JP3546287B2 - High-strength hot-rolled steel sheet excellent in workability and method for producing the same - Google Patents

High-strength hot-rolled steel sheet excellent in workability and method for producing the same Download PDF

Info

Publication number
JP3546287B2
JP3546287B2 JP28156797A JP28156797A JP3546287B2 JP 3546287 B2 JP3546287 B2 JP 3546287B2 JP 28156797 A JP28156797 A JP 28156797A JP 28156797 A JP28156797 A JP 28156797A JP 3546287 B2 JP3546287 B2 JP 3546287B2
Authority
JP
Japan
Prior art keywords
hot
steel sheet
less
rolled steel
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28156797A
Other languages
Japanese (ja)
Other versions
JPH11117039A (en
Inventor
和哉 三浦
周作 高木
古君  修
隆史 小原
教幸 片山
圀彦 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP28156797A priority Critical patent/JP3546287B2/en
Publication of JPH11117039A publication Critical patent/JPH11117039A/en
Application granted granted Critical
Publication of JP3546287B2 publication Critical patent/JP3546287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主として自動車用部品として、プレス成形等の加工が施されて用いられる薄鋼板に関し、とくに自動車ボディーのメンバー、フレームなどの構造部材あるいはサスペンションなどの足まわり部品などに用いて好適な高張力熱延鋼板およびその製造方法に関して提案するものである。
【0002】
【従来の技術】
自動車車体の軽量化を図るためには高張力鋼板の適用が最も有効な方法の一つである。なかでも、ボディーの強度部材あるいはサスペンションなど、さほど優れた表面品質が要求されない部位には、経済性に優れている熱延鋼板が用いられることが多い。このような状況から、熱延高張力鋼板の使途もますます拡大されつつある。
従来から、引張強さが 490〜 780 MPa程度の高張力熱延鋼板の材質強化方法としては、1)フェライト相中にマルテンサイト相、パーライト相あるいはベイナイト相などを析出させた変態組織強化法と、2)Ti、Nb、Vの炭窒化物による析出強化法が利用されてきており、これらの方法は、鋼板の成形性あるいは部品として要求される特性に応じて選択されてきた。
例えば、安価な汎用の高張力熱延鋼板では析出強化されたフェライト相と、パーライト相あるいはベイナイト相組織の鋼板(HSLA)が、延性が要求される場合には、フェライト相とマルテンサイ相のDual Phase鋼が、伸びフランジ成形性が要求される場合には、析出強化されたDual Phase鋼が選択されるといったことである。
また、これら鋼板の製造技術として、例えば、特公昭62-37089号公報、特公昭58-27328号公報、特公昭62-39230号公報等には、Si添加鋼板を低温で巻取ることによって、伸びフランジ成形性を改善する方法が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上述した従来の方法は、いずれも、主としてに単一の加工特性の向上のみを指向したものであり、しかも熱延工程では極めて狭い温度範囲に制御する操業が必要であるために、品質の変動が大きく、生産性に劣るという問題があった。
【0004】
そこで、本発明の目的は、張出し成形性(延性)、形状凍結性(降伏比)、伸びフランジ成形性(穴拡げ性)をともに具えた、マルチプルなプレス成形性に優れる高張力熱延鋼板を提供することにある。
本発明の他の目的は、熱間圧延工程で圧延終了後に、極めて大きな速度での冷却を行う以外は、スラブの加熱温度、仕上げ圧延温度および巻取温度など広範囲に設定でき、しかも材質が安定して得られ、生産性を抜本的に改善することが可能な高張力熱延鋼板の製造方法を提供することにある。
なお、本発明の具体的な材質目標は、引張強さ:540 〜590MPa、耐力:400 〜450MPa、伸び:30〜38%、穴拡げ比:100 %以上の熱延鋼板とその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
発明者らは、上記の目的を達成すべく、Si、Mn含有低炭素鋼をべースにして、主として、成分組成、金属組織、熱延工程に着目して、鋭意研究を重ねた。その結果、微量の炭窒化物形成元素を添加し、熱延および熱延後の冷却過程を適正に制御することによって、仕上圧延後のフェライト変態が活性化されることを知見し、本発明を完成するにいたった。すなわち、本発明の要旨構成は次のとおりである。
【0006】
(1) C:0.010〜0.10wt%、Si:0.50〜1.50wt%、Mn:0.50〜2.00wt%、P:0.01〜0.15wt%、S:0.005wt%以下、N:0.001〜0.005wt%、 Ti:0.005〜0.03wt%を含有し、残部はFeおよび不可避的不純物の成分組成からなり、体積率80〜97%かつ平均粒径10μm以下のフェライト相と、残部はベイナイト相を主体とする低温変態相からなる加工性に優れる高張力熱延鋼板。
(2) 上記成分組成に加えてさらに、V: 0.005 0.03wt %を含有することを特徴とする上記 (1) の高張力熱延鋼板。
【0007】
(3) C:0.010〜0.10wt%、Si:0.50〜1.50wt%、Mn:0.50〜2.00wt%、P:0.01〜0.15wt%、S:0.005wt%以下、N:0.001〜0.005wt%、 Ti:0.005〜0.03wt%を含有し、残部はFeおよび不可避的不純物の成分組成からなる鋼素材を、900〜1300℃の温度域に3600sec以下の時間保定した後、仕上圧延終了温度を780〜980℃とする連続熱間圧延を行い、圧延終了後1sec以内に、50〜200℃/secの冷却速度で冷却し、引き続き300〜650℃の温度範囲でコイルに巻き取ることを特徴とする加工性に優れる高張力熱延鋼板の製造方法。
(4) 上記成分組成に加えてさらに、V: 0.005 0.03wt %を含有することを特徴とする上記 (3) の高張力熱延鋼板の製造方法。
【0008】
【発明の実施の形態】
図1は、本発明の基礎となった研究結果の一例である。すなわち、0.08wt%C、0.7 wt%Si、1.2 wt%Mn、0.05wt%P、0.0015wt%S、0.0025wt%NでTi量を変化させたスラブを、1050〜1250℃で1800sec 間保定する加熱を行った後、880 ℃で仕上圧延を終了し、圧延終了後1sec 以内に、70℃/sec で強制冷却し、470 ℃でコイルに巻き取り、フェライト相の体積率に及ぼすTi量と加熱温度との関係を示したものである。
【0009】
図1から、以下のようなことが言える。仕上圧延後の冷却過程で、オーステナイトからフェライト相への変態挙動は、圧延前の結晶粒度と密接な関係があり、変態は粒界を核生成サイトとして生じるので、オーステナイト粒径が小さいほどフェライト変態は活性化される。これから、高温度でも比較的安定な炭窒化物を形成する、Ti 、V等を添加し、鋼素材の加熱温度を低くすることにより、オーステナイト粒成長が抑制され、フェライト変態は促進される。しかし、また図1によれば、炭窒化物形成元素の添加量がある量を超えて増加すると、炭窒化物の粗大化と固溶した炭窒化物形成元素の影響によって、フェライト変態が遅延することがわかる。以上のように、発明者らは、Tiをはじめとする炭窒化物形成元素には、適正な添加範囲があることを見いだしたのである。
【0010】
以下に、本発明における構成要件を上記範囲に限定した理由について説明する。
C:0.010 〜0.10wt%
Cは、その含有量が0.010 %未満では、低温変態相の析出が少なくなって十分な強度が得られなくなるばかりでなく、鋼素材の加熱中で炭化物が減少して、組織が粗大化し、加工性が低下する。また、0.10wt%を超えると鋼素材の加熱中で炭化物が粗大化し、また、組織が粗大化して、加工性が低下する。よって、C含有量は、0.010 〜0.10wt%、好ましくは0.05〜0.09wt%の範囲とする。
【0011】
Si:0.50〜1.50wt%
Siは、含有量が0.50 wt %未満では、フェライト相の体積率が減少して成形性が低下し、一方、1.50wt%を超えるとフェライト相が硬質化し、延性が低下する。よって、Si含有量は、0.50〜1.50wt%、好ましくは 0.6〜1.0 wt%の範囲とする。
【0012】
Mn:0.50〜2.00wt%
Mnは、含有量が0.50wt%未満では、第2相の体積率が低下し、十分な強度が得られず、一方、2.00wt%を超えると、反対に、第2相の体積率が増大して、延性が低下する。よって、Mn含有量は、0.50〜2.00wt%、好ましくは 0.9〜1.3 wt%の範囲とする。
【0013】
P:0.01〜0.15wt%
Pは、含有量が0.01wt%未満ではフェライト相の析出量が少なくなり十分な延性が得られなくなり、一方、0.15wt%を超えるとスポット溶接性が劣化する。よってP含有量は、0.01〜0.15wt%、好ましくは0.02〜0.05wt%の範囲とする。
【0014】
S:0.005wt %以下
Sは、加工性に有害な元素であり、その量を低減すれば、鋼中の析出物が減少して加工性が向上する。このような効果は、S量を0.005 wt%以下の範囲で得られる。
【0015】
Ti:0.005 〜0.03wt%
Tiは、炭窒化物の形成元素であり、含有量が0.005 wt%未満では、炭窒化物の析出量が不足し、材質のスラブ加熱温度依存性が大きくなる。一方、0.03wt%を超えると、析出物が粗大化するとともに、スラブ加熱中の固溶Tiが増加し、同様に材質のスラブ加熱温度依存性が大きくなる。よって、Ti含有量は0.005 〜0.03wt%、好ましくは0.01〜0.02wt%の範囲とする。
【0016】
V:0.005 〜0.03wt%
Vは、炭窒化物の形成元素であり、含有量が0.005 wt%未満では、炭窒化物の析出量が不足し、材質のスラブ加熱温度依存性が大きくなる。一方、0.03wt%を超えると、析出物が粗大化するとともに、スラブ加熱中の固溶Vが増加し、同様に材質のスラブ加熱温度依存性が大きくなる。よって、V含有量は0.005 〜0.03wt%、好ましくは0.01〜0.02wt%の範囲とする。
【0018】
なお Ti、Nb、Vの炭窒化物は、いずれも粒成長抑制効果を有するが、なかでも、Tiは、固溶した場合の、フェライト変態遅延におよぼす影響が、NbやVより小さいので、これら炭窒化物形成元素のなかでは、Tiを利用するのがもっとも好ましい。
【0019】
フェライト相の体積率、粒径および残部の組織
フェライト相の体積率は、80%未満では、十分な延性が得られなく、一方、97%を超えると、第2相が硬質化して伸びフランジ成形性が低下する。このため、フェライト相の体積率を80〜97%の範囲とする。
また、フェライト相の平均粒径が、10μmを超えると伸びフランジ成形性が低下するので、平均粒径は10μm以下とする。
さらに、残部の組織は、ベイナイト相を主体とする低温変態相とする必要がある。というのは、第2相の主体とする相がベイナイト以外のパーライトやマルテンサイトであると、伸びフランジ成形性が低下するからである。
【0020】
鋼素材の加熱
鋼素材の加熱は、900 〜1300℃の温度域に 3600sec以下の時間保定して行う。なぜなら、この温度が900 ℃未満では鋼板の表面品質が劣化し、一方、1300℃を超えると炭窒化物が溶解あるいは凝縮してフェライト相が粗大化するからである。また、保定時間が3600sec を超えると、炭窒化物が溶解あるいは凝縮してフェライト相が粗大化するからである。なお、好ましい加熱温度は1000〜1250℃である。
【0021】
連続熱間圧延における仕上圧延
粗圧延のあと、圧延終了温度780 〜980 ℃で仕上圧延する。仕上圧延の終了温度が 780℃未満では、鋼板に加工組織が残存し、延性が劣化するからであり、一方、 980℃を超えると組織が粗大化し、フェライト変態が遅延するため、成形性が低下するからである。
【0022】
熱間圧延終了後の冷却
上記熱間圧延を終了した後、1sec 以内に、50〜 200℃/sec の冷却速度で冷却する。熱延後、冷却までの経過時間が1sec を超えると、組織が粗大化し、フェライト変態が遅延することにより成形性が低下するので、仕上げ圧延終了後1sec 以内に強制冷却を開始する必要がある。
また、強制冷却の冷却速度が50℃/sec 未満では、フェライト相の体積率が97%を超え、一方200 ℃/sec を超えるとフェライト相の体積率が80%未満になるので、冷却速度は50〜 200℃/sec とする。なお、好ましい冷却速度は60〜120 ℃/sec である。
【0023】
巻取温度
コイルへの巻取温度は300 〜650 ℃の温度範囲で行う。巻取温度が300 ℃未満では、フェライト相の体積率が80%未満になり、650 ℃を超えると、第2相がパーライト主体の組織となって成形性が低下するからである。なお、好ましい巻取温度は 400〜500 ℃である。
【0024】
【実施例】
表1に示す種々の化学組成の鋼を、転炉にて溶製し、連続鋳造スラブとした。このスラブを表2に示す各製造条件で、加熱、熱間圧延し、冷却した後にコイルに巻取り、板厚2mmの熱延鋼板を製造した。
得られた、熱延鋼板のコイル長手方向中央位置からJIS 5号の試験片を採取し、引張試験を行い、伸び、降伏比等を求めるとともに、穴拡げ試験を行い、成形性を評価した。
また、コイル長手方向の中央の位置から供試材を採取して、光学顕微鏡により圧延方向断面組織の観察を行い、板厚方向中心部におけるフェライト相の体積率を求めた。
フェライト相の体積率は、画像処理によりフェライト相および残部の相の数と平均直径を求め、平均直径を下式により3次元の直径に換算し、フェライト相および残部の相の数、平均3次元直径より体積率を求めた。なお、残部の相の組織は電子顕微鏡により調査した。
D=1.128 L
ただし、D:平均直径 (2次元) 、L:平均3次元直径
その結果を表2に併せて示す。
これらの結果から、本発明法に従えば、十分な、張出し成形性、伸びフランジ性および形状凍結性を具えた、優れた加工性を有する高張力熱延鋼板を製造できることがわかる。
【0025】
【表1】

Figure 0003546287
【0026】
【表2】
Figure 0003546287
【0027】
【発明の効果】
以上説明したように、本発明によれば、鋼板の化学組成、熱間圧延、その後の冷却および巻き取りの条件を適正化することによって、張出し成形性、形状凍結性、伸びフランジ成形性をともに具えた、従来よりも格段に優れた成形性を有する高張力熱延鋼板を提供することができる。
また、本発明によれば、製造条件の厳しい制御の必要性がなくなり、材質が安定した鋼板を、高生産性を維持しながら製造することが可能になる。
【図面の簡単な説明】
【図1】フェライト体積率に及ぼすTi量および加熱温度の影響を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin steel sheet mainly used as a part for an automobile, which is subjected to processing such as press forming, and is particularly suitable for use as a member of an automobile body, a structural member such as a frame, or a suspension part such as a suspension. The present invention proposes a hot-rolled steel sheet and a method for producing the same.
[0002]
[Prior art]
