JPS58170050A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58170050A
JPS58170050A JP5312782A JP5312782A JPS58170050A JP S58170050 A JPS58170050 A JP S58170050A JP 5312782 A JP5312782 A JP 5312782A JP 5312782 A JP5312782 A JP 5312782A JP S58170050 A JPS58170050 A JP S58170050A
Authority
JP
Japan
Prior art keywords
film
region
sbd
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5312782A
Other languages
Japanese (ja)
Inventor
Takeshi Fukuda
猛 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5312782A priority Critical patent/JPS58170050A/en
Publication of JPS58170050A publication Critical patent/JPS58170050A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0744Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
    • H01L27/075Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
    • H01L27/0755Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0761Vertical bipolar transistor in combination with diodes only
    • H01L27/0766Vertical bipolar transistor in combination with diodes only with Schottky diodes only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the manufacturing yield of a semiconductor device and to highly integrate an IC by forming a Schottky barrier diode (SBD) and a transistor in a region surrounded by an insulating film by employing a photoresist adapted to form an ultrafine pattern. CONSTITUTION:A nitrided film 5 is patterned to allow a nitrided film 5' to remain only on a region for forming a Schottky barrier diode (SBD). A positive resist layer is coated on the overall surface, and a base electrode window 10, an emitter electrode window 11 and an SBD (electrode) forming window are opened by patterning and dry etching steps at SiO2 films 6, 8 on the surface of the region 7. Then, a polysilicon layer 13 is grown by a CVD method. A positive resist film is formed on the overall surface, patterned to expose it only on the SBD region, and the film 6 which remains on the SBD region is removed by control etching. Then, an aluminum wiring layer 15 of approx. 1mum thick is formed on the overall surface.

Description

【発明の詳細な説明】 (1)  発明、の技術分野   、 本発明は半導体装置の製造方法、詳しくは厚いフィール
ド酸化膜を形成する際にマスクとして使用され良書化シ
・リコン膜をノリー二ンダで一部残し、当該膜を除去し
た領域にトランジスタを、また当該膜が残され九領域に
はV w y・トキパリャダイオードを形成する方法に
関する・ (2)  技術の分野 厚い酸化膜で囲まれた領域にトランジスタを形成した構
造において、当該領域にショッすキノ譬リヤダイオード
(・83D)・とトランジスタを形成することが行なわ
れる。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device, and more specifically, a method for manufacturing a semiconductor device using a silicon film that is used as a mask when forming a thick field oxide film. (2) Technical Field Regarding the method of forming a transistor in the region where the film is removed and a V w y -tokyparya diode in the region where the film is left. (2) Technical field In a structure in which a transistor is formed in a region in which a transistor is formed, a transistor is formed in the region in which a photovoltaic rear diode (83D) and a transistor are formed.

第1図はかかる半導体装置を製造する工程における幽骸
装置の要部が断面で示される。同図を参照すると、先ず
その(a) K示されるように、pmシリコン基板IK
は、全知の技術で、3〔#■〕の厚さのN”ff1Jl
込層2.1〜1.5 [Jm]の厚さのN型エピタキシ
ャル層3.1−1.5〔メ臘〕の厚さのフィールド酸化
膜4が、前記酸化膜形成時に能動素子形成領域をマスク
する九めに用いられ良書、化シリコン(Sl、N4)膜
5(以下窒化膜と−う)と共に示されている。なお窒化
膜4の下には1000(1)種変の二酸化シリコン(8
10,)膜6(熱酸化膜)が形成されている。
FIG. 1 shows, in cross section, the essential parts of a ghost device in the process of manufacturing such a semiconductor device. Referring to the figure, first, as shown in (a) K, the pm silicon substrate IK
is an omniscient technique, and N”ff1Jl with a thickness of 3 [#■]
N-type epitaxial layer 3.1 to 1.5 [Jm] thick field oxide film 4 is formed in the active element formation region when the oxide film is formed. It is shown together with a silicon oxide (Sl, N4) film 5 (hereinafter referred to as a nitride film), which is used as a mask for masking. Note that under the nitride film 4, 1000 (1) type silicon dioxide (8
10,) A film 6 (thermal oxide film) is formed.

次に、全面にレゾスト膜(図示せず)を塗布し、それを
・譬ターニングして、例えばほう素(l+)をイオン注
入法で、加速エネルギー60(K@V)、ドーズ量5 
X 10” (CIIM−2)でイオン注入して、深さ
約0.3 [nm)のペース領域7を形成する〔同図(
b)。
Next, a resist film (not shown) is applied to the entire surface, and it is turned, and then, for example, boron (l+) is ion-implanted at an acceleration energy of 60 (K@V) and a dose of 5.
A pace region 7 with a depth of about 0.3 [nm] is formed by ion implantation with X 10'' (CIIM-2) [see the same figure (
b).

なお同図(b)以下においてN+型埋込層2は省略しで
ある。〕    “ 次K例えば化学気相成長法(cvn法)で5tO2膜8
を約3000(ス〕の膜厚に成長させる。
Note that the N+ type buried layer 2 is omitted from FIG. ] "Next K, for example, by chemical vapor deposition method (CVN method), 5tO2 film 8
is grown to a film thickness of approximately 3000 mm.

次いで、SBD s ペース、エミッタ電極9,10゜
11の窓開けのため、レジスト膜Rを形成し、それf 
14ターニングし、公知のエツチングによって前記した
窓開きを同図(d)に示す如く′になす、なお第1図(
d) 、 (・)、(f)においては説明を容易にする
九め工程を模式的に示す。
Next, a resist film R is formed to open windows for the SBD s paste and emitter electrodes 9, 10° 11, and
14 turns, and the above-mentioned window opening is made into '' as shown in FIG. 1(d) by known etching.
d), (・), and (f) schematically show the rounding process to facilitate explanation.

9をマスクする如< ’々ターニンクシ、ペース、エミ
ッタ電番窓10.11の領域の8102膜12を工1 
   、チングすると、同図(g)に′□示す構I得ら
れる。
9. Machining the 8102 film 12 in the area of the turn comb, pace, and emitter number window 10.11 by masking 9.
, the structure shown in FIG. 2(g) is obtained.

引続き、全面に多結晶シリコン層(ポリシリコン層・・
・1示せず)を成長させ、不純物(燐−P)拡散により
エミッタ領域14を形成し、ぼりシリコン層を除去し、
8BD電極窓9の領域の8に02IIをコントロールエ
ツチングで除去し、例えばアル建ニウム(ムt)配線層
を形成する。なお上記の工程において、エミ、り電極廖
は拡散寝ともなるので、自己整合法により高集積化集積
回路(IC)の形成が可能となる。ま7’?、8BD窓
9の領域に8102膜を残す理由は、ぼりシリコン層除
去のエツチングの際当該エツチングのストッ/#とする
ためである。
Subsequently, a polycrystalline silicon layer (polysilicon layer...
・1) is grown, an emitter region 14 is formed by diffusion of impurities (phosphorus-P), and the silicon layer is removed.
02II is removed by controlled etching in the region 8 of the 8BD electrode window 9 to form, for example, an aluminum (mut) wiring layer. In the above process, since the emitter and electrode holes also serve as diffusion holes, it is possible to form highly integrated integrated circuits (ICs) by the self-alignment method. Ma7'? The reason why the 8102 film is left in the region of the 8BD window 9 is to serve as a stopper for the etching during etching to remove the raised silicon layer.

(3)  従来技術と問題点      ゛上記従来技
術においては、第1図(d)から(f) tでを参照し
て説明し喪工程が必要である。その理由について説明す
ると、ICの集積度を高めるKついて、レジストの/4
ターン巾をI Cpm) 11度に形成する必要がある
。ネがテ(プ型のレジストにおいては、露光しない部分
のレジストを残すので、露光に際してマスクに覆われ九
部分(残す部分)に光が回りこんで/譬ターン巾が乱れ
、更には埃、*の後に残る部分が膨潤して/4ターン巾
を細くする。
(3) Prior art and problems ゛The above prior art requires a mourning process, which will be explained with reference to FIGS. 1(d) to 1(f)t. To explain the reason, for K, which increases the degree of integration of IC, the resist
It is necessary to form a turn width of I Cpm) 11 degrees. In the case of a tape type resist, parts of the resist that are not exposed to light are left behind, so during exposure, the light is covered by a mask and the light goes around to the parts (the parts to be left), which disturbs the pattern width and also causes dust, etc. The part that remains after swells and reduces the width by 4 turns.

かくして、微細・やターンの形成には露光しない部分が
残るヂジティプ型レジスト(デジレジスト)が用いられ
るようになった。前記した電極窓まで第1図(g)に・
示す構造を得るには、第2図に模式的に示される工程を
とシたい、つま夛5io2膜8′(前記した5in2膜
6と5102膜8とが一体化したもの)の上に第1のレ
ジスト膜R1を塗布し、それを電極窓形成のためツタタ
ーニングし、810.I[8’のエツチングが図示の如
く半ば遂行したところでとの工、チングを中止し、第2
のレジスト膜R2を全面に塗布し、それを8BD窓9の
みをマスクする如く)臂ターニングし、ペース、エミッ
タ電極窓10.11の領域の残存5tO2膜をエツチン
グすれば、第1図(g)に示す構造が得られる。しかし
、微細ノ豐ターンに適したデジレジストでレゾスト膜で
R1tR2を作ること、すなわちデジレジストの二重マ
スク化はできないので、第1図(d)〜(f) K示し
た工程が必要となるのである。このことは、半導体IC
の製造における工程数の増加、すなわち製造歩留りの低
下の間鵜を生ずる。
As a result, digitip type resists (digiresists), which leave unexposed areas, have come to be used to form fine patterns and turns. As shown in Figure 1 (g) up to the electrode window mentioned above.
In order to obtain the structure shown in FIG. 2, it is necessary to carry out the steps schematically shown in FIG. A resist film R1 of 810. When the etching of I[8' is halfway completed as shown in the figure, the etching is stopped and the second etching is completed.
If a resist film R2 is applied to the entire surface, it is turned (so as to mask only the 8BD window 9), and the remaining 5tO2 film in the area of the paste and emitter electrode windows 10 and 11 is etched, as shown in FIG. 1(g). The structure shown is obtained. However, it is not possible to make R1tR2 with a resist film using a digirest suitable for fine pattern turns, that is, it is not possible to double mask the digirist, so the steps shown in Fig. 1 (d) to (f) K are required. It is. This means that semiconductor IC
This results in an increase in the number of steps in the manufacturing process, which leads to a decrease in manufacturing yield.

(4)  発明の目的 本発明は上記従来の問題点に鑑み、例えば811Dとト
ランジスタの結合した半導体装置の製造において、゛ホ
トリソダラフィエliにおいて゛すべてst−、pレジ
スト−を用い九ドライエ、チング方式となし、従来要求
され九工程数を減少し九半導体装置の製造方法・を提供
するKある。  □  。
(4) Purpose of the Invention In view of the above-mentioned problems of the prior art, the present invention is aimed at, for example, in manufacturing a semiconductor device in which an 811D and a transistor are combined. The present invention provides a method for manufacturing a semiconductor device by reducing the number of steps conventionally required. □.

(5)発明の構成 そしてこの目的は本発明によれば、半導体基板に設けた
厚い酸化膜で囲まれた領域にシ1.トキパリャダイオー
ドと他の能動素子とを形成する方法において、前記酸化
膜形成にマスクとして用いた窒化シリコン膜を一部残し
て除去し、窒化シリコン膜の除去された領域には前記他
の能動素子をまた会化シリ□コン膜の残存せしめられた
領域にはシ、ットキパリャダイオードを形成することt
%徴゛とする半導体装置の製造方法を提供することによ
〕達成される。
(5) Structure and object of the invention According to the present invention, a 1. In a method for forming a tokipalya diode and other active elements, the silicon nitride film used as a mask for forming the oxide film is removed, leaving a part of the silicon nitride film, and the other active element is formed in the area where the silicon nitride film is removed. The element is also formed in the remaining region of the silicon film to form a separate diode.
This is achieved by providing a method for manufacturing a semiconductor device that has the following characteristics:

(6)発明の実施例           ゛以下本発
明実施例を図面によりて詳述する。
(6) Embodiments of the invention ゛Examples of the present invention will be described in detail below with reference to the drawings.

第3図に本発明の方法を実施する工程における半導体装
置の要部が断面で示され、同図において既に図示された
ものと同じ部分は同じ符号を付して示す。
FIG. 3 shows a cross section of the main parts of a semiconductor device in the process of carrying out the method of the present invention, and the same parts as those already illustrated in the figure are designated by the same reference numerals.

同図(a)には、P型シリコン基板IK公知の技術で3
〔μm〕の厚さのN+型埋込層2.1〜1.5〔11m
〕の厚さのN型エピタキシャル層3.1〜1.5〔μm
〕の厚さのフィールド酸化膜4が形成された構造が、フ
ィールド酸化膜の形成のときマスクとして用いられた窒
化シリコン(81,N4)膜5(窒化膜)と共に示され
、窒化膜5の下には熱酸化で形成した1000[χ〕の
厚さの8102II6がある。
Figure (a) shows a P-type silicon substrate IK using a known technique.
N+ type buried layer with a thickness of [μm] 2.1 to 1.5 [11 m]
) with a thickness of 3.1 to 1.5 [μm
A structure in which a field oxide film 4 with a thickness of There is 8102II6 with a thickness of 1000 [χ] formed by thermal oxidation.

次に同図伽)に示されるように、シ、ットキパリャダイ
オード(SBD )を形成する領域にのみ窒化膜5′が
残るよう窒化膜5を・母ターニングする。なおli’F
I図(b)以下において埋込層2は省略する。
Next, as shown in FIG. 3), the nitride film 5 is turned so that the nitride film 5' remains only in the region where a switch diode (SBD) is to be formed. Naoli'F
The buried layer 2 is omitted from FIG. 1(b) onwards.

窒化8!15′をマスクとして、はう素(B+)をイ第
2□い工、より、加速、え4.二、。〔え、731.′
一ズ1i5xlo  Ccm  )でイオン注入して、
深さ0.3〔μm〕のベース領域7を修成する〔同図(
6)〕。
Using nitride 8!15' as a mask, add boronic acid (B+) to the second layer, accelerate the process, and accelerate the process.4. two,. [Eh, 731. ′
Ion implantation was carried out at 1i5xlo Ccm).
Repair the base region 7 to a depth of 0.3 [μm] [same figure (
6)].

次いで同図偵)に示される如く、全面に二酸化シリコン
(8102)層8を3000(X)の厚さに化学気相成
長法(cvn法)で形成する。
Next, as shown in the same figure, a silicon dioxide (8102) layer 8 is formed on the entire surface to a thickness of 3000 (X) by chemical vapor deposition (CVN method).

次いで、全面に/ゾレジスト層を塗布形成し、公知の/
ダターニングおよびドライエ、チング工程によってベー
ス領域7表面の810.8116及び8にベース電極窓
10、巾が1〜2 (#m)のエミ、り電極窓11及び
8BD (電極)形成用廖を形成する。この工程におい
て、残存窒化膜5′は、8BD(電極)形成領域をマス
クする0以上管での工程は、窒化膜5′を残す点を除く
と、従来技術における工程と同じである。
Next, a /zoresist layer is applied and formed on the entire surface, and a known /solesist layer is formed.
A base electrode window 10, a width of 1 to 2 (#m), an emitter electrode window 11 and a groove for forming 8BD (electrode) are formed at 810.8116 and 8 on the surface of the base region 7 by data turning, drying and etching processes. do. In this step, the remaining nitride film 5' masks the 8BD (electrode) forming region, and the step with 0 or more tubes is the same as the step in the prior art except that the nitride film 5' remains.

次に、同図(f)に示される如く、CVD法でぼりシリ
コン層tst−soo[X)の厚さに成長する。
Next, as shown in FIG. 3(f), a silicon layer is grown to a thickness of tst-soo[X] using the CVD method.

次に、全面に燐シリケートガラス(P2O)層管形成し
、それがエミッタ電極窓11のみを橿う如くに残余部分
を除去し、1150(C)で30〔秒〕熱処理してP2
O層にj″含)れる燐(P)成分を拡散させてエミッタ
領域14を形成した験弗駿系の液を用いてP2Oを洗い
流す。
Next, a layer of phosphorus silicate glass (P2O) is formed on the entire surface, the remaining part is removed so that it covers only the emitter electrode window 11, and heat treated at 1150 (C) for 30 [seconds] to form a P2O layer.
The P2O is washed away using an experimental liquid in which the emitter region 14 is formed by diffusing the phosