JP3323737B2 - Method for producing high-strength hot-rolled steel sheet having ultrafine structure - Google Patents

Method for producing high-strength hot-rolled steel sheet having ultrafine structure

Info

Publication number
JP3323737B2
JP3323737B2 JP15453496A JP15453496A JP3323737B2 JP 3323737 B2 JP3323737 B2 JP 3323737B2 JP 15453496 A JP15453496 A JP 15453496A JP 15453496 A JP15453496 A JP 15453496A JP 3323737 B2 JP3323737 B2 JP 3323737B2
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
weight
hot
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15453496A
Other languages
Japanese (ja)
Other versions
JPH108138A (en
Inventor
真事 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP15453496A priority Critical patent/JP3323737B2/en
Publication of JPH108138A publication Critical patent/JPH108138A/en
Application granted granted Critical
Publication of JP3323737B2 publication Critical patent/JP3323737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱延鋼板の製造方
法に関し、詳しくは、熱延したままで超微細組織を有す
る延性、靭性、疲労強度、耐衝突強度に優れた熱延鋼
板、特に引張強度が450MPa以上の高強度範囲にお
いて上記材質に対する優位性を発揮する自動車用材、構
造材、パイプ材向けの高張力熱延鋼板の製造方法に係わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hot-rolled steel sheet, and more particularly, to a hot-rolled steel sheet having an ultrafine structure as hot-rolled and having excellent ductility, toughness, fatigue strength, and impact resistance, and in particular, The present invention relates to a method for producing a high-strength hot-rolled steel sheet for automotive materials, structural materials, and pipe materials, which exhibits superiority to the above materials in a high strength range of a tensile strength of 450 MPa or more.

【0002】[0002]

【従来の技術】自動車用材、構造材、パイプ材などに用
いられる鋼材の機械的性質を高める手段として、その鋼
材の結晶組織(以下、組織)を超微細化することが有効
と考えられ、超微細組織を得る技術の開発が従来より数
多く模索されてきた。特に、近年は、板厚を薄くして低
コスト化を図るために高張力鋼板が多く使用されるよう
になり、その高張力化に伴う加工性、靭性などの劣化を
抑える目的で高張力鋼における組織の微細化が重要な課
題となっている。また、この組織微細化は、特に伸びフ
ランジ性(例えば、円錐ポンチによる穴拡げ性で評価)
の向上に有効な手段と考えられている。
2. Description of the Related Art As a means for enhancing the mechanical properties of steel materials used for automobile materials, structural materials, pipe materials, etc., it is considered effective to make the crystal structure (hereinafter, structure) of the steel material ultra-fine. Many techniques for obtaining a fine structure have been sought before. Particularly, in recent years, high-tensile steel sheets have been widely used in order to reduce the thickness and reduce cost, and high-tensile steel sheets have been used for the purpose of suppressing deterioration in workability, toughness, etc. due to the high tensile strength. The miniaturization of the structure in has been an important issue. In addition, this micronization of the structure is particularly achieved by the stretch flangeability (e.g., evaluated by the hole expandability with a conical punch).
Is considered to be an effective means of improving

【0003】ところで、この組織微細化の方法として
は、制御圧延法、制御冷却法、大圧下圧延法などが従来
より知られている。これらのうち、高張力化と組織微細
化とを同時に達成する方法として広く用いられてきたの
は、素材にNbもしくはTiを含ませ制御圧延する方法
であり、得られる鋼板は、所謂析出強化型高張力熱延鋼
板であった。該方法が広く用いられてきた理由は、含有
するNbもしくはTiの析出強化作用により鋼材の高張
力化が容易に図れること、及び、Nb、Tiのオーステ
ナイト粒の再結晶抑制作用により、該鋼板に低温圧延を
施した時のγ→αへの歪み誘起変態を促進させ、フェラ
イト粒を微細化する効果を得ることにある。しかしなが
ら、上記方法で製造された高張力鋼板の難点は、機械的
性質の異方性が大きいことであり、例えば、プレス成形
用の自動車用鋼板等では、成形限界は最も延性や伸びフ
ランジ性が劣る方向での水準によって決まるが、異方性
が大き過ぎて高いプレス成形性の確保が難しくなる。ま
た、構造材、あるいはパイプ材に重要な靭性や疲労強度
等に関しても、この異方性が大きいという難点は同様の
問題につながる。
[0003] As a method of refining the structure, a controlled rolling method, a controlled cooling method, a large rolling reduction method and the like have been conventionally known. Among them, a method widely used as a method for simultaneously achieving high tensile strength and microstructure refinement is a method in which Nb or Ti is included in a material and controlled rolling is performed, and the obtained steel sheet is a so-called precipitation strengthened type. It was a high-tensile hot-rolled steel sheet. The reason that this method has been widely used is that the steel material can be easily increased in tension by the precipitation strengthening action of the contained Nb or Ti, and the recrystallization suppressing action of austenite grains of Nb and Ti gives the steel sheet a An object of the present invention is to promote the strain-induced transformation from γ to α when low-temperature rolling is performed, and to obtain an effect of refining ferrite grains. However, a drawback of the high-strength steel sheet manufactured by the above method is that the mechanical properties are highly anisotropic. For example, in the case of an automotive steel sheet for press forming, the forming limit is the most ductile or stretch flangeable. Although determined by the level in the inferior direction, it is difficult to ensure high press formability because the anisotropy is too large. Further, regarding toughness and fatigue strength which are important for a structural material or a pipe material, the difficulty that this anisotropy is large leads to the same problem.