Application of a high-tensile steel plate is one of the most effective methods for reducing the weight of an automobile body. Of these, hot rolled steel sheets, which are economical, are often used for parts that do not require very good surface quality, such as body strength members or suspensions. Under such circumstances, the use of hot-rolled high-tensile steel sheets is being expanded more and more.
Conventionally, as a method for strengthening the material of a high-tensile hot-rolled steel sheet with a tensile strength of about 490 to 780 MPa, 1) a transformation structure strengthening method in which a martensite phase, a pearlite phase, or a bainite phase is precipitated in a ferrite phase , 2) Precipitation strengthening methods using Ti, Nb, and V carbonitrides have been used, and these methods have been selected according to the formability of steel sheets or the properties required for parts.
For example, inexpensive general-purpose high-strength hot-rolled steel sheets include a precipitation-strengthened ferrite phase and a pearlite phase or bainite phase structure steel sheet (HSLA). When ductility is required, the dual phase of ferrite phase and martensite phase is required. If the steel requires stretch flangeability, a precipitation-hardened Dual Phase steel is selected.
Further, as a manufacturing technique of these steel sheets, for example, Japanese Patent Publication No. 62-37089, Japanese Patent Publication No. 58-27328, Japanese Patent Publication No. 62-39230, etc. Methods for improving flange formability have been proposed.
[0003]
[Problems to be solved by the invention]
However, all of the above-mentioned conventional methods mainly aim at improving only a single processing characteristic, and furthermore, in the hot rolling process, an operation for controlling the temperature in an extremely narrow temperature range is required. And the productivity was inferior.
[0004]
Accordingly, an object of the present invention is to provide a high-strength hot-rolled steel sheet having both stretch formability (ductility), shape freezing property (yield ratio), and stretch flange formability (hole expanding property) and excellent in multiple press formability. To provide.
Another object of the present invention is to set the slab heating temperature, finish rolling temperature, winding temperature, etc. in a wide range, except for performing cooling at an extremely high speed after the completion of rolling in the hot rolling step, and the material is stable. It is an object of the present invention to provide a method of manufacturing a high-tensile hot-rolled steel sheet which can be obtained by the above method and can drastically improve productivity.
The specific material goals of the present invention are to provide a hot-rolled steel sheet having a tensile strength of 540 to 590 MPa, a proof stress of 400 to 450 MPa, an elongation of 30 to 38%, and a hole expansion ratio of 100% or more, and a method for producing the same. Is to do.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors have made intensive studies on Si, Mn-containing low-carbon steel as a base, mainly focusing on the component composition, metal structure, and hot rolling process. As a result, they found that by adding a trace amount of carbonitride forming element and properly controlling the hot rolling and the cooling process after hot rolling, the ferrite transformation after finish rolling was activated, and the present invention It was completed. That is, the gist configuration of the present invention is as follows.
[0006]
(1) C: 0.010 to 0.10 wt%, Si: 0.50 to 1.50 wt%, Mn: 0.50 to 2.00 wt%, P: 0.01 to 0.15 wt%, S: 0.005 wt% or less, N: 0.001 to 0.005 wt %, Ti : 0.005 to 0.03 wt%, the balance is composed of Fe and unavoidable impurities, and the low temperature is mainly composed of a ferrite phase having a volume fraction of 80 to 97% and an average particle size of 10 μm or less, and the rest being a bainite phase. High tensile strength hot rolled steel sheet with excellent workability consisting of transformation phase.
(2) The high-strength hot-rolled steel sheet according to the above (1) , further comprising V: 0.005 to 0.03 wt % in addition to the above component composition .
[0007]
(3) C: 0.010 to 0.10 wt%, Si: 0.50 to 1.50 wt%, Mn: 0.50 to 2.00 wt%, P: 0.01 to 0.15 wt%, S: 0.005 wt% or less, N: 0.001 to 0.005 wt %, Ti : A steel material containing 0.005 to 0.03 wt% , the balance being Fe and unavoidable impurity components. After keeping the steel material in a temperature range of 900 to 1300 ° C. for a period of 3600 seconds or less, the finish rolling end temperature is set to 780 to Continuous hot rolling at 980 ° C., cooling within 1 second after the completion of rolling at a cooling rate of 50 to 200 ° C./sec, and subsequently winding the coil in a temperature range of 300 to 650 ° C. For producing high-strength hot-rolled steel sheets with excellent heat resistance.
(4) The method for producing a high-tensile hot-rolled steel sheet according to the above (3) , further comprising V: 0.005 to 0.03 wt % in addition to the above component composition .
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an example of a research result on which the present invention is based. That is, a slab in which the amount of Ti is changed to 0.08 wt% C, 0.7 wt% Si, 1.2 wt% Mn, 0.05 wt% P, 0.0015 wt% S, and 0.0025 wt% N is held at 1050 to 1250 ° C. for 1800 seconds. After heating, finish rolling was completed at 880 ° C., and within 1 second after the completion of rolling, forcibly cooled at 70 ° C./sec, wound around a coil at 470 ° C. It shows the relationship with temperature.
[0009]
From FIG. 1, the following can be said. In the cooling process after finish rolling, the transformation behavior from austenite to ferrite phase is closely related to the grain size before rolling, and the transformation occurs as a nucleation site at the grain boundaries. Is activated. From this, by adding Ti , V, etc., which form carbon nitrides which are relatively stable even at high temperatures, and by lowering the heating temperature of the steel material, austenite grain growth is suppressed and ferrite transformation is promoted. However, according to FIG. 1, when the addition amount of the carbonitride forming element is increased beyond a certain amount, the ferrite transformation is delayed due to the coarsening of the carbonitride and the effect of the solid solution carbonitride forming element. You can see that. As described above, the inventors have found that Ti and other carbonitride forming elements have an appropriate addition range.
[0010]
Hereinafter, the reason why the constituent elements in the present invention are limited to the above range will be described.
C: 0.010 to 0.10 wt%
If the content of C is less than 0.010%, not only the precipitation of the low-temperature transformation phase is reduced and sufficient strength is not obtained, but also the carbide is reduced during heating of the steel material, the structure becomes coarse, and Is reduced. On the other hand, when the content exceeds 0.10 wt%, carbides are coarsened during heating of the steel material, and the structure is coarsened, thereby reducing workability. Therefore, the C content is in the range of 0.010 to 0.10 wt%, preferably 0.05 to 0.09 wt%.
[0011]
Si: 0.50-1.50wt%
If the content of Si is less than 0.50 wt%, the volume ratio of the ferrite phase decreases and the formability decreases, whereas if it exceeds 1.50 wt%, the ferrite phase becomes hard and the ductility decreases. Therefore, the Si content is in the range of 0.50 to 1.50 wt%, preferably 0.6 to 1.0 wt%.
[0012]
Mn: 0.50-2.00wt%
If the content of Mn is less than 0.50 wt%, the volume fraction of the second phase decreases and sufficient strength cannot be obtained, while if it exceeds 2.00 wt%, on the contrary, the volume fraction of the second phase increases. As a result, ductility decreases. Therefore, the Mn content is in the range of 0.50 to 2.00 wt%, preferably 0.9 to 1.3 wt%.
[0013]
P: 0.01-0.15wt%
If the content of P is less than 0.01 wt%, the amount of precipitation of the ferrite phase becomes small and sufficient ductility cannot be obtained. On the other hand, if the content exceeds 0.15 wt%, the spot weldability deteriorates. Therefore, the P content is in the range of 0.01 to 0.15 wt%, preferably 0.02 to 0.05 wt%.
[0014]
S: 0.005 wt% or less S is an element harmful to workability, and if its amount is reduced, precipitates in steel are reduced and workability is improved. Such effects can be obtained when the S content is 0.005 wt% or less.
[0015]
Ti: 0.005 to 0.03wt%
Ti is an element forming carbonitride, and if its content is less than 0.005 wt%, the amount of carbonitride deposited is insufficient, and the slab heating temperature dependence of the material increases. On the other hand, if the content exceeds 0.03 wt%, the precipitates become coarse, and the amount of solid solution Ti during slab heating increases, and similarly, the slab heating temperature dependence of the material increases. Therefore, the Ti content is in the range of 0.005 to 0.03 wt%, preferably 0.01 to 0.02 wt%.
[0016]
V: 0.005 to 0.03 wt%
V is an element forming carbonitrides. If the content is less than 0.005 wt%, the amount of carbonitrides deposited is insufficient, and the slab heating temperature dependence of the material increases. On the other hand, if it exceeds 0.03 wt%, the precipitates become coarse, and the solid solution V during slab heating increases, and similarly, the slab heating temperature dependence of the material increases. Therefore, the V content is in the range of 0.005 to 0.03 wt%, preferably 0.01 to 0.02 wt%.
[0018]
Incidentally, Ti, Nb, carbonitride of V has the both grain growth inhibiting effect, among others, Ti is in the case of solid solution, influence on the ferrite transformation delays, is smaller than Nb and V, Among these carbonitride forming elements, it is most preferable to use Ti.
[0019]
If the volume fraction of the ferrite phase, the grain size and the volume fraction of the remaining microstructure ferrite phase are less than 80%, sufficient ductility cannot be obtained. On the other hand, if it exceeds 97%, the second phase becomes hard and stretch flange forming. Is reduced. For this reason, the volume ratio of the ferrite phase is set in the range of 80 to 97%.
If the average particle size of the ferrite phase exceeds 10 μm, the stretch flangeability decreases, so the average particle size is set to 10 μm or less.
Further, the remaining structure needs to be a low-temperature transformation phase mainly composed of a bainite phase. This is because, if the main phase of the second phase is pearlite or martensite other than bainite, the stretch flange formability decreases.
[0020]
Heating of the steel material The heating of the steel material is carried out at a temperature of 900 to 1300 ° C for a period of 3600 seconds or less. This is because if the temperature is lower than 900 ° C., the surface quality of the steel sheet is degraded, while if it exceeds 1300 ° C., the carbonitride is dissolved or condensed and the ferrite phase is coarsened. If the retention time exceeds 3600 seconds, the carbonitride will be dissolved or condensed and the ferrite phase will be coarsened. In addition, a preferable heating temperature is 1000 to 1250 ° C.
[0021]
After the rough finish rolling in the continuous hot rolling, the finish rolling is performed at a rolling end temperature of 780 to 980 ° C. If the finish temperature of finish rolling is lower than 780 ° C, the work structure remains in the steel sheet and the ductility deteriorates.On the other hand, if the temperature exceeds 980 ° C, the structure becomes coarse and ferrite transformation is delayed, resulting in lower formability. Because you do.
[0022]
Cooling after completion of hot rolling After the completion of the hot rolling, cooling is performed at a cooling rate of 50 to 200 ° C / sec within 1 second. If the elapsed time from the hot rolling to the cooling exceeds 1 sec, the structure becomes coarse, and the ferrite transformation is delayed, thereby reducing the formability. Therefore, it is necessary to start forced cooling within 1 sec after the finish rolling.
If the cooling rate of the forced cooling is less than 50 ° C / sec, the volume ratio of the ferrite phase exceeds 97%, while if it exceeds 200 ° C / sec, the volume ratio of the ferrite phase becomes less than 80%. 50 to 200 ° C / sec. The preferred cooling rate is 60 to 120 ° C / sec.
[0023]
Winding temperature The winding temperature of the coil is in the temperature range of 300 to 650 ° C. If the winding temperature is less than 300 ° C., the volume fraction of the ferrite phase is less than 80%, and if it exceeds 650 ° C., the second phase becomes a pearlite-based structure and the formability is reduced. The preferred winding temperature is 400 to 500 ° C.
[0024]
【Example】
Steels having various chemical compositions shown in Table 1 were melted in a converter to obtain continuous cast slabs. The slab was heated and hot-rolled under the respective manufacturing conditions shown in Table 2, cooled, and then wound around a coil to produce a hot-rolled steel sheet having a thickness of 2 mm.
A JIS No. 5 test piece was sampled from the center position of the obtained hot-rolled steel sheet in the coil longitudinal direction, a tensile test was performed, elongation, a yield ratio, and the like were obtained, and a hole expansion test was performed to evaluate formability.
Further, the test material was sampled from the center position in the longitudinal direction of the coil, and the cross-sectional structure in the rolling direction was observed with an optical microscope, and the volume ratio of the ferrite phase at the center in the thickness direction was obtained.
The volume fraction of the ferrite phase is obtained by calculating the number and average diameter of the ferrite phase and the remaining phase by image processing, converting the average diameter into a three-dimensional diameter by the following equation, The volume ratio was determined from the diameter. The structure of the remaining phase was examined with an electron microscope.
D = 1.128 L
Here, D: average diameter (two-dimensional), L: average three-dimensional diameter, and the results are shown in Table 2.
From these results, it can be seen that according to the method of the present invention, a high-tensile hot-rolled steel sheet having sufficient formability, stretch flangeability and shape freezing property and excellent workability can be manufactured.
[0025]
[Table 1]
Figure 0003546287
[0026]
[Table 2]
Figure 0003546287
[0027]
【The invention's effect】
As described above, according to the present invention, by optimizing the chemical composition of a steel sheet, hot rolling, and subsequent cooling and winding conditions, both stretch formability, shape freezing property, and stretch flange formability can be improved. It is possible to provide a high-strength hot-rolled steel sheet having much better formability than before.
Further, according to the present invention, it is no longer necessary to strictly control the production conditions, and it is possible to produce a steel plate having a stable material while maintaining high productivity.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of the amount of Ti and the heating temperature on the volume fraction of ferrite.

Claims (4)

C:0.010〜0.10wt%、Si:0.50〜1.50wt%、Mn:0.50〜2.00wt%、P:0.01〜0.15wt%、S:0.005wt%以下、N:0.001〜0.005wt%、 Ti:0.005〜0.03wt%を含有し、残部はFeおよび不可避的不純物の成分組成からなり、体積率80〜97%かつ平均粒径10μm以下のフェライト相と、残部はベイナイト相を主体とする低温変態相からなる加工性に優れる高張力熱延鋼板。C: 0.010 to 0.10 wt%, Si: 0.50 to 1.50 wt%, Mn: 0.50 to 2.00 wt%, P: 0.01 to 0.15 wt%, S: 0.005 wt% or less, N: 0.001 to 0.005 wt %, Ti : 0.005 About 0.03wt % , the balance being composed of Fe and unavoidable impurities, with a ferrite phase having a volume fraction of 80-97% and an average grain size of 10μm or less, and a balance consisting of a low-temperature transformation phase mainly composed of a bainite phase. High tensile hot rolled steel sheet with excellent workability. 上記成分組成に加えてさらに、V:In addition to the above component composition, V: 0.0050.005 ~ 0.03wt0.03wt %を含有することを特徴とする請求項1に記載の高張力熱延鋼板。%. The hot-rolled high-strength steel sheet according to claim 1, wherein C:0.010〜0.10wt%、Si:0.50〜1.50wt%、Mn:0.50〜2.00wt%、P:0.01〜0.15wt%、S:0.005wt%以下、N:0.001〜0.005wt%、 Ti:0.005〜0.03wt%を含有し、残部はFeおよび不可避的不純物の成分組成からなる鋼素材を、900〜1300℃の温度域に3600sec以下の時間保定した後、仕上圧延終了温度を780〜980℃とする連続熱間圧延を行い、圧延終了後1sec以内に、50〜200℃/secの冷却速度で冷却し、引き続き300〜650℃の温度範囲でコイルに巻き取ることを特徴とする加工性に優れる高張力熱延鋼板の製造方法。C: 0.010 to 0.10 wt%, Si: 0.50 to 1.50 wt%, Mn: 0.50 to 2.00 wt%, P: 0.01 to 0.15 wt%, S: 0.005 wt% or less, N: 0.001 to 0.005 wt %, Ti : 0.005 After the steel material containing 0.03wt % , the balance being Fe and unavoidable impurities, the steel material was kept in the temperature range of 900-1300 ℃ for 3600sec or less, and the finish rolling finish temperature was 780-980 ℃. Excellent hot workability, characterized in that it is cooled at a cooling rate of 50 to 200 ° C / sec within 1 sec after the end of rolling, and then wound around a coil in a temperature range of 300 to 650 ° C. A method for manufacturing high-strength hot-rolled steel sheets. 上記成分組成に加えてさらに、V:In addition to the above component composition, V: 0.0050.005 ~ 0.03wt0.03wt %を含有することを特徴とする請求項3に記載の高張力熱延鋼板の製造方法。The method for producing a high-tensile hot-rolled steel sheet according to claim 3, wherein
JP28156797A 1997-10-15 1997-10-15 High-strength hot-rolled steel sheet excellent in workability and method for producing the same Expired - Fee Related JP3546287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28156797A JP3546287B2 (en) 1997-10-15 1997-10-15 High-strength hot-rolled steel sheet excellent in workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28156797A JP3546287B2 (en) 1997-10-15 1997-10-15 High-strength hot-rolled steel sheet excellent in workability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11117039A JPH11117039A (en) 1999-04-27
JP3546287B2 true JP3546287B2 (en) 2004-07-21

Family

ID=17640991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28156797A Expired - Fee Related JP3546287B2 (en) 1997-10-15 1997-10-15 High-strength hot-rolled steel sheet excellent in workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3546287B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3967868B2 (en) * 2000-05-25 2007-08-29 新日本製鐵株式会社 High-strength hot-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability, and manufacturing method thereof
EP1176217B1 (en) * 2000-07-24 2011-12-21 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof
CA2422753C (en) 2000-09-21 2007-11-27 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
KR20060028909A (en) * 2004-09-30 2006-04-04 주식회사 포스코 High strength cold rolled steel sheet excellent in shape freezability,and manufacturing method thereof
JP4955497B2 (en) * 2007-09-28 2012-06-20 株式会社神戸製鋼所 Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability balance
KR100957964B1 (en) 2007-12-26 2010-05-17 주식회사 포스코 Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
JP5423737B2 (en) 2010-08-10 2014-02-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11117039A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
US20230141152A1 (en) Cold rolled heat treated steel sheet and a method of manufacturing thereof
EP3720981B1 (en) Cold rolled and annealed steel sheet and method of manufacturing the same
JP2003138345A (en) High strength and high ductility steel and steel sheet having excellent local ductility, and method of producing the steel sheet
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
RU2750317C1 (en) Cold-rolled and heat-treated sheet steel and method for its production
JP2002053935A (en) High tensile strength cold-rolled steel sheet excellent in strain age-hardening characteristic and its production method
JP3417878B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
US6572716B2 (en) Fine ferrite-based structure steel production method
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP3546287B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP3540134B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3322152B2 (en) Manufacturing method of hot-rolled high-tensile steel sheet with excellent workability
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP4848722B2 (en) Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JP2000297349A (en) High tensile strength hot rolled steel plate excellent in elongation flanging property and fatigue characteristic and its production
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2828303B2 (en) Manufacturing method of tough steel plate
JP2734842B2 (en) High workability hot-rolled high-strength steel sheet and its manufacturing method
JPH06264183A (en) Hot rolled high tensile strength steel plate with high workability and its production
JP2727827B2 (en) High workability hot-rolled high-strength steel sheet and its manufacturing method
JP3358938B2 (en) High-strength hot-rolled steel sheet with excellent chemical conversion and workability
JP4639464B2 (en) High-tensile hot-rolled steel sheet with excellent workability and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees