JP2000297349A - High tensile strength hot rolled steel plate excellent in elongation flanging property and fatigue characteristic and its production - Google Patents

High tensile strength hot rolled steel plate excellent in elongation flanging property and fatigue characteristic and its production

Info

Publication number
JP2000297349A
JP2000297349A JP10571699A JP10571699A JP2000297349A JP 2000297349 A JP2000297349 A JP 2000297349A JP 10571699 A JP10571699 A JP 10571699A JP 10571699 A JP10571699 A JP 10571699A JP 2000297349 A JP2000297349 A JP 2000297349A
Authority
JP
Japan
Prior art keywords
less
phase
steel sheet
rolled steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10571699A
Other languages
Japanese (ja)
Inventor
Chikako Fujinaga
千香子 藤長
Tetsuo Shimizu
哲雄 清水
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10571699A priority Critical patent/JP2000297349A/en
Publication of JP2000297349A publication Critical patent/JP2000297349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high tensile strength hot rolled steel plate having high formability of being excellent in elongation flanging formability and fatigue characteristics and moreover being good in bulging formability and shape freezability. SOLUTION: A steel slab contg., by weight, 0.010 to 0.10% C, 0.50 to 1.50% Si, 0.50 to 2.50% Mn, <=0.05% P, <=0.05% S and 0.005 to 0.03% Ti is held in the temp. region of 900 to 1300 deg.C, is subjected to continuous hot rolling in which the draft in the final stand is controlled to <20%, and the rolling finishing temp. is controlled to 870 to 980 deg.C, is cooled at a cooling rate of 50 to 200 deg.C/sec after the completion of the rolling and is coiled in th temp. range of 300 to 650 deg.C to form a structure composed of a ferritic phase of 70 to 97% volume ratio, and the balance low temp. transformed phase of a bainitic phase, and the intraplane anisotropy Δr of (r) value is controlled to <=0.2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として自動車用
部品として、プレス成形等の加工が施されて用いられる
薄鋼板に関し、とくに自動車ボディーのメンバー、フレ
ームなどの構造部材あるいはサスペンション、ホイール
などの足まわり部材など、伸びフランジ性と疲労特性が
求められる部材に用いられる高張力熱延鋼板とその製造
方法に関して提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin steel sheet mainly used as a part for an automobile, which is subjected to processing such as press forming, and more particularly to a member of an automobile body, a structural member such as a frame, or a foot such as a suspension or a wheel. The present invention proposes a high-strength hot-rolled steel sheet used for a member requiring stretch flangeability and fatigue properties, such as a surrounding member, and a method for producing the same.

【0002】[0002]

【従来の技術】自動車車体の軽量化を図るには、高張力
鋼板の適用が最も有効な方法の一つである。なかでも、
ボディーの強度部材あるいはサスペンションなど、さほ
ど優れた表面品質が要求されない部位には、経済性に優
れている熱延鋼板が用いられるようになってきた。この
ような状況から、熱延高張力鋼板の使途もますます拡大
されつつある。ところで、従来、引張強さが 490〜 780
MPa程度の高張力熱延鋼板の材質強化方法としては、1)
フェライト相中にマルテンサイト相、パーライト相ある
いはベイナイト相などを析出させた変態組織強化法と、
2)Ti、Nb、Vの炭窒化物による析出強化法がある。これ
らの強化方法は、鋼板の成形性や部材に要求される特性
などを考慮して選択し、適用される。例えば、安価な汎
用の高張力熱延鋼板では析出強化されたフェライト相と
パーライト相あるいはベイナイト相とからなる組織の鋼
(HSLA)が、また延性が要求される場合にはフェラ
イト相とマルテンサイ相のDual Phase鋼が、伸びフラン
ジ成形性が要求される場合には析出強化されたDual Pha
se鋼が選択されるといった具合である。これら熱延高張
力鋼板の製造技術として、例えば、特公昭62-37089号公
報、特公昭58-27328号公報、特公昭62-39230号公報等に
は、Si添加鋼板を低温で巻取ることによって、伸びフラ
ンジ成形性を改善する方法が提案されている。
2. Description of the Related Art One of the most effective methods for reducing the weight of an automobile body is to use a high-tensile steel sheet. Above all,
Hot rolled steel sheets, which are excellent in economic efficiency, have been used for parts that do not require very good surface quality, such as strength members or suspensions of bodies. Under such circumstances, the use of hot-rolled high-tensile steel sheets is being expanded more and more. By the way, conventionally, the tensile strength is 490 ~ 780
As a method for strengthening the material of hot-rolled steel sheets with high tensile strength of about MPa, 1)
A transformation structure strengthening method in which a martensite phase, a pearlite phase or a bainite phase is precipitated in a ferrite phase,
2) There is a precipitation strengthening method using Ti, Nb and V carbonitrides. These strengthening methods are selected and applied in consideration of the formability of the steel sheet and the characteristics required for the member. For example, inexpensive general-purpose high-strength hot-rolled steel sheets include a steel (HSLA) having a structure composed of a precipitation-strengthened ferrite phase and a pearlite phase or a bainite phase. Dual Phase steel is precipitation strengthened Dual Pha when stretch flange formability is required
For example, se steel is selected. As a production technique of these hot-rolled high-tensile steel sheets, for example, JP-B-62-37089, JP-B-58-27328, JP-B-62-39230, etc., by winding a Si-added steel sheet at a low temperature A method for improving stretch flangeability has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述したこれ
らの従来の方法は、いずれも、主に一つの加工特性のみ
の向上を指向したものであるうえ、製造に当たっては熱
延工程を極めて狭い温度範囲に制御することが必要であ
るために、鋼板品質の変動が大きく、生産性に劣るとい
う問題があった。このような状況に対し、発明者らは、
張出し成形性(延性)、形状凍結性(降伏比)、伸びフ
ランジ成形性(穴拡げ性)をともに具備した高張力熱延
鋼板を安定的に得る技術を提案した(特願平 9−281567
号)。上記技術により、多様な成形条件への対応が大幅
に向上したが、自動車部材、とりわけその強度部材で
は、さらに一層高い伸びフランジ成形性が、また優れた
疲労特性が必要であり、このような要請に対しては、上
記発明は必ずしも十分に応えるものではない。
However, all of the above-mentioned conventional methods are mainly aimed at improving only one processing characteristic, and the manufacturing process requires a very narrow temperature range. Since it is necessary to control the temperature within the range, there is a problem that the quality of the steel sheet varies greatly and the productivity is poor. In such a situation, the inventors have:
We have proposed a technology to stably obtain a high-strength hot-rolled steel sheet having both stretch formability (ductility), shape freezing property (yield ratio), and stretch flange formability (hole expanding property) (Japanese Patent Application No. 9-281567).
issue). Although the above technology has greatly improved the ability to cope with various molding conditions, automobile members, especially those having high strength, require even higher stretch flange formability and excellent fatigue properties. However, the above invention does not always respond sufficiently.

【0004】そこで、本発明の目的は、伸びフランジ成
形性(穴拡げ性)および疲労特性に優れ、また張出し成
形性(延性)、形状凍結性(降伏比)も良好な、高成形
性の高張力熱延鋼板を提供することにある。本発明の他
の目的は、熱間圧延工程で圧延終了後に、極めて大きな
速度で冷却する以外は、鋼素材の加熱温度、仕上げ圧延
温度および巻取温度などを広範囲に設定でき、しかも安
定した材質が得られ、生産性を抜本的に改善することが
可能な高張力熱延鋼板の製造方法を提供することにあ
る。なお、本発明の具体的な材質目標は、引張強さ: 5
40〜640 MPa 、耐力:400〜500 MPa 、伸び:28〜38
%、穴拡げ率:115 %以上、切欠疲労強度:200 MPa以
上である。
[0004] Therefore, an object of the present invention is to provide a stretch moldability (hole expanding property) and fatigue properties, and also excellent stretch formability (ductility) and shape freezing property (yield ratio). It is an object of the present invention to provide a tension hot-rolled steel sheet. Another object of the present invention is to set a heating temperature, a finish rolling temperature, a winding temperature, and the like of a steel material in a wide range, except for cooling at an extremely high speed after completion of rolling in a hot rolling process, and furthermore, a stable material. And a method for producing a high-tensile hot-rolled steel sheet which can drastically improve productivity. The specific material target of the present invention is a tensile strength: 5
40-640 MPa, yield strength: 400-500 MPa, elongation: 28-38
%, Hole expansion rate: 115% or more, notch fatigue strength: 200 MPa or more.

【0005】[0005]

【課題を解決するための手段】発明者らは、上記の目的
を達成すべく、Si、Mn含有低炭素鋼をべースにして、主
として、成分組成、金属組織、熱延工程に着目して、鋭
意研究を重ねた。その結果、炭窒化物形成元素であるTi
を微量添加し、熱延および熱延後の冷却過程を適正に制
御することによって、仕上圧延後のフェライト変態が活
性化され、ランクフォード値(r値)の面内異方性が小
さくなることにより、伸びフランジ成形性と疲労特性が
向上することを知見し、本発明を完成するにいたった。
ここで、ランクフォード値(r値)の面内異方性は、Δ
r=(r0 +r90−2r45)/2(ただし、r0
90、r45はそれぞれ圧延方向に0°、90°、45°の方
向のr値)の絶対値で評価される。本発明の要旨構成は
次のとおりである。
Means for Solving the Problems In order to achieve the above objects, the present inventors have focused on low-carbon steel containing Si and Mn and focused mainly on the component composition, metal structure, and hot rolling process. I did diligent research. As a result, the carbonitride forming element Ti
By adding a small amount of, and appropriately controlling the hot rolling and the cooling process after hot rolling, the ferrite transformation after finish rolling is activated, and the in-plane anisotropy of the Rankford value (r value) is reduced. As a result, it was found that the stretch flangeability and the fatigue properties were improved, and the present invention was completed.
Here, the in-plane anisotropy of the Rankford value (r value) is Δ Δ
r = (r 0 + r 90 -2r 45 ) / 2 (where r 0 ,
r 90 and r 45 are evaluated as absolute values of r values in directions of 0 °, 90 °, and 45 ° in the rolling direction, respectively. The gist configuration of the present invention is as follows.

【0006】 (1) C:0.010 〜0.10wt%、 Si:0.50〜1.50wt%、 Mn:0.50〜2.50wt%、 P:0.05wt%以下、 S:0.005 wt%以下、 Ti:0.005 〜0.03wt% を含有し、残部はFeおよび不可避的不純物の成分組成か
らなり、体積率で70〜97%のフェライト相と残部はベイ
ナイト相を主体とする低温変態相からなる金属組織を有
し、r値の面内異方性Δrの絶対値が0.2 以下であるこ
とを特徴とする、伸びフランジ性と疲労特性に優れる高
張力熱延鋼板。
(1) C: 0.010 to 0.10 wt%, Si: 0.50 to 1.50 wt%, Mn: 0.50 to 2.50 wt%, P: 0.05 wt% or less, S: 0.005 wt% or less, Ti: 0.005 to 0.03 wt% %, The balance is composed of Fe and unavoidable impurities, and the metal structure has a ferrite phase of 70 to 97% by volume and a low-temperature transformation phase mainly composed of a bainite phase. A high-strength hot-rolled steel sheet having excellent stretch flangeability and fatigue properties, characterized in that the absolute value of the in-plane anisotropy Δr is 0.2 or less.

【0007】 (2) C:0.010 〜0.10wt%、 Si:0.50〜1.50wt%、 Mn:0.50〜2.50wt%、 P:0.05wt%以下、 S:0.005 wt%以下、 Ti:0.005 〜0.03wt% を含み、かつ Ca:0.0005〜0.01wt%、 REM:0.0005〜0.1 wt% の1種または2種を含有し、残部はFeおよび不可避的不
純物の成分組成からなり、体積率で70〜97%のフェライ
ト相と残部はベイナイト相を主体とする低温変態相から
なる金属組織を有し、r値の面内異方性Δrの絶対値が
0.2 以下であることを特徴とする、伸びフランジ性と疲
労特性に優れる高張力熱延鋼板。
(2) C: 0.010 to 0.10 wt%, Si: 0.50 to 1.50 wt%, Mn: 0.50 to 2.50 wt%, P: 0.05 wt% or less, S: 0.005 wt% or less, Ti: 0.005 to 0.03 wt% %, And one or two types of Ca: 0.0005 to 0.01 wt% and REM: 0.0005 to 0.1 wt%, and the balance is composed of Fe and unavoidable impurities, and 70 to 97% by volume. Has a metal structure composed of a low-temperature transformation phase mainly composed of a bainite phase, and the absolute value of the in-plane anisotropy Δr of the r value is
A high-strength hot-rolled steel sheet having excellent stretch flangeability and fatigue properties, characterized by being 0.2 or less.

【0008】(3) 上記 (1)または (2)に記載の鋼板にお
いて、上記成分のほかにさらに、 V:0.003 〜0.02wt%、Nb:0.003 〜0.02wt% の1種または2種を含有することを特徴とする、伸びフ
ランジ性と疲労特性に優れる高張力熱延鋼板。
(3) The steel sheet according to the above (1) or (2) further contains one or two of V: 0.003 to 0.02 wt% and Nb: 0.003 to 0.02 wt% in addition to the above components. High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue properties.

【0009】(4) 上記 (1)〜 (3)のいずれか1つに記載
の鋼板において、上記成分のほかにさらに、 B:0.0005〜0.005 wt% を含有することを特徴とする、伸びフランジ性と疲労特
性に優れる高張力熱延鋼板。
(4) The steel sheet according to any one of the above (1) to (3), further comprising: B: 0.0005 to 0.005 wt% in addition to the above components. High-strength hot-rolled steel sheet with excellent heat resistance and fatigue properties.

【0010】 (5) C:0.010 〜0.10wt%、 Si:0.50〜1.50wt%、 Mn:0.50〜2.50wt%、 P:0.05wt%以下、 S:0.005 wt%以下、 Ti:0.005 〜0.03wt% を含有する鋼素材(スラブ)を、900 〜1300℃の温度域
に保定した後、最終スタンドにおける圧下率を20%未
満、かつ圧延終了温度を870 〜980 ℃とする連続熱間圧
延を行い、圧延終了後50〜 200℃/sec の冷却速度で冷
却して、300 〜650℃の温度範囲でコイルに巻き取るこ
とを特徴とする伸びフランジ性と疲労特性に優れる高張
力熱延鋼板の製造方法。
(5) C: 0.010 to 0.10 wt%, Si: 0.50 to 1.50 wt%, Mn: 0.50 to 2.50 wt%, P: 0.05 wt% or less, S: 0.005 wt% or less, Ti: 0.005 to 0.03 wt% % Of the steel material (slab) containing steel at a temperature of 900 to 1300 ° C, and then subjected to continuous hot rolling at a final stand with a rolling reduction of less than 20% and a rolling end temperature of 870 to 980 ° C. After rolling, it is cooled at a cooling rate of 50 to 200 ° C / sec and wound up into a coil at a temperature of 300 to 650 ° C. Method.

【0011】[0011]

【発明の実施の形態】図1は、本発明の基礎となった実
験結果の一例である。すなわち、0.08wt%C、0.7 wt%
Si、1.25wt%Mn、0.01wt%P、0.001 wt%S、0.0025wt
%N、0.018wt%Tiの成分で、体積率で90%のフェライ
ト相と残部がベイナイト相を主体とする低温変態相から
なる鋼板について、Δrが穴拡げ率(伸びフランジ性)
および切欠疲労強度に及ぼす影響をまとめたものであ
る。なお、これらの試験方法は後述する方法と同じであ
る。図1から、Δrの絶対値を 0.2以下に小さくするこ
とにより、伸びフランジ性と疲労特性を共に向上できる
ことがわかる。このような傾向が現れる原因は必ずしも
明らかではないが、以下のようなことが考えられる。す
なわち、熱延鋼板の穴拡げ試験においては、圧延方向に
直角な方向、あるいは圧延方向で亀裂が発生しやすい。
そして、これらの方向はr値が小さな方向に相当する。
したがって、r値の異方性を小さくすることにより、こ
れら亀裂発生部位への応力集中が小さくなる結果、穴拡
げ率が改善されたと考えられる。熱間圧延鋼板における
従来の研究では、伸びフランジ性に及ぼすr値の影響は
小さいとされていたが、本発明のように組織制御を行っ
てフェライト分率を高くした場合には、Δrの影響が顕
著に現われるものと考えられる。また、切欠疲労特性に
関しては、打抜き時のバリの有無、穴端面における表面
状態の影響が大きく影響する。本発明のように、Δrの
絶対値を小さくすることにより、変形能が均質化される
と、打抜き穴の形成時におけるバリの発生状況、打抜き
面の性状が改善されたために、疲労特性が向上したと考
えられる。
FIG. 1 shows an example of an experimental result on which the present invention is based. That is, 0.08 wt% C, 0.7 wt%
Si, 1.25 wt% Mn, 0.01 wt% P, 0.001 wt% S, 0.0025 wt
% N, 0.018wt% Ti, a steel sheet composed of a ferrite phase with a volume ratio of 90% and a low-temperature transformation phase mainly composed of a bainite phase, Δr indicates the hole expansion rate (stretch flangeability).
And the effects on notch fatigue strength are summarized. In addition, these test methods are the same as the method mentioned later. From FIG. 1, it can be seen that both the stretch flangeability and the fatigue properties can be improved by reducing the absolute value of Δr to 0.2 or less. Although the cause of such a tendency is not necessarily clear, the following may be considered. That is, in a hole expansion test of a hot-rolled steel sheet, cracks are likely to occur in a direction perpendicular to the rolling direction or in the rolling direction.
These directions correspond to directions in which the r value is small.
Therefore, it is considered that by reducing the anisotropy of the r value, the concentration of stress at these crack initiation sites was reduced, and as a result, the hole expansion rate was improved. Previous studies on hot-rolled steel sheets indicated that the effect of r value on stretch flangeability was small, but when the ferrite fraction was increased by controlling the structure as in the present invention, the effect of Δr was Is considered to appear remarkably. Further, regarding the notch fatigue characteristics, the presence or absence of burrs at the time of punching and the influence of the surface condition on the hole end face greatly affect. By reducing the absolute value of Δr as in the present invention, when the deformability is homogenized, the occurrence of burrs at the time of forming a punched hole and the properties of the punched surface are improved, and the fatigue characteristics are improved. It is thought that it was done.

【0012】以下に、本発明における構成要件を上記範
囲に限定した理由について説明する。 C:0.010 〜0.10wt% Cの含有量が0.010 wt%未満では、低温変態相の析出が
少なく十分な強度が得られなくなるだけでなく、鋼素材
の加熱中に炭化物が減少し、組織が粗大化し加工性が低
下する。一方、0.10wt%を超えて含有すると、鋼素材の
加熱中に炭化物が粗大化し、組織が粗大化するため、同
様に加工性が低下する。よって、C含有量は、0.010 〜
0.10wt%、好ましくは0.06〜0.08wt%の範囲とする。
Hereinafter, the reason why the constituent elements in the present invention are limited to the above range will be described. C: 0.010 to 0.10 wt% When the content of C is less than 0.010 wt%, not only the low-temperature transformation phase precipitates but sufficient strength cannot be obtained, but also carbides decrease during heating of the steel material, resulting in a coarse structure. And the workability decreases. On the other hand, when the content exceeds 0.10 wt%, carbides are coarsened during heating of the steel material, and the structure is coarsened, so that the workability is similarly reduced. Therefore, the C content is from 0.010 to
0.10 wt%, preferably in the range of 0.06 to 0.08 wt%.

【0013】Si:0.50〜1.50wt% Siの含有量が、0.50wt%未満ではフェライト相の体積率
が減少して成形性が低下するが、1.50wt%を超えるとフ
ェライト相が硬質化し、延性が低下する。よって、Si含
有量は、0.50〜1.50wt%の範囲とする。
Si: 0.50-1.50 wt% When the content of Si is less than 0.50 wt%, the volume ratio of the ferrite phase decreases and the formability decreases, but when it exceeds 1.50 wt%, the ferrite phase hardens and the ductility increases. Decrease. Therefore, the Si content is in the range of 0.50 to 1.50 wt%.

【0014】Mn:0.50〜2.50wt% Mnの含有量が、0.50wt%未満では第2相の体積率が低下
し、十分な強度が得られず、一方、2.50wt%を超える
と、逆に第2相の体積率が増大して、延性が低下する。
よって、Mn含有量は、0.50〜2.50wt%、好ましくは1.0
〜2.0 wt%の範囲とする。
Mn: 0.50 to 2.50 wt% When the content of Mn is less than 0.50 wt%, the volume ratio of the second phase is reduced and sufficient strength cannot be obtained. The volume fraction of the second phase increases and the ductility decreases.
Therefore, the Mn content is 0.50 to 2.50 wt%, preferably 1.0
To 2.0 wt%.

【0015】P:0.05wt%以下 Pは、含有量が0.05wt%を超えるとスポット溶接性を劣
化させるので、0.05wt%以下に制限する。
P: 0.05 wt% or less If the content of P exceeds 0.05 wt%, the spot weldability deteriorates. Therefore, the content of P is limited to 0.05 wt% or less.

【0016】S:0.005wt %以下 Sは、MnSなどの非金属介在物を増加させて、加工性と
くに伸びフランジ性を低下させるので、0.005 wt%以
下、好ましくは0.003 wt%以下に制限する。
S: 0.005 wt% or less S increases the amount of non-metallic inclusions such as MnS and reduces workability, particularly stretch flangeability. Therefore, S is limited to 0.005 wt% or less, preferably 0.003 wt% or less.

【0017】Ti:0.005 〜0.03wt% Tiは、本発明において特に重要な元素である。Ti、Nb、
Vなどの元素は、炭窒化物を形成して、熱間圧延中のオ
ーステナイトの粒成長を抑制して細粒化することによ
り、フェライト変態を促進し、良好な延性を確保可能に
する効果を有している。しかしその反面、これらの元素
は、圧延中のオーステナイトの再結晶も抑制するので、
未再結晶オーステナイトからのフェライト変態に起因し
て、Δrを大きくするという作用も有している。また、
これら元素が鋼中に固溶すると、フェライト変態が遅延
する傾向がある。このような作用のある炭窒化物形成元
素の中で、Tiは他の元素に比してオーステナイトの再結
晶抑制作用が比較的弱く、また、固溶した場合のフェラ
イト変態遅延に及ぼす影響も比較的小さい。このような
理由から、本発明では、炭窒化物形成元素として、とり
わけTiを基本成分として添加する。Tiの含有量が0.005
wt%未満では、炭窒化物の析出量が不足し、オーステナ
イト粒成長の抑制効果、フェライト変態の促進効果が得
られにくくなる。一方、0.03wt%を超えると、析出物が
粗大化しやすくなり、また鋼素材加熱中の固溶Tiも増加
し、Tiによるフェライト変態の促進効果が得られにくく
なる。よって、Ti含有量は0.005 〜0.03wt%、好ましく
は0.015 〜0.025 wt%の範囲とする。
Ti: 0.005 to 0.03 wt% Ti is a particularly important element in the present invention. Ti, Nb,
Elements such as V form carbonitrides, suppress austenite grain growth during hot rolling and reduce the grain size, thereby promoting ferrite transformation and ensuring good ductility. Have. However, on the other hand, these elements also suppress the recrystallization of austenite during rolling,
It also has the effect of increasing Δr due to ferrite transformation from unrecrystallized austenite. Also,
When these elements form a solid solution in steel, the ferrite transformation tends to be delayed. Among the carbonitride forming elements having such an effect, Ti has relatively weak austenite recrystallization inhibiting effect as compared to other elements, and also compares the effect of solid solution on ferrite transformation delay. Target small. For this reason, in the present invention, Ti is added as a carbonitride forming element, especially Ti as a basic component. 0.005 Ti content
If the content is less than wt%, the amount of carbonitride deposited is insufficient, and it is difficult to obtain the effect of suppressing austenite grain growth and the effect of promoting ferrite transformation. On the other hand, if the content exceeds 0.03 wt%, the precipitates tend to be coarsened, and the amount of dissolved Ti during heating of the steel material also increases, making it difficult to obtain the effect of promoting the ferrite transformation by Ti. Therefore, the Ti content is in the range of 0.005 to 0.03 wt%, preferably 0.015 to 0.025 wt%.

【0018】Ca:0.0005〜0.01wt%、 REM:0.0005〜0.
1 wt% Ca、REM は、非金属介在物の形態を制御し、伸びフラン
ジ性を改善するのに有用な元素である。このような効果
を発揮させるには、Ca:0.0005wt%以上及びREM :0.00
05wt%以上の少なくも1種を添加する必要がある。一
方、これら元素の添加量が多過ぎると、その効果が飽和
するだけでなく、CaあるいはREM 起因の介在物が増加し
バーリング性が低下する。したがって、これら元素の添
加量はCaで0.01wt%、REM で0.1 wt%を上限とする。
Ca: 0.0005 to 0.01 wt%, REM: 0.0005 to 0.
1 wt% Ca, REM is an element useful for controlling the morphology of nonmetallic inclusions and improving stretch flangeability. In order to exert such an effect, Ca: 0.0005 wt% or more and REM: 0.00
It is necessary to add at least one kind of at least 05 wt%. On the other hand, if the addition amount of these elements is too large, not only the effect is saturated, but also the inclusions due to Ca or REM increase and the burring property decreases. Therefore, the upper limit of the addition of these elements is 0.01 wt% for Ca and 0.1 wt% for REM.

【0019】V:0.003 〜0.02wt%、Nb:0.003 〜0.02
wt% V、Nbは、炭窒化物の形成元素であり、オーステナイト
粒の成長抑制効果を有しているが、これら元素は固溶状
態でTiに比ベフエライト変態抑制効果が大きく、また、
オーステナイトの再結晶抑制効果も大きい。しかしなが
ら、これら元素は少なくとも1種をTiとともに複合添加
することにより、上述したような弊害を少なくし、かつ
最終組織の微細化を図ることができて、伸びフランジ性
を向上させることができる。このような効果を得るため
には、いずれも0.003 wt%以上の添加が必要である。一
方、いずれの元素とも0.02wt%を超えて添加すると、上
記の弊害がかえって大きくなるので、V、Nbの添加量は
いずれも各0.003 〜0.02wt%の範囲とする。なお、より
好ましい範囲は、0.005 〜0.01wt%である。
V: 0.003-0.02 wt%, Nb: 0.003-0.02
wt% V and Nb are elements forming carbonitrides and have an effect of suppressing the growth of austenite grains, but these elements have a greater effect of suppressing the transformation of veferite than Ti in a solid solution state.
The effect of suppressing recrystallization of austenite is also large. However, by adding at least one of these elements in combination with Ti, the above-mentioned adverse effects can be reduced, the final structure can be refined, and the stretch flangeability can be improved. In order to obtain such effects, addition of 0.003 wt% or more is required. On the other hand, if any of the elements is added in excess of 0.02 wt%, the above-mentioned adverse effects are rather increased. Therefore, the added amounts of V and Nb are each in the range of 0.003 to 0.02 wt%. A more preferred range is 0.005 to 0.01 wt%.

【0020】B:0.0005〜0.005 wt% Bは、焼入れ性を向上させ、フェライト相自体の強度を
上昇せしめて、バーリング性を改善するのに有用な元素
である。このような効果は0.0005wt%以上の添加で得ら
れるが、0.005 wt%を超えて添加しても、その効果が飽
和するだけでなく、伸びを大きく低下させるという悪影
響をもたらす。よって、Bは0.0005〜0.005 wt%の範囲
で添加する。
B: 0.0005 to 0.005 wt% B is an element useful for improving hardenability, increasing the strength of the ferrite phase itself, and improving burring. Such an effect can be obtained by adding 0.0005% by weight or more. However, even if it exceeds 0.005% by weight, the effect is not only saturated, but also has an adverse effect of greatly reducing elongation. Therefore, B is added in the range of 0.0005 to 0.005 wt%.

【0021】次に組織について説明する。 フェライト相の体積率および残部の組織 フェライト相は延性および伸びフランジ性を確保するた
めに必要な組織であり、体積率で70%未満になると、十
分な延性、伸びフランジ性が得られなくなり、一方、97
%を超えると、第2相が硬質化して伸びフランジ成形性
が低下する。このため、フェライト相の体積率を70〜97
%の範囲、より好ましくは80〜97%の範囲とする。ま
た、残部(第2相)はベイナイト相を主体とする低温変
態相である必要がある。これは、第2相がマルテンサイ
ト主体またはパーライト主体の組織であると、伸びフラ
ンジ性および成形性(延性)が低下するからである。な
お、ベイナイト主体の組織とは、第2相中のベイナイト
相の体積率が50%超であることをいう。
Next, the organization will be described. Volume fraction of ferrite phase and remaining structure Ferrite phase is a structure necessary to secure ductility and stretch flangeability. If the volume ratio is less than 70%, sufficient ductility and stretch flangeability cannot be obtained. , 97
%, The second phase is hardened and the stretch flangeability decreases. For this reason, the volume ratio of the ferrite phase is set to 70 to 97
%, More preferably in the range of 80 to 97%. The remainder (second phase) needs to be a low-temperature transformation phase mainly composed of a bainite phase. This is because if the second phase has a structure mainly composed of martensite or pearlite, stretch flangeability and formability (ductility) are reduced. Note that the bainite-based structure means that the volume fraction of the bainite phase in the second phase is more than 50%.

【0022】鋼素材(スラブ)の加熱 鋼素材の加熱は、900 〜1300℃の温度域で行うものとす
る。というのは、加熱温度が900 ℃未満では鋼板の表面
品質が劣化し、一方、1300℃を超えると炭窒化物が溶解
あるいは凝縮してフェライト相が粗大化するからであ
る。なお、好ましい加熱温度は1050〜1200℃である。
Heating of steel material (slab) The heating of the steel material is performed in a temperature range of 900 to 1300 ° C. This is because if the heating temperature is lower than 900 ° C., the surface quality of the steel sheet is degraded, while if it exceeds 1300 ° C., the carbonitride is dissolved or condensed and the ferrite phase becomes coarse. The preferred heating temperature is 1050 to 1200 ° C.

【0023】熱間圧延 粗圧延と仕上圧延からなる熱間圧延において、圧延終了
温度 870〜980 ℃で仕上圧延する。仕上圧延の終了温度
が 870℃未満では、未再結晶オーステナイトからのフェ
ライト変態が起こりやすく、r値の面内異方性が大きく
なり、結果的に伸びフランジ性及び疲労特性を低下させ
るからである。一方、980 ℃を超えると組織が粗大化
し、フェライト変態が遅延して、成形性が低下するから
である。また、連続熱間圧延の最終スタンドにおける圧
下率を20%未満としたのは、最終スタンドの圧下率が大
きくなりすぎると、比較的低温で圧延した場合と同様
に、未再結晶オーステナイトからのフェライト変態が生
じやすくなり、r値の面内異方性が大きくなるためであ
る。ただし、最終スタンドでの圧下率が低すぎると、組
織が混粒となり、材質変動を起こしやすくなるので、最
終スタンドの圧下率は10%以上とすることが好ましい。
Hot Rolling In hot rolling consisting of rough rolling and finish rolling, finish rolling is performed at a rolling end temperature of 870 to 980 ° C. If the finish temperature of the finish rolling is less than 870 ° C, ferrite transformation from unrecrystallized austenite is likely to occur, and the in-plane anisotropy of the r value increases, resulting in a reduction in stretch flangeability and fatigue properties. . On the other hand, if the temperature exceeds 980 ° C., the structure becomes coarse, ferrite transformation is delayed, and the formability decreases. The reason why the rolling reduction in the final stand of continuous hot rolling is set to less than 20% is that if the rolling reduction in the final stand is too large, ferrite from unrecrystallized austenite will be removed, as in the case of rolling at a relatively low temperature. This is because transformation tends to occur and the in-plane anisotropy of the r value increases. However, if the rolling reduction in the final stand is too low, the structure becomes mixed and the material tends to fluctuate. Therefore, the rolling reduction in the final stand is preferably 10% or more.

【0024】熱間圧延終了後の冷却 上記熱間圧延を終了した後、50〜 200℃/sec の冷却速
度で冷却する。というのは、冷却速度が50℃/sec 未満
ではフェライト相の体積率が97%を超えてしまうからで
あり、一方200 ℃/sec を超えるとフェライト相の体積
率が70%未満になるからである。なお、好ましい冷却速
度は60〜120 ℃/sec である。
Cooling after completion of hot rolling After the completion of the hot rolling, cooling is performed at a cooling rate of 50 to 200 ° C / sec. This is because if the cooling rate is less than 50 ° C / sec, the volume fraction of the ferrite phase will exceed 97%, while if it exceeds 200 ° C / sec, the volume fraction of the ferrite phase will be less than 70%. is there. The preferred cooling rate is 60 to 120 ° C / sec.