【0004】一方、前記大圧下圧延法による組織微細化
方法としては、例えば特開昭58−123823号公
報、特開昭59−229413号公報等に代表される提
案がある。これらの方法における超微細化の要点は、オ
ーステナイト粒に大圧下を加えることでγ→αへの歪み
誘起変態を促進することにあり、上記のNb、Tiを含
有する析出強化鋼の場合と基本的には同じ機構を利用す
るものである。ただし、両者の違いは、析出強化鋼の制
御圧延では、Nb、Tiのオーステナイト粒の再結晶抑
制効果を利用するのに対して、大圧下圧延法では、N
b、Tiを含有させなくとも結晶粒の微細化が可能であ
るという点である。そのため、大圧下圧延法で得た鋼材
は、機械的性質の異方性が析出強化鋼に比べて改善され
るという利点があるが、1パスあたりの圧下率を40%
以上にする必要がある等、一般的なホット・ストリップ
・ミルで実施し難い圧延条件にすることが最大の難点で
ある。
On the other hand, as a method of refining the structure by the above-mentioned large rolling reduction method, there are proposals represented by, for example, JP-A-58-123823 and JP-A-59-229413. The point of ultra-fine refining in these methods is to promote strain-induced transformation from γ to α by applying a large pressure to austenite grains, which is basically the same as the case of the precipitation-strengthened steel containing Nb and Ti. Typically, they use the same mechanism. However, the difference between the two is that the controlled rolling of precipitation-strengthened steel utilizes the effect of suppressing the recrystallization of austenite grains of Nb and Ti, whereas the large rolling reduction method uses Nb and Ti.
The point is that the crystal grains can be refined without containing b and Ti. For this reason, the steel material obtained by the large rolling reduction method has an advantage that the anisotropy of the mechanical properties is improved as compared with the precipitation strengthened steel, but the rolling reduction per pass is 40%.
The most difficult point is to set the rolling conditions that are difficult to perform with a general hot strip mill, such as the need to make the above.

【0005】また、高張力鋼板の強度と加工性の両方を
満足させたものとして、残留オーステナイトの所謂TR
IP効果(Transformation Induc
edPlasticiry:変態誘起塑性)を利用した
鋼板が最近提案されている。例えば、特開昭60−43
425号公報は、熱間圧延後に鋼板を450〜650℃
の温度範囲で4〜20秒保持し、次いで350℃以下で
巻き取り、残留オーステナイトを有する鋼板を製造する
方法を開示している。しかしながら、この方法では、上
記した特殊な冷却制御を必要とするため、安定し、かつ
均一な材質を得ることができないという難点があった。
また、延性は格段に向上するが、伸びフランジ性に劣る
という欠点もあった。
Further, as a material satisfying both the strength and workability of a high-strength steel sheet, the so-called TR of retained austenite is considered.
IP Effect (Transformation Induc)
A steel sheet utilizing edPlasticyry (transformation-induced plasticity) has recently been proposed. For example, JP-A-60-43
No. 425 discloses that a steel sheet is heated at 450 to 650 ° C. after hot rolling.
The method discloses a method for producing a steel sheet having retained austenite by holding the steel sheet at a temperature of 4 to 20 seconds and then winding it at 350 ° C. or lower. However, in this method, the above-described special cooling control is required, and therefore, there is a problem that a stable and uniform material cannot be obtained.
Further, although the ductility is remarkably improved, there is a disadvantage that the stretch flangeability is inferior.

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みてなされたもので、一般のホット・ストリップ・
ミルを使用して容易に実施することが可能で、かつ機械
的性質の異方性が少なく、しかも従来技術よりもフェラ
イト粒径の微細化をさらに高めることが可能であり、そ
のために延性、靭性、疲労強度、特に伸びフランジ性を
格段に高めることができる高張力熱延鋼板の製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made in consideration of a general hot strip strip.
It can be easily carried out using a mill, and the anisotropy of the mechanical properties is small, and the refinement of the ferrite grain size can be further enhanced as compared with the conventional technology. It is an object of the present invention to provide a method of manufacturing a high-tensile hot-rolled steel sheet which can significantly improve fatigue strength, particularly stretch flangeability.

【0007】[0007]

【課題を解決するための手段】従来のフェライト結晶粒
径の微細化手段は、上述したように、いずれの方法にお
いてもγ→αへの歪み誘起変態を利用したものである。
本発明者は、該歪み誘起変態を利用するかぎり、上記の
ような問題点を回避することはできないと考え、新たな
る結晶粒の微細化方法を探究した。その結果、以下に述
べる新しい手段を見いだし、本発明をなすに至ったので
ある。
Means for resolving the problem The conventional means for reducing the grain size of the ferrite crystal uses the strain-induced transformation from γ to α in any of the methods as described above.
The present inventor thought that the above problems could not be avoided as long as the strain-induced transformation was used, and sought a new method for refining crystal grains. As a result, they have found the following new means, and have accomplished the present invention.

【0008】まず、オーステナイト粒が熱間圧延におい
て微細化するには、圧延−再結晶過程を経させることが
古くから知られている。しかし、かかる再結晶による微
細化では、到達し得るフェライト結晶粒径はせいぜい2
0μmが限度であり、これに対して、上記の制御圧延法
や大圧下圧延法によると、10μm程度の微細粒を得る
ことができるので、従来、再結晶過程を利用する微細化
方法は、超微細組織を得る方法としては不適当であると
考えられてきた。そこで、本発明者は、鋭意研究を行
い、熱間圧延開始前、すなわち、スラブの加熱時点で、
素材のオーステナイト粒径を極度に微細化させてから圧
延を行うと、その後の圧延−再結晶が極めて加速的に生
じるようになり、しかも圧延後の再結晶粒の微細化が大
幅に進展することを発見したのである。この微細化理由
は、必ずしも明確ではないが、以下に述べる機構による
と考えられる。
First, it has long been known that austenite grains undergo a rolling-recrystallization process in order to make them finer in hot rolling. However, in such miniaturization by recrystallization, the ferrite crystal grain size that can be reached is at most 2
The limit is 0 μm. On the other hand, according to the above-mentioned controlled rolling method or large rolling reduction method, fine grains of about 10 μm can be obtained. It has been considered unsuitable as a method for obtaining a microstructure. Therefore, the present inventors conducted intensive research, and before the start of hot rolling, that is, at the time of heating the slab,
When rolling is performed after extremely reducing the austenite grain size of the material, the subsequent rolling and recrystallization will occur at an extremely accelerated rate, and the recrystallization grains after rolling will greatly advance. Was discovered. Although the reason for this miniaturization is not always clear, it is considered to be due to the mechanism described below.

【0009】圧延によるオーステナイト粒の再結晶に
は、動的再結晶と静的再結晶があり、前者は、圧延温度
が高く、歪み速度が遅く、かつ大圧下が加えられた時、
すなわち、ホット・ストリップ・ミルでの圧延で言え
ば、粗圧延の初期−中期の段階に該当するような圧延条
件においてのみ生じる可能性のある再結晶であり、圧延
温度が低下し、かつ歪み速度の速くなる仕上圧延の段階
になると、この動的再結晶は起き難くなり、代わりに静
的再結晶が起きるようになると考えられてきた。
[0009] Recrystallization of austenite grains by rolling includes dynamic recrystallization and static recrystallization. The former involves a high rolling temperature, a low strain rate, and when a large reduction is applied.
That is, in the case of rolling in a hot strip mill, it is a recrystallization that can occur only under rolling conditions corresponding to the initial-middle stage of rough rolling, in which the rolling temperature is reduced and the strain rate is reduced. It has been thought that in the finish rolling stage, which is faster, this dynamic recrystallization becomes difficult to occur, and instead, static recrystallization will occur.

【0010】しかしながら、動的再結晶は極めて速い速
度で粒界移動あるいは新粒界を生成することによって歪
を開放する現象であり、また、結晶粒の微細化は、粒界
移動を容易化するので、動的再結晶を生じ易くする方向
に作用する。さらに、動的再結晶の生成は旧粒界で起
こるので、旧結晶粒が微細であるほど、動的再結晶粒の
生成頻度が高まり、再結晶後の新結晶粒の微細化が進
行することになる。
[0010] However, dynamic recrystallization is a phenomenon in which strain is released by moving grain boundaries or forming new grain boundaries at an extremely high speed, and the refinement of crystal grains facilitates the movement of grain boundaries. Therefore, it acts in a direction that facilitates dynamic recrystallization. Furthermore, since nucleation of dynamic recrystallization occurs at the old grain boundary, the finer the old crystal grain, the more dynamic crystallization
The frequency of nucleation increases, and the refinement of new crystal grains after recrystallization proceeds.

【0011】かくして、本発明者は、初期オーステナイ
ト粒径を極度に微細化すれば、動的再結晶は、より低温
域、より高歪み速度域、より低歪み領域においても生じ
るようになり、従来の熱延では生じ得なかった仕上圧延
段階においても、動的再結晶が起き、圧下数の増加と共
に動的再結晶による微細化が進行していくものと推測
し、本発明を完成させた。
Thus, the inventor of the present invention has found that if the initial austenite grain size is extremely reduced, dynamic recrystallization occurs in a lower temperature range, a higher strain rate range, and a lower strain range. It has been speculated that dynamic recrystallization also occurs in the finish rolling stage, which could not be generated by hot rolling, and that refinement by dynamic recrystallization proceeds with an increase in the rolling reduction, and thus completed the present invention.

【0012】すなわち、本発明は、C:0.05〜0.
10重量%、SiO2 :0.30〜2.0重量%、M
n:1.0重量%以下、Al:0.003〜0.100
重量%、Ti:0.05〜0.30重量%を含有し、残
部Fe及び不可避不純物よりななり、初期オーステナイ
ト粒径を極度に微細化した連続鋳造スラブを950℃以
上、1100℃以下の温度に加熱した後、1回あたりの
圧下率が20%以上となる圧下を少なくとも2回以上行
い、仕上圧延温度がAr3 変態点以上となるように熱間
圧延した後、20℃/秒以上の冷却速度で冷却し、35
0℃から550℃の温度範囲で巻き取ることを特徴とす
る超微細組織を有する高張力熱延鋼板の製造方法であ
る。
That is, in the present invention, C: 0.05-0.
10 wt%, SiO 2: 0.30~2.0 weight%, M
n: 1.0% by weight or less, Al: 0.003 to 0.100
Wt%, Ti: 0.05 to 0.30 contained by weight%, Ri Nana than the remainder Fe and unavoidable impurities, the initial austenite
The continuous casting slab having extremely reduced grain size is heated to a temperature of 950 ° C. or more and 1100 ° C. or less, and then subjected to at least two or more reductions in which a reduction rate of 20% or more is performed at one time. Is hot-rolled so as to be not less than the Ar 3 transformation point, and then cooled at a cooling rate of 20 ° C./sec or more.
This is a method for producing a high-tensile hot-rolled steel sheet having an ultrafine structure, characterized in that it is wound in a temperature range of 0 ° C. to 550 ° C.

【0013】また、本発明は、上記Tiの全部又は一部
に代え、その2倍量のNbを含有することを特徴とする
超微細組織を有する高張力熱延鋼板の製造方法でもあ
る。本発明では、特定された組成を有する連続鋳造スラ
ブを上記の条件で熱延、冷却するようにしたので、一般
のホット・ストリップ・ミルで容易に実施可能で、かつ
機械的性質の異方性が少なく、しかも従来技術よりもフ
ェライト粒径の微細化をさらに高め、延性、靭性、疲労
強度、特に伸びフランジ性の格段に高い高張力熱延鋼板
が製造できるようになる。
[0013] The present invention is also a method for producing a high-tensile hot-rolled steel sheet having an ultrafine structure, characterized by containing twice the amount of Nb in place of all or part of the Ti. In the present invention, the continuous cast slab having the specified composition is hot-rolled and cooled under the above conditions, so that it can be easily performed by a general hot strip mill, and has anisotropic mechanical properties. In addition, it is possible to produce a high-strength hot-rolled steel sheet with much less ferrite grain size than in the prior art, and with remarkably high ductility, toughness, and fatigue strength, particularly excellent stretch flangeability.

【0014】なお、超微細化機構において最も重要な点
は、いうまでもなくスラブ加熱段階における初期オース
テナイト粒を極度に微細化させることである。本発明で
は、多量のTiCを存在せしめることでそれを達成した
のである。但し、前記した析出強化鋼においても、Ti
を超微細化元素として利用している。しかしながら、本
発明でのTiの作用と該析出強化鋼でのそれとは明白に
異なっている。すなわち、Ti系析出強化鋼でのTi
は、スラブ加熱段階ではオーステナイト粒に溶体化さ
せ、固溶Tiとしての再結晶抑制効果を利用して微細化
効果を発現させ、あわせて変態した後のフェライト粒
に、微細なTiCとして再析出させて析出強化を引き出
す働きをさせる。また、Nb系析出強化鋼では、Nbが
この役割を果たす。したがって、前記した従来の析出強
化鋼においては、スラブ加熱段階でTiC、もしくはN
bCを溶解させることが必要であり、加熱温度としては
比較的高温であることが必須の要件となる。これに対し
て、本発明では、Tiをスラブ加熱段階でオーステナイ
トに溶解させずTiCの状態として存在させることが重
要な要素となる。この理由は、第1に固溶Tiは、再結
晶を阻害し、本発明の微細化過程である動的再結晶を起
こし難くするためであり、第2は初期オーステナイトの
成長を抑制するTiCの量がその溶解によって減ずるか
らである。そのため、本発明では、スラブ加熱温度をT
iCの溶解が生じない低温度域に設定することが必要の
要件となるのである。
It is needless to say that the most important point in the ultra-fine structure mechanism is to extremely refine the initial austenite grains in the slab heating step. In the present invention, this was achieved by allowing a large amount of TiC to be present. However, even in the above-mentioned precipitation strengthened steel, Ti
Is used as a hyperfine element. However, the effect of Ti in the present invention is clearly different from that in the precipitation strengthened steel. That is, Ti in Ti-based precipitation strengthened steel
In the slab heating step, austenite grains are solutionized, a refining effect is exhibited by utilizing the recrystallization suppression effect as solid solution Ti, and, at the same time, ferrite grains after transformation are reprecipitated as fine TiC. Work to bring out precipitation strengthening. In Nb-based precipitation strengthened steel, Nb plays this role. Therefore, in the above-mentioned conventional precipitation strengthened steel, TiC or N
It is necessary to dissolve bC, and a relatively high heating temperature is an essential requirement. On the other hand, in the present invention, it is an important element that Ti is not dissolved in austenite in the slab heating step but is present as TiC. The first reason is that solid-solution Ti inhibits recrystallization and makes it difficult to cause dynamic recrystallization, which is a miniaturization process of the present invention, and the second is TiC which suppresses the growth of initial austenite. The amount is reduced by its dissolution. Therefore, in the present invention, the slab heating temperature is set to T
It is a necessary requirement to set the temperature in a low temperature range where iC does not dissolve.

【0015】さらに加えて、本発明者は、素材へのC及
びMnの添加量を制限すると、パーライト相、ベイナイ
ト相、マルテンサイト相などの伸びフランジ性を阻害す
る組織の生成が抑制され、超微細なフェライトと残留
オーステナイト相からなる組織が形成されることを新た
に見出すと共に、かかる組織は、パーライト、ベイナイ
ト、マルテンサイトの合計体積率が5%以下で平均粒径
が10μmのフェライトと、5〜20%の残留オーステ
ナイトとを含有することになり、延性及び伸びフランジ
性に優れることを確認している。
[0015] In addition, the inventor of the present invention has found that, when the amounts of C and Mn added to the raw material are restricted, the formation of a structure that inhibits stretch flangeability such as a pearlite phase, a bainite phase and a martensite phase is suppressed, and In addition to newly finding that a structure composed of a fine ferrite phase and a retained austenite phase is formed, such a structure includes a ferrite having a total volume ratio of pearlite, bainite and martensite of 5% or less and an average grain size of 10 μm, It contains 5 to 20% of retained austenite, confirming that the ductility and stretch flangeability are excellent.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態は、前項で説
明した通りであるので、以下に素材の化学組成の限定理
由、及び熱延と冷却の条件を限定した理由について述べ
る。 C:まず、Cは、残留オーステナイトを生成させて必要
な強度を得るためと、組織微細化に重要な加熱段階での
TiCを十分な量確保するためとに、0.05重量%以
上が必要である。しかし、その量が0.10重量%を越
えると、パーライト、ベイナイト、マルテンサイト等の
第2相の比率が多くなり、伸びフランジ性が劣化する。
したがって、Cは0.05〜0.10重量%の範囲とし
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention are as described in the preceding section. The reasons for limiting the chemical composition of the material and the conditions for limiting the hot rolling and cooling conditions will be described below. C: First, C is required to be 0.05% by weight or more in order to generate necessary austenite to obtain a necessary strength and to secure a sufficient amount of TiC in a heating step which is important for refining the structure. It is. However, when the amount exceeds 0.10% by weight, the ratio of the second phase such as pearlite, bainite, martensite, etc. increases, and the stretch flangeability deteriorates.
Therefore, C is set in the range of 0.05 to 0.10% by weight.

【0017】Si:Siは、固溶強化により強度−伸び
バランスを改善しつつ強度を高める上で有効な元素であ
ると共に、フェライト変態を促進して本発明の目的とす
る組織を得る上で有効な元素であり、その効果を発現さ
せるためには、0.3重量%以上の添加が必要である。
一方、SiO2 の多量添加は、熱延時に脱スケール性の
悪いスケールが生じて製品での表面性状に悪影響を起こ
し易い。本発明では、超微細組織化のために加熱温度を
低温域に設定するので、上記表面性状が圧下するSi量
の上限は通常の鋼に比べて高くできるものの、それが
2.0%を越えると、悪影響が顕在化するので、2.0
重量%とした。
Si: Si is an effective element for improving strength while improving the strength-elongation balance by solid solution strengthening, and is effective for promoting ferrite transformation to obtain the structure aimed at by the present invention. It is necessary to add 0.3% by weight or more in order to exert its effect.
On the other hand, the addition of a large amount of SiO 2 tends to produce scales with poor descaling properties during hot rolling, which tends to adversely affect the surface properties of the product. In the present invention, since the heating temperature is set to a low temperature range for ultrafine structure, the upper limit of the amount of Si in which the surface texture is reduced can be higher than that of ordinary steel, but it exceeds 2.0%. And adverse effects become apparent, so 2.0
% By weight.

【0018】Mn:Mnは、強度の向上に有効な元素で
あるが、1.0重量%を越えると、フェライト変態が著
しく遅延し、パーライト、ベイナイト、マルテンサイト
の変態が生成しやすくなり、伸びフランジ性が劣化す
る。したがって、Mnは1.0重量%以下とした。 Al:Alは、溶鋼段階で脱酸に極めて有効な元素であ
るが、0.01重量%以下では、その効果は得られず、
一方、0.10重量%を越えると、結晶粒の粗大化及び
介在物による内部欠陥をもたらす。したがって、Alは
0.003〜0.10重量%の範囲とした。
Mn: Mn is an element effective for improving the strength. However, if it exceeds 1.0% by weight, the transformation of ferrite is remarkably delayed, and a transformation phase of pearlite, bainite and martensite is easily formed, The stretch flangeability deteriorates. Therefore, Mn was set to 1.0% by weight or less. Al: Al is an element that is extremely effective for deoxidation in the molten steel stage, but its effect cannot be obtained at 0.01% by weight or less.
On the other hand, if it exceeds 0.10% by weight, crystal grains become coarse and internal defects due to inclusions are caused. Therefore, Al was set in the range of 0.003 to 0.10% by weight.

【0019】Ti:Tiは、初めに述べたように、Ti
Cとして存在せしめてスラブ加熱段階での初期オーステ
ナイト粒を微細化させ、以降の圧延過程での動的再結晶
を生じさせるために必須の元素である。この作用を発揮
させるためには、少なくとも0.05重量%以上必要で
あり、TiCの増加とともに微細化効果は大きくなって
いくが、0.3重量%を越えると飽和する。従って、T
iは0.05〜0.30重量%の範囲とした。
Ti: Ti is, as mentioned earlier, Ti
C is an element essential for refining the initial austenite grains in the slab heating step and causing dynamic recrystallization in the subsequent rolling process. In order to exhibit this effect, at least 0.05% by weight or more is required. The effect of miniaturization increases with an increase in TiC, but becomes saturated when it exceeds 0.3% by weight. Therefore, T
i was in the range of 0.05 to 0.30% by weight.

【0020】上記限定組成を、本発明に係る製造方法で
用いる鋼素材の基本組成とするが、Tiと同様の作用を
示す元素としてNbがある。これをTiに代替させる
か、もしくはTi添加と重畳させて添加することによっ
ても良好な結果が得られる。Nbの効果は、Cに対する
原子比当量あたりでみると、Tiの作用とほぼ等価であ
るから、重量比でみるとTiよりもおよそ2倍の添加が
必要となり、経済的メリットはない。しかし、ERW溶
接、あるいはフラッシュバット溶接などを行う用途に使
用される場合には、溶接接合界面での酸化物の残存が問
題となる場合もある。このような用途、目的に対しては
Nbを添加しても良い。
The above-mentioned limited composition is used as the basic composition of the steel material used in the production method according to the present invention. Nb is an element having the same action as that of Ti. Good results can also be obtained by substituting this with Ti or by adding it in an overlapping manner with the addition of Ti. The effect of Nb is almost equivalent to the effect of Ti when viewed at an atomic ratio equivalent to C. Therefore, the addition of Nb is required to be approximately twice as much as that of Ti in terms of weight ratio, and there is no economic merit. However, when used for applications such as ERW welding or flash butt welding, residual oxide at the weld joint interface may be problematic. Nb may be added for such uses and purposes.

【0021】次に、本発明での熱延条件について説明す
る。本発明では、まず、TiCによる初期オーステナイ
ト粒の微細化効果を最大限に発揮させることが技術上の
重要なポイントであり、この条件として、加熱温度の下
限を950℃、上限を1100℃に限定する。下限温度
は、それが950℃未満となると、仕上圧延をオーステ
ナイト領域で越えることが難しくなり、目的とするミク
ロ組織と機械的性質を確保し難くなるためである。上限
温度は、1100℃を越えると、TiCのオーステナイ
トへの溶解量が増加し、オーステナイト粒を微細化する
効果が失われると共に、固溶Tiの増加によって圧延時
の動的再結晶が生じ難くなり、目的とする高いフェライ
ト体積率、超微細なフェライト粒、かつ残留オーステナ
イト組織が得がたくなり、従来技術なみの機械的性質し
か得られなくなるためである
Next, the hot rolling conditions in the present invention will be described. In the present invention, first, it is an important technical point that the effect of refining the initial austenite grains by TiC is maximized, and the lower limit of the heating temperature is limited to 950 ° C. and the upper limit is limited to 1100 ° C. I do. If the lower limit temperature is lower than 950 ° C., it is difficult to exceed the finish rolling in the austenite region, and it is difficult to secure the desired microstructure and mechanical properties. When the upper limit temperature exceeds 1100 ° C., the amount of TiC dissolved in austenite increases, the effect of refining austenite grains is lost, and dynamic recrystallization during rolling is unlikely to occur due to the increase in solid solution Ti. This is because the desired high ferrite volume ratio, ultrafine ferrite grains, and retained austenite structure are difficult to obtain, and only mechanical properties comparable to those of the prior art can be obtained .

【0022】次に、本発明では、圧延によってオーステ
ナイト粒に動的再結晶を繰り返し生じさせ、微細化して
いくことを目的としているが、動的再結晶を生じさせる
初期条件は、上記スラブ加熱温度要件を満たすことで補
償されているので、圧延に際しての要件は、1回あたり
の圧下率が重要な要素となる。すなわち、この圧下率が
20%に満たない場合には、目的とする動的再結晶によ
る微細化が生じなくなるので、各圧延スタンド毎の圧下
率の下限を20%とする。上限は、微細化効果の観点か
ら特に限定する必要はないが、現実的には圧延機の圧下
能力によって限界が生じ、圧延温度、鋼の化学成分及び
圧延寸法などによって異なるものの、20〜40%の圧
下を施すことが可能な圧延機が一般的であるので、本発
明をその範囲で実施することが好ましい。
Next, in the present invention, the aim is to repeatedly generate dynamic recrystallization of austenite grains by rolling to make the austenite grains finer. The initial conditions for generating dynamic recrystallization are as follows: Since the requirements are compensated by satisfying the requirements, the rolling reduction requirements are such that the rolling reduction per operation is an important factor. That is, if the rolling reduction is less than 20%, the desired reduction by dynamic recrystallization does not occur, so the lower limit of the rolling reduction for each rolling stand is set to 20%. The upper limit does not need to be particularly limited from the viewpoint of the refining effect, but in reality, there is a limit due to the rolling capacity of the rolling mill, and it depends on the rolling temperature, the chemical composition of the steel, the rolling dimensions, and the like. In general, a rolling mill capable of applying the above-described reduction is preferable, and therefore, the present invention is preferably carried out within the range.

【0023】また、本発明では、仕上圧延を終えた段階
でオーステナイト粒はほぼ等軸粒で微細化しており、そ
のままγ→α変態させれば微細なフェライト粒が生成し
はじめる。ただし、20℃/秒以下の冷却速度では、高
温域で生じるフェライト粒の粒成長によってフェライト
変態が進行し、フェライト変態促進効果及び微細化効果
が減ずるので、冷却速度の下限を20℃/秒とする。な
お、冶金学的観点からは、この冷却速度の上限を規定し
ないが、鋼板の平坦度を良好に保つため100℃/秒以
下が好ましい。また、巻取温度が550℃を越えると、
残粒オーステナイト生成が小量となって延性の向上効果
が無くなること、及び高張力化が図れないことと、さら
に巻取り後の自己焼鈍効果が大きくなって超微細化させ
たフェライト粒が粒成長を起こす等、好ましくない結果
を招く。加えて、巻取温度350℃未満では、マルテン
サイトが生成し、残留オーステナイト量が減じる。さ
らに、鋼板の平坦度の悪化も招くので、巻取温度の範囲
は、350℃から550℃に限定する。以下に、本発明
の実施例を説明する。
Further, in the present invention, the austenite grains are refined to substantially equiaxed grains at the stage of finishing rolling, and fine ferrite grains begin to be formed if the γ → α transformation is performed as it is. However, at a cooling rate of 20 ° C./sec or less, the ferrite transformation proceeds due to the growth of ferrite grains generated in a high temperature region, and the ferrite transformation accelerating effect and the miniaturization effect are reduced. I do. In addition, from the viewpoint of metallurgy, the upper limit of the cooling rate is not specified, but is preferably 100 ° C./sec or less in order to keep the flatness of the steel sheet good. When the winding temperature exceeds 550 ° C,
The generation of residual austenite is small and the effect of improving ductility is lost, and it is not possible to achieve high tensile strength.In addition, the self-annealing effect after winding is increased, and the ferrite grains that have become ultrafine are grown. Cause undesired results. In addition, when the winding temperature is lower than 350 ° C., a martensite phase is formed, and the amount of retained austenite decreases. Furthermore, the range of the winding temperature is limited to 350 ° C. to 550 ° C. because the flatness of the steel sheet is deteriorated . Hereinafter, examples of the present invention will be described.

【0024】[0024]

【実施例】表1に示す化学成分の鋼素材を溶製し、表2
に示す熱間圧延条件で3.2mm厚さの熱延鋼板を製造
した。そして、これら熱延鋼板から試料を採取し、ポリ
ゴナル(多角形状)・フェライトの体積率、該フェライ
トの結晶粒径を測定すると共に、引張特性、円錐ポンチ
による穴拡げ比(伸びフランジ性)、両振り平面曲げ試
験法による疲労特性、2mmVノッチ・シャルピー試験
片による延性−脆性遷移温度(vTrs)を調査した。
これらの結果を一括して表3に示す。
EXAMPLE A steel material having the chemical composition shown in Table 1 was melted.
A hot-rolled steel sheet having a thickness of 3.2 mm was manufactured under the hot rolling conditions shown in Table 1. Then, samples were taken from these hot-rolled steel sheets, and the volume ratio of polygonal (polygonal) ferrite and the crystal grain size of the ferrite were measured, as well as the tensile properties, the hole expansion ratio with a conical punch (stretch flangeability), Fatigue properties by a swing plane bending test method were examined for a ductile-brittle transition temperature (vTrs) using a 2 mm V-notch Charpy test piece.
Table 3 shows these results collectively.

【0025】これらの実施例及び比較例の結果から明ら
かなように、本発明に係る製造方法を適用して得た鋼板
は、強度−伸びバランスに優れ、且つ伸びフランジ性、
靭性、疲労強度にも優れているることがわかる。
As is clear from the results of these Examples and Comparative Examples, the steel sheet obtained by applying the production method according to the present invention has excellent strength-elongation balance, stretch flangeability,
It can be seen that toughness and fatigue strength are also excellent.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【発明の効果】以上述べたように、本発明により、一般
的なホット・ストリップ・ミルを用いて、容易に残留オ
ーステナイトを含む超微細フェライト組織が得られ、延
性、伸びフランジ性、疲労強度、靭性に優れた高張力鋼
板の製造が可能になった。また、この鋼板を用いて製品
を製造する際の作業性や歩留りが著しく向上した。
As described above, according to the present invention, an ultrafine ferrite structure containing retained austenite can be easily obtained by using a general hot strip mill, and ductility, stretch flangeability, fatigue strength, Production of high-tensile steel sheets with excellent toughness has become possible. In addition, workability and yield in manufacturing a product using this steel sheet have been significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る製造方法と比較例で製造した鋼板
の(TS×EL)値、穴拡げ比(λ)、(vTrs)値
と、ポリゴナル・フェライト体積率との関係を示す図で
ある。
FIG. 1 is a diagram showing a relationship between (TS × EL) value, hole expansion ratio (λ), (vTrs) value, and polygonal ferrite volume ratio of steel sheets manufactured by a manufacturing method according to the present invention and a comparative example. is there.

【図2】本発明に係る製造方法と比較例で製造した鋼板
の(TS×EL)値、穴拡げ比(λ)、(vTrs)値
と、残留オーステナイト率との関係を示す図である。
FIG. 2 is a diagram showing a relationship between (TS × EL) values, hole expansion ratios (λ), (vTrs) values, and retained austenite ratios of steel sheets manufactured by a manufacturing method according to the present invention and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 - 9/48 C21D 8/00 - 8/04 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 9/46-9/48 C21D 8/00-8/04 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.05〜0.10重量%、 Si:0.30〜2.0重量%、 Mn:1.0重量%以下、 Al:0.003〜0.100重量%、 Ti:0.05〜0.30重量% を含有し、残部Fe及び不可避不純物よりなり、初期オ
ーステナイト粒径を極度に微細化した連続鋳造スラブを
950℃以上、1100℃以下の温度に加熱した後、1
回あたりの圧下率が20%以上となる圧下を少なくとも
2回以上行い、仕上圧延温度がAr3 変態点以上となる
ように熱間圧延した後、20℃/秒以上の冷却速度で冷
却し、350℃から550℃の温度範囲で巻き取ること
を特徴とする超微細組織を有する高張力熱延鋼板の製造
方法。
1. C: 0.05 to 0.10% by weight, Si: 0.30 to 2.0% by weight, Mn: 1.0% by weight or less, Al: 0.003 to 0.100% by weight, Ti: 0.05 to 0.30 contained by weight%, Ri name than the remainder Fe and unavoidable impurities, the initial O
After heating a continuously cast slab having extremely fine austenite grain size to a temperature of 950 ° C. or more and 1100 ° C. or less,
The rolling reduction at which the rolling reduction per turn becomes 20% or more is performed at least twice or more, and hot rolling is performed so that the finish rolling temperature becomes the Ar 3 transformation point or more, and then cooled at a cooling rate of 20 ° C./sec or more, A method for producing a high-tensile strength hot-rolled steel sheet having an ultrafine structure, wherein the method is performed in a temperature range of 350 ° C to 550 ° C.
【請求項2】 上記Tiの全部又は一部に代え、その2
倍量のNbを含有することを特徴とする請求項1記載の
超微細組織を有する高張力熱延鋼板の製造方法。
2. In place of all or part of the Ti,
2. The method for producing a high-tensile hot-rolled steel sheet having an ultrafine structure according to claim 1, wherein the steel sheet contains twice the amount of Nb.
JP15453496A 1996-06-14 1996-06-14 Method for producing high-strength hot-rolled steel sheet having ultrafine structure Expired - Fee Related JP3323737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15453496A JP3323737B2 (en) 1996-06-14 1996-06-14 Method for producing high-strength hot-rolled steel sheet having ultrafine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15453496A JP3323737B2 (en) 1996-06-14 1996-06-14 Method for producing high-strength hot-rolled steel sheet having ultrafine structure

Publications (2)

Publication Number Publication Date
JPH108138A JPH108138A (en) 1998-01-13
JP3323737B2 true JP3323737B2 (en) 2002-09-09

Family

ID=15586367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15453496A Expired - Fee Related JP3323737B2 (en) 1996-06-14 1996-06-14 Method for producing high-strength hot-rolled steel sheet having ultrafine structure

Country Status (1)

Country Link
JP (1) JP3323737B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039862B1 (en) 1998-11-10 2000-05-08 川崎製鉄株式会社 Hot-rolled steel sheet for processing with ultra-fine grains
EP1176217B1 (en) * 2000-07-24 2011-12-21 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof
US11486020B2 (en) 2018-05-07 2022-11-01 Nippon Steel Corporation Hot-rolled steel sheet and production method therefor
WO2021153746A1 (en) * 2020-01-30 2021-08-05 日本製鉄株式会社 Hot rolled steel sheet and production method thereof

Also Published As

Publication number Publication date
JPH108138A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP3039862B1 (en) Hot-rolled steel sheet for processing with ultra-fine grains
JP3477955B2 (en) Method for producing high-strength hot-rolled steel sheet having ultrafine structure
JPH0711382A (en) High strength hot rolled steel plate excellent in stretch flanging property and its production
JP3433687B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP3417878B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
JPH08188847A (en) Steel plate with composite structure, excellent in fatigue characteristic, and its production
JP3636872B2 (en) Method for producing high-tensile hot-rolled steel sheet having ultrafine structure
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3541726B2 (en) High ductility hot rolled steel sheet and method for producing the same
JP2003105446A (en) High strength hot rolled steel sheet, and production method therefor
JP3323737B2 (en) Method for producing high-strength hot-rolled steel sheet having ultrafine structure
JP2004250774A (en) Cold rolled steel sheet having superfine particle tissue, and production method therefor
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP3546287B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3520105B2 (en) High-strength hot-rolled thin steel sheet excellent in workability, corrosion resistance and low-temperature toughness, and method for producing the same
JPH06264183A (en) Hot rolled high tensile strength steel plate with high workability and its production
JPS6239231B2 (en)
JPH111747A (en) High tensile strength hot rolled steel plate having superfine grain and excellent in ductility, toughness, fatigue resistance, and balance between strength and elongation, and its production
JP2001040451A (en) Hot rolled steel plate for press forming
JP2658706B2 (en) Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance
JPH11323481A (en) Steel with fine grained structure, and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020618

LAPS Cancellation because of no payment of annual fees