, and in this figure, the ferrite is stretched almost in the rolling direction (horizontal direction in the figure) and remains coarse as a whole. This type of structure is called a processed ferrite structure or a dynamic recovery structure, and when observed using a special corrosive solution, a structure called a sub-boundary is observed, which is different from the normal ferrite grain boundary. Unlike (high-angle grain boundaries), the difference in orientation between grain boundaries is small and the effect of grain boundaries on mechanical properties is completely different, so not only is there almost no improvement in properties due to fine grains, but also mechanical properties are improved by stretching. It exhibits significant anisotropy and is generally difficult to obtain the excellent properties of the steel of the present invention. Dislocation density is high on average and generally non-uniform. In the pro-eutectoid ferrite transformation that generally occurs during cooling, the transformation temperature is as high as 600 to 700°C, and the resulting ferrite is characterized by extremely few dislocations. On the other hand, as shown in FIG. 3, in the steel of the present invention (Test No. 4), there are areas where the dislocation density is locally high and areas where it is low, but overall it shows a considerably high dislocation density. This kind of dislocation density is observed in bainite or martensite, which has a low transformation temperature (about 500°C or less), and is extremely abnormal in the case shown in this figure, which is thought to have been formed at around 800°C. The reason for this is that dynamic transformation or dynamic recrystallization of ferrite that occurs during processing continues to be processed, so that the dislocation density increases as the processing progresses. For this reason, differences in dislocation density occur depending on the time of ferrite formation, and such non-uniformity takes on different aspects. Carbide is finely distributed almost uniformly. In the structure of the invention steel shown in Figure 1, the carbon content is 0.07%.
95% ferrite is produced, and no clear pearlite structure is observed. 0.12%C in Test 10 described below
98% ferrite has been obtained. The maximum amount of ferrite predicted from the equilibrium phase diagram is 91% and 85%, respectively, for these two steels, and the steel of the present invention produces far more ferrite than this. On the other hand, even if an optical microscopic structure shows only a very small amount of pearlite or bainite structure containing a large amount of carbide, or a martensitic structure containing a large amount of carbon as a solid solution, electron microscopic observation as shown in Figure 3 shows that it is fine. Fine precipitates (carbides) are observed at grain boundaries between grains or in areas with high dislocation density. In this way, carbides are precipitated finer and more uniformly than in ordinary ferrite pearlite steel. The reason for the formation of such an organization is as follows. As mentioned above, ultrafine-grained ferrite is produced near or above the normal transformation point, and in large amounts that would not be produced at that temperature. This is because they are supplied. On the other hand, as can be seen from the fact that a large amount of ferrite is produced within a short period of time, such as during rolling, carbon diffusion cannot keep up, unlike normal ferrite transformation. (In such a case, it is energetically disadvantageous compared to the case where transformation occurs due to carbon diffusion, but
This deficiency is also supplied through processing) Therefore, carbon atoms become a supersaturated solid solution in ferrite, and in the process of cooling to room temperature after processing, ferrite grain boundaries or high-density It is thought that this precipitates on the dislocations of The characteristics described above and in 2 are significantly different from ordinary pro-eutectoid ferrite. The fact that there is no diffusion of C is similar to the so-called Matsubu ferrite transformation observed in pure iron, etc., and the fact that the transformation progresses in an extremely short period of time during hot working is also consistent with this. The reason why the dislocation density is extremely high is that it undergoes processing at the same time as it is generated, and a steel with a new structure completely different from that of conventional steel, which can be called ``deformation-induced pine ferrite'', has been created. In addition, mechanical properties generally appear as the average of the properties of minute parts, so unless the ultra-fine grain structure occupies the majority, the properties will not be sufficiently exhibited. It is said that As mentioned above, one of the characteristics of the steel of the present invention is that depending on the manufacturing conditions, it is possible to generate a fine grain structure of nearly 100% regardless of the carbon content, and the higher this ratio, the more characteristic of the steel of the present invention. Needless to say, it appears strongly. However, as shown in Figure 4, steel with such a new structure exhibits properties that are particularly superior to those predicted by the conventional PETCH relational expression, but this is because the steel has a uniform structure as described above. This is thought to be due to the effect of ultra-fine graining. In addition to the characteristics shown in Figure 4, durability (fatigue strength),
It has been observed that it exhibits excellent properties in terms of formability (hole expandability, press formability), etc.
This all stems from the characteristics of the organization mentioned above. In addition, ultrafine grains of 4μ or more exhibit a superplastic effect in warm conditions. As mentioned above, the structure of the steel of the present invention is generated during or immediately after processing, so it is not necessarily necessary to increase the cooling rate after processing. Alternatively, in order to prevent grain growth during cooling that may occur in the case of low carbon, the cooling rate is generally 20℃/
It is desirable to cool the material within a range of sec or more to reach a temperature of 600°C or less. After that, various thermal histories can be taken depending on the required characteristics.

【表】 例えば、強度向上の為には室温附近まで急冷す
ればよいし、また、加工性の改善のためには、
400℃前後まで急冷後、その温度から徐冷して固
溶炭素を析出させればよい。 以下、本発明鋼の実施例について説明する。 第1表で示す成分を含有する転炉溶製鋼で厚さ
200mmのCCスラブを製造し、このスラブを1100℃
に加熱し、ホツトストリツプミルで熱間圧延し
た。粗圧延は5パスで200mmより50mmまで圧延
し、仕上圧延6パスで5mmまで圧延した。仕上圧
延で最終2パスを1秒以内58%の圧下を加えた例
をA(本発明)とし、同最終パスを2秒以内27%
の圧下を加えた例をB(比較例)とした。 本発明の望ましい仕上温度は、2種の鋼の変態
点からAの場合は680〜870℃であり、Bの場合は
660〜890℃である。水冷開始は圧延終了後約1秒
後であつた。夫々の仕上パススケジユールを第2
表に示す。
[Table] For example, to improve strength, it is sufficient to rapidly cool to around room temperature, and to improve workability,
After rapidly cooling to around 400°C, the solid solution carbon may be precipitated by slowly cooling from that temperature. Examples of the steel of the present invention will be described below. Thickness of converter melted steel containing the components shown in Table 1
Manufacture a 200mm CC slab and heat this slab to 1100℃
and hot rolled in a hot strip mill. Rough rolling was performed by rolling from 200 mm to 50 mm in 5 passes, and rolling was performed from 200 mm to 50 mm in 6 passes of finish rolling. A (the present invention) is an example in which a 58% reduction is applied within 1 second in the final two passes in finish rolling, and a 27% reduction is applied in the same final pass within 2 seconds.
The example in which the pressure was applied was designated as B (comparative example). The desired finishing temperature of the present invention is 680 to 870°C for A and B, based on the transformation points of the two types of steel.
The temperature is 660-890℃. Water cooling started about 1 second after the end of rolling. The finishing pass schedule for each
Shown in the table.

【表】【table】

【表】 以上の鋼種、パススケジユールによつて製造し
た本発明鋼の組織、機械的性質を第3表に示す。
[Table] Table 3 shows the structure and mechanical properties of the above-mentioned steel types and steels of the present invention manufactured by the pass schedule.

【表】 この表で、試験No.1〜4、8〜10が本発明鋼で
あつてその内、試験No.1,2,4,8,10が仕上
圧延後の600℃以下までの冷却速度が20℃/sec以
上で製造した例であり、比較例の試験No.5は圧延
温度が高く(通常条件)、ベーナイトやマルテン
サイトの焼入組織の量が多くてフエライト量が40
%と低く、強度が高いが延性が低くなつており、
試験No.6は仕上圧延温度が低く、フエライト圧延
になつているので、比較的粗いフエライト―パー
ライトが引き伸ばされた加工組織でサブグレンを
含むが平均フエライト粒径は大きく、従つて、延
性がやや不足し、強度も低くなつている。また試
験No.7,11は圧下量が不足しているため冷却中に
変態して、フエライト粒は十分細くなく、パーラ
イトやベイナイトの第2相が40%程度も占め、強
度はやや上昇するが延性は十分ではない。 このように本発明鋼はいずれも同一成分組成に
おいて比較鋼に比し同一強度レベルでははるかに
すぐれた延性を示すなど、強度―延性バランスで
すぐれた特性を有していることが明らかである。 本発明鋼(試験No.4)と比較鋼(試験No.6)と
の微細組織を比較した前掲第1〜第3図について
はすでに説明した通りで、本発明鋼の組織上の特
徴が比較鋼と比べ明白に現われている。 上記の説明では製品としてホツトストリツプを
製造する場合について記述したが、本発明の鋼材
は厚板圧延、線材圧延、熱間押出等の場合でも得
られることは明らかである。 以上、詳述した如く、本発明鋼は少くとも50
Kg/mm2の抗張力を有し、また、40Kg/mm2以上の降伏
応力を有するとともに、実用鋼として十分な延性
と加工性を有するのみならず、特定の温度域
(600〜800℃)において、超塑性現象を呈し、著
しい延性向上と良好な摩擦接合性を有するのであ
る。 しかも、かゝる特性を有する鋼材を合金元素の
少い亜共折鋼を素材として、熱間圧延まゝで得る
ことができるので、その工業的効果は甚大であ
る。
[Table] In this table, test Nos. 1 to 4 and 8 to 10 are the steels of the present invention, and among them, test Nos. 1, 2, 4, 8, and 10 are the steels cooled to 600℃ or less after finish rolling. This is an example manufactured at a speed of 20°C/sec or more, and in comparative example Test No. 5, the rolling temperature was high (normal conditions), the amount of quenched structure of bainite and martensite was large, and the amount of ferrite was 40°C.
%, and has high strength but low ductility.
In test No. 6, the finish rolling temperature is low and the rolling is ferrite rolling, so the processed structure is a relatively coarse ferrite-pearlite stretched structure that contains sub-grains, but the average ferrite grain size is large, and therefore the ductility is somewhat insufficient. However, the strength is also decreasing. In addition, in Test Nos. 7 and 11, due to insufficient reduction, the ferrite grains were transformed during cooling, and the ferrite grains were not thin enough, and the second phase of pearlite and bainite accounted for about 40%, resulting in a slight increase in strength. Ductility is not sufficient. As described above, it is clear that all of the steels of the present invention have excellent properties in terms of strength-ductility balance, such as exhibiting far superior ductility at the same strength level compared to comparative steels with the same chemical composition. As already explained in Figures 1 to 3 above, which compare the microstructures of the inventive steel (Test No. 4) and the comparative steel (Test No. 6), the structural characteristics of the inventive steel are compared. It appears more clearly than steel. In the above explanation, the case where hot strips are manufactured as a product has been described, but it is clear that the steel material of the present invention can also be obtained by processes such as plate rolling, wire rod rolling, hot extrusion, etc. As detailed above, the steel of the present invention has at least 50%
It not only has a tensile strength of Kg/mm 2 and a yield stress of 40 Kg/mm 2 or more, but also has sufficient ductility and workability as a practical steel. , exhibits a superplastic phenomenon, and has significantly improved ductility and good friction bonding properties. Moreover, since a steel material having such characteristics can be obtained by hot rolling using a sub-euthogonal steel with a small amount of alloying elements, its industrial effects are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は金属組織の顕微鏡写真で、第
1図は本発明鋼の光学顕微鏡写真、第2図は比較
鋼の光学顕微鏡写真、第3図は本発明鋼の電子顕
微鏡写真、第4図は粒径と降伏応力、靭性の関係
図である。
Figures 1 to 3 are micrographs of the metallographic structure, where Figure 1 is an optical microscope photograph of the steel of the present invention, Figure 2 is an optical microscope photograph of a comparative steel, and Figure 3 is an electron microscope photograph of the steel of the present invention. FIG. 4 is a diagram showing the relationship between grain size, yield stress, and toughness.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で、C:0.3%以下、Si:1.5%以下、
Mn:2%以下、N:0.002〜0.01%、残部Feおよ
び不可避的不純物よりなり、その金属組織中に平
均4μm以下の大傾角粒界に囲まれた加工誘起等
軸フエライト結晶粒を体積率で70%以上含むこと
を特徴とする、高強度でしかも延性のすぐれた超
細粒フエライト鋼。
1% by weight, C: 0.3% or less, Si: 1.5% or less,
Consisting of Mn: 2% or less, N: 0.002-0.01%, the remainder Fe and unavoidable impurities, and its metal structure contains deformation-induced equiaxed ferrite crystal grains surrounded by large-angle grain boundaries with an average size of 4 μm or less as a volume fraction. Ultra-fine grained ferrite steel with high strength and excellent ductility, characterized by a content of 70% or more.
JP5564882A 1982-04-03 1982-04-03 Super fine grain ferrite steel Granted JPS58174544A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5564882A JPS58174544A (en) 1982-04-03 1982-04-03 Super fine grain ferrite steel
US06/481,453 US4466842A (en) 1982-04-03 1983-04-01 Ferritic steel having ultra-fine grains and a method for producing the same
FR8305500A FR2524493B1 (en) 1982-04-03 1983-04-05 FERRITIC STEEL WITH ULTRA-FINE GRAINS AND PROCESS FOR PRODUCING THE SAME
DE3312257A DE3312257A1 (en) 1982-04-03 1983-04-05 FERRITIC STEEL WITH ULTRAFINE GRAIN AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5564882A JPS58174544A (en) 1982-04-03 1982-04-03 Super fine grain ferrite steel

Publications (2)

Publication Number Publication Date
JPS58174544A JPS58174544A (en) 1983-10-13
JPS6239228B2 true JPS6239228B2 (en) 1987-08-21

Family

ID=13004639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5564882A Granted JPS58174544A (en) 1982-04-03 1982-04-03 Super fine grain ferrite steel

Country Status (1)

Country Link
JP (1) JPS58174544A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9806204A (en) * 1997-09-11 2000-02-15 Kawasaki Heavy Ind Ltd Hot-rolled steel sheet with fine grains with improved formability, production of hot-rolled or cold-rolled steel sheet.

Also Published As

Publication number Publication date
JPS58174544A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
US11279984B2 (en) High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
US7794552B2 (en) Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
WO1995013405A1 (en) High-strength high-ductility two-phase stainless steel and process for producing the same
JP4006112B2 (en) Method for producing fine-grained high-tensile steel
KR20070086676A (en) High strength steel sheet and method for production thereof
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
CN110832095B (en) Hot-rolled steel sheet and method for producing same
JPH0247524B2 (en) KAKOYONETSUENKOHANNOSEIZOHOHO
JPS6160892B2 (en)
KR20230016217A (en) Heat-treated cold-rolled steel sheet and its manufacturing method
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JPS6239230B2 (en)
JP2000336455A (en) High ductility hot rolled steel sheet and its production
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPS6239228B2 (en)
KR100946051B1 (en) Method for manufacturing the good weldability and high strength thick plate steel
JP3323737B2 (en) Method for producing high-strength hot-rolled steel sheet having ultrafine structure
JP2658706B2 (en) Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance
JPS6239231B2 (en)
JPH11323481A (en) Steel with fine grained structure, and its production
KR100946049B1 (en) Method for manufacturing the high strength steel by grain refinement
JPS6239229B2 (en)
KR100946050B1 (en) Method for manufacturing the ultra-fine ferrite by dynamic transformation
JP3546963B2 (en) Method of manufacturing high-strength hot-rolled steel sheet with excellent workability