【0025】コイル巻取り コイルへの巻取りの温度は300 〜650 ℃の温度範囲で行
う。巻取温度が300 ℃未満では第2相の組織がマルテン
サイト主体となり、また650 ℃を超えると、第2相がパ
ーライト主体の組織となって伸びフランジ性および成形
性が低下するからである。なお、好ましい巻取温度は 4
00〜450 ℃である。
The coil is wound at a temperature of 300 to 650 ° C. If the winding temperature is lower than 300 ° C., the structure of the second phase is mainly composed of martensite, and if it exceeds 650 ° C., the structure of the second phase is mainly composed of pearlite, and the stretch flangeability and the formability are reduced. The preferred winding temperature is 4
00-450 ° C.

【0026】[0026]

【実施例】表1に示す種々の化学組成の鋼を、転炉にて
溶製し、連続鋳造スラブとした。このスラブを表2に示
す各条件で、加熱、熱間圧延し、冷却した後、コイルに
巻取り、板厚2.3 mmの熱延鋼板を製造した。得られ
た、熱延鋼板コイルのコイル長手方向中央位置からJI
S 5号試験片を採取し、引張試験を行い、伸び、降伏
比等を求めるとともに、引張方向を圧延方向に対して0
°、45°、90°の各方向としたJIS5号試験片をそれ
ぞれ採取し、r値、Δrを測定した。ただし、r値およ
びΔrはそれぞれ次式で求めたものである。 r=(r0 +r90+2r45)/4 Δr=(r0 +r90−2r45)/2 ここで、r0 、r90、r45は、それぞれ圧延方向に0
°、90°、45°の方向のr値である。なお、通常r値
は、15%で引張り歪み付与した後の板幅を測定して行う
が、本発明材は、均一伸びが比較的小さいため、均一伸
びの1/2〜1/3を引張った後の板幅、伸びを測定す
ることによりr値を求めた。
EXAMPLES Steels having various chemical compositions shown in Table 1 were melted in a converter to obtain continuous cast slabs. The slab was heated, hot-rolled, cooled under the conditions shown in Table 2, and then wound around a coil to produce a hot-rolled steel sheet having a thickness of 2.3 mm. From the obtained center position in the coil longitudinal direction of the hot-rolled steel sheet coil, JI
S5 test piece was sampled and subjected to a tensile test to determine elongation, yield ratio, and the like.
JIS No. 5 test pieces in each of the directions of 45 °, 45 ° and 90 ° were sampled, and the r value and Δr were measured. Here, the r value and Δr are respectively obtained by the following equations. r = (r 0 + r 90 + 2r 45 ) / 4 Δr = (r 0 + r 90 −2r 45 ) / 2 Here, r 0 , r 90 , and r 45 are each 0 in the rolling direction.
R values in the directions of °, 90 °, and 45 °. In addition, usually, the r value is measured by measuring the sheet width after tensile strain is applied at 15%. However, since the material of the present invention has a relatively small uniform elongation, the material is stretched by 2〜 to 3 of the uniform elongation. The r value was determined by measuring the width and elongation of the sheet after the heat treatment.

【0027】また、引張試験と同様の位置から試験片を
採取し穴拡げ試験を行い、成形性を評価した。穴拡げ試
験は、日本鉄鋼連盟規格JFST1001−1996に準拠して
算出した。切欠疲労試験は、図2に示す形状の打抜きク
リアランス10%、10mmφのピアス穴を有する試験片を
用いて、シェンク式の平面曲げ疲労試験を行い、107
疲労限強度を求め切欠疲労強度とした。さらに、コイル
長手方向の中央の位置から組織観察用の供試材を採取し
て、光学顕微鏡により圧延方向断面組織の観察を行い、
板厚方向中心部におけるフェライト相の体積率を求め
た。フェライト相の体積率は、画像処理によりフェライ
ト相および残部の相の数と平均直径を求め、平均直径を
下式により3次元の直径に換算し、フェライト相および
残部の相の数、平均3次元直径より体積率を求めた。な
お、残部の相の組織は電子顕微鏡により調査した。 D=1.128 L ただし、D:平均直径 (2次元) 、L:平均3次元直径
Further, a test piece was sampled from the same position as in the tensile test, and a hole expansion test was performed to evaluate formability. The hole expansion test was calculated based on the Japan Iron and Steel Federation Standard JFST1001-1996. Notched fatigue test, punching clearance 10% of the shape shown in FIG. 2, by using a test piece having a pierced hole of 10 mm [phi, performs plane bending fatigue test of Schenk, and the notch fatigue strength sought 10 7 times fatigue limit strength did. Furthermore, a specimen for microstructure observation was sampled from the center position in the coil longitudinal direction, and the cross-sectional microstructure in the rolling direction was observed with an optical microscope.
The volume fraction of the ferrite phase at the center in the thickness direction was determined. The volume fraction of the ferrite phase is obtained by calculating the number and average diameter of the ferrite phase and the remaining phase by image processing, converting the average diameter into a three-dimensional diameter by the following formula, and calculating the number of the ferrite phase and the remaining phase and the average three-dimensional. The volume ratio was determined from the diameter. The structure of the remaining phase was examined with an electron microscope. D = 1.128 L where D: average diameter (two-dimensional), L: average three-dimensional diameter

【0028】これらの試験結果をまとめて表3に示す。
これらの結果から、 No.1〜16、19、22、25、27、29の
各発明例は、張出し成形性、形状凍結性を具えるととも
に、特に伸びフランジ性および切欠疲労特性が優れてい
ることがわかる。これに対して、 No.17、18はTi添加量
が多いため、フェライト体積率が小さく、伸び、穴拡げ
性、切欠疲労特性が悪い。No.20 は最終パスの圧下率が
大きく、また、 No.21は圧延終了温度が低いため、Δr
の絶対値が大きく、穴拡げ率、切欠疲労特性が劣る。N
o.23 は冷却速度が遅いため、フェライトの体積率が大
きくなりすぎ、穴拡げ性、切欠疲労特性が悪い。また、
No.24 は冷却速度が速すぎるため、フェライトの体積率
が小さくなりすぎ、穴拡げ性、切欠疲労特性、伸び特性
が劣っている。また、No.26 はTi添加量が少ないため、
伸び特性、穴拡げ率、切欠疲労強度が劣っている。 No.
28、30は巻取温度が本発明範囲でないため、第2相がマ
ルテンサイト、パーライト主体の組織となり、伸び特
性、穴拡げ率が劣っている。
Table 3 summarizes the results of these tests.
From these results, each of the invention examples of Nos. 1 to 16, 19, 22, 25, 27, and 29 has stretch formability and shape freezing property, and particularly has excellent stretch flangeability and notch fatigue properties. You can see that. On the other hand, in Nos. 17 and 18, since the amount of Ti added was large, the ferrite volume ratio was small, and the elongation, hole expandability, and notch fatigue properties were poor. No. 20 has a large rolling reduction in the final pass, and No. 21 has a low rolling end temperature, so that Δr
Is large, and the hole expansion ratio and the notch fatigue characteristics are inferior. N
In o.23, since the cooling rate is low, the volume ratio of ferrite is too large, and the hole expandability and notch fatigue properties are poor. Also,
In No. 24, since the cooling rate was too high, the volume ratio of ferrite was too small, and the hole expandability, notch fatigue properties, and elongation properties were inferior. Also, No. 26 has a small amount of Ti added,
Poor elongation characteristics, hole expansion ratio, notch fatigue strength. No.
In Nos. 28 and 30, since the winding temperature is not within the range of the present invention, the second phase has a structure mainly composed of martensite and pearlite, and is inferior in elongation characteristics and hole expansion ratio.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
鋼板の化学組成、熱間圧延、その後の冷却および巻き取
りの条件を適正化することによって、張出し成形性、形
状凍結性に加えて伸びフランジ成形性および切欠疲労特
性に優れた成形性を有する高張力熱延鋼板を提供するこ
とが可能になる。また、本発明によれば、製造条件の厳
しい制御の必要性がなくなり、上記材質を具えた鋼板
を、安定して、高い生産性のもとで製造可能になる。
As described above, according to the present invention,
By optimizing the conditions of the chemical composition of the steel sheet, hot rolling, and subsequent cooling and winding, in addition to stretch formability and shape freezing properties, it has high formability with excellent stretch flange formability and notch fatigue properties. It is possible to provide a tension hot-rolled steel sheet. Further, according to the present invention, the need for strict control of the manufacturing conditions is eliminated, and a steel sheet having the above-mentioned material can be manufactured stably with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】穴拡げ特性および切欠疲労特性に及ぼすΔrの
影響を示すグラフである。
FIG. 1 is a graph showing the effect of Δr on hole expansion characteristics and notch fatigue characteristics.

【図2】切欠疲労試験に用いた試験片形状を示す図であ
る。
FIG. 2 is a view showing a test piece shape used for a notch fatigue test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K037 EA02 EA05 EA09 EA15 EA16 EA19 EA23 EA25 EA27 EA28 EA31 EA32 EA36 EB05 EB08 EB09 EB11 FA01 FA02 FA03 FB08 FC04 FD04 FE01 FE02 HA03 HA04 JA06  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Osamu Furukun 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term in Technical Research Laboratory, Kawasaki Steel Co., Ltd. 4K037 EA02 EA05 EA09 EA15 EA16 EA19 EA23 EA25 EA27 EA28 EA31 EA32 EA36 EB05 EB08 EB09 EB11 FA01 FA02 FA03 FB08 FC04 FD04 FE01 FE02 HA03 HA04 JA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】C:0.010 〜0.10wt%、 Si:0.50〜1.50wt%、 Mn:0.50〜2.50wt%、 P:0.05wt%以下、 S:0.005 wt%以下、 Ti:0.005 〜0.03wt% を含有し、残部はFeおよび不可避的不純物の成分組成か
らなり、体積率で70〜97%のフェライト相と残部はベイ
ナイト相を主体とする低温変態相からなる金属組織を有
し、r値の面内異方性Δrの絶対値が0.2 以下であるこ
とを特徴とする、伸びフランジ性と疲労特性に優れる高
張力熱延鋼板。
1. C: 0.010 to 0.10 wt%, Si: 0.50 to 1.50 wt%, Mn: 0.50 to 2.50 wt%, P: 0.05 wt% or less, S: 0.005 wt% or less, Ti: 0.005 to 0.03 wt% The balance is composed of the components of Fe and unavoidable impurities. The ferrite phase has a volume fraction of 70 to 97%, and the remainder has a metal structure composed of a low-temperature transformation phase mainly composed of a bainite phase. A high-strength hot-rolled steel sheet having excellent stretch flangeability and fatigue properties, wherein the absolute value of the in-plane anisotropy Δr is 0.2 or less.
【請求項2】C:0.010 〜0.10wt%、 Si:0.50〜1.50wt%、 Mn:0.50〜2.50wt%、 P:0.05wt%以下、 S:0.005 wt%以下、 Ti:0.005 〜0.03wt% を含み、かつ Ca:0.0005〜0.01wt%、 REM :0.0005〜0.1 wt% の1種または2種を含有し、残部はFeおよび不可避的不
純物の成分組成からなり、体積率で70〜97%のフェライ
ト相と残部はベイナイト相を主体とする低温変態相から
なる金属組織を有し、r値の面内異方性Δrの絶対値が
0.2 以下であることを特徴とする、伸びフランジ性と疲
労特性に優れる高張力熱延鋼板。
2. C: 0.010 to 0.10 wt%, Si: 0.50 to 1.50 wt%, Mn: 0.50 to 2.50 wt%, P: 0.05 wt% or less, S: 0.005 wt% or less, Ti: 0.005 to 0.03 wt% And one or two of Ca: 0.0005 to 0.01 wt% and REM: 0.0005 to 0.1 wt%, and the balance is composed of Fe and unavoidable impurities. The ferrite phase and the remainder have a metal structure composed of a low-temperature transformation phase mainly composed of a bainite phase, and the absolute value of the in-plane anisotropy Δr of the r value is
A high-strength hot-rolled steel sheet having excellent stretch flangeability and fatigue properties, characterized by being 0.2 or less.
【請求項3】請求項1または2に記載の鋼板において、
上記成分のほかにさらに、 V:0.003 〜0.02wt%、 Nb:0.003 〜0.02wt% の1種または2種を含有することを特徴とする、伸びフ
ランジ性と疲労特性に優れる高張力熱延鋼板。
3. The steel sheet according to claim 1, wherein
A high-strength hot-rolled steel sheet having excellent stretch flangeability and fatigue properties, characterized by further containing one or two of V: 0.003 to 0.02 wt% and Nb: 0.003 to 0.02 wt% in addition to the above components. .
【請求項4】請求項1〜3のいずれか1項に記載の鋼板
において、上記成分のほかにさらに、 B:0.0005〜0.005 wt% を含有することを特徴とする、伸びフランジ性と疲労特
性に優れる高張力熱延鋼板。
4. The steel sheet according to claim 1, further comprising, in addition to the above components, B: 0.0005 to 0.005 wt%, and stretch flangeability and fatigue properties. High-strength hot-rolled steel sheet with excellent resistance.
【請求項5】C:0.010 〜0.10wt%、 Si:0.50〜1.50wt%、 Mn:0.50〜2.50wt%、 P:0.05wt%以下、 S:0.005 wt%以下、 Ti:0.005 〜0.03wt% を含有する鋼素材を、900 〜1300℃の温度域に保定した
後、最終スタンドにおける圧下率を20%未満、かつ圧延
終了温度を870 〜980 ℃とする連続熱間圧延を行い、圧
延終了後50〜 200℃/sec の冷却速度で冷却して、300
〜650 ℃の温度範囲でコイルに巻き取ることを特徴とす
る伸びフランジ性と疲労特性に優れる高張力熱延鋼板の
製造方法。
5. C: 0.010 to 0.10 wt%, Si: 0.50 to 1.50 wt%, Mn: 0.50 to 2.50 wt%, P: 0.05 wt% or less, S: 0.005 wt% or less, Ti: 0.005 to 0.03 wt% Is maintained in a temperature range of 900 to 1300 ° C, and then subjected to continuous hot rolling at a final stand with a rolling reduction of less than 20% and a rolling end temperature of 870 to 980 ° C. Cool at a cooling rate of 50 to 200 ° C / sec.
A method for producing a high-strength hot-rolled steel sheet having excellent stretch flangeability and fatigue properties, characterized in that it is wound around a coil in a temperature range of up to 650 ° C.
JP10571699A 1999-04-13 1999-04-13 High tensile strength hot rolled steel plate excellent in elongation flanging property and fatigue characteristic and its production Pending JP2000297349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10571699A JP2000297349A (en) 1999-04-13 1999-04-13 High tensile strength hot rolled steel plate excellent in elongation flanging property and fatigue characteristic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10571699A JP2000297349A (en) 1999-04-13 1999-04-13 High tensile strength hot rolled steel plate excellent in elongation flanging property and fatigue characteristic and its production

Publications (1)

Publication Number Publication Date
JP2000297349A true JP2000297349A (en) 2000-10-24

Family

ID=14415070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10571699A Pending JP2000297349A (en) 1999-04-13 1999-04-13 High tensile strength hot rolled steel plate excellent in elongation flanging property and fatigue characteristic and its production

Country Status (1)

Country Link
JP (1) JP2000297349A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180193A (en) * 2000-12-14 2002-06-26 Kawasaki Steel Corp Hot rolled steel sheet having excellent stretch-flanging property and its production method
EP1348771A1 (en) * 2000-12-07 2003-10-01 Nippon Steel Corporation High strength hot rolled steel plate excellent in enlargeability and ductility and method for production thereof
EP1398392A1 (en) * 2001-06-19 2004-03-17 Kawasaki Steel Corporation High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
EP1616970A1 (en) * 2003-04-21 2006-01-18 JFE Steel Corporation High strength hot-rolled steel plate
JP2009162545A (en) * 2007-12-28 2009-07-23 Nippon Steel Corp Anisotropy evaluation method of extension flange formability
KR20200046067A (en) * 2017-11-24 2020-05-06 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
KR20200047625A (en) * 2017-11-24 2020-05-07 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
KR20210116563A (en) 2019-03-29 2021-09-27 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615126B2 (en) 2000-12-07 2009-11-10 Nippon Steel Corporation High strength hot rolled steel plate excellent in enlargeability and ductility and method for producing thereof
EP1348771A1 (en) * 2000-12-07 2003-10-01 Nippon Steel Corporation High strength hot rolled steel plate excellent in enlargeability and ductility and method for production thereof
EP1348771A4 (en) * 2000-12-07 2005-11-30 Nippon Steel Corp High strength hot rolled steel plate excellent in enlargeability and ductility and method for production thereof
JP2002180193A (en) * 2000-12-14 2002-06-26 Kawasaki Steel Corp Hot rolled steel sheet having excellent stretch-flanging property and its production method
EP1398392A4 (en) * 2001-06-19 2004-12-15 Jfe Steel Corp High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
US7347902B2 (en) 2001-06-19 2008-03-25 Jfe Steel Corporation High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
EP1398392A1 (en) * 2001-06-19 2004-03-17 Kawasaki Steel Corporation High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming
EP1616970A1 (en) * 2003-04-21 2006-01-18 JFE Steel Corporation High strength hot-rolled steel plate
EP1616970A4 (en) * 2003-04-21 2011-01-12 Jfe Steel Corp High strength hot-rolled steel plate
JP2009162545A (en) * 2007-12-28 2009-07-23 Nippon Steel Corp Anisotropy evaluation method of extension flange formability
EP3715492A4 (en) * 2017-11-24 2021-03-31 Nippon Steel Corporation Hot-rolled steel sheet and manufacturing method therefor
KR20200046067A (en) * 2017-11-24 2020-05-06 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
EP3715491A4 (en) * 2017-11-24 2021-03-24 Nippon Steel Corporation Hot-rolled steel sheet and manufacturing method therefor
KR20200047625A (en) * 2017-11-24 2020-05-07 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
KR102374940B1 (en) 2017-11-24 2022-03-16 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
KR102374941B1 (en) 2017-11-24 2022-03-16 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
US11512359B2 (en) * 2017-11-24 2022-11-29 Nippon Steel Corporation Hot rolled steel sheet and method for producing same
KR20210116563A (en) 2019-03-29 2021-09-27 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
US11732321B2 (en) 2019-03-29 2023-08-22 Nippon Steel Corporation Steel sheet and method of producing same

Similar Documents

Publication Publication Date Title
US9028626B2 (en) Method for manufacturing high strength galvanized steel sheet with excellent formability
US11111553B2 (en) High-strength steel sheet and method for producing the same
US7887649B2 (en) High-tensile strength welded steel tube for structural parts of automobiles and method of producing the same
EP3653736B1 (en) Hot-rolled steel strip and manufacturing method
US9914988B2 (en) High-strength cold-rolled steel sheet with high yield ratio having excellent formability and method for producing the same
CN111315908A (en) Cold-rolled steel sheet and method for producing same
KR102119332B1 (en) High-strength steel sheet and its manufacturing method
KR20130037208A (en) Ultrahigh-strength cold-rolled steel sheet with excellent ductility and delayed-fracture resistance, and process for producing same
EP3720981B1 (en) Cold rolled and annealed steel sheet and method of manufacturing the same
US20200080167A1 (en) High strength multi-phase steel having excellent burring properties at low temperature, and method for producing same
JP2013181208A (en) High strength hot-rolled steel sheet having excellent elongation, hole expansibility and fatigue characteristics, and method for producing the same
CN113316649A (en) High-strength high-ductility complex-phase cold-rolled steel strip or plate
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
JP2013064172A (en) Cold rolled high tensile strength steel sheet excellent in resistance to surface distortion, bake hardenability, and stretch flange formability, and method for producing the same
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP2002241897A (en) Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the same
JP2000297349A (en) High tensile strength hot rolled steel plate excellent in elongation flanging property and fatigue characteristic and its production
KR102209555B1 (en) Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor
JP2008240116A (en) High tensile strength steel sheet having excellent shape freezability, and method for producing the same
JP3546287B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP4102273B2 (en) Manufacturing method of high-tensile steel plate with excellent workability
CN111647803B (en) Copper-containing high-strength steel and preparation method thereof
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
WO2021172297A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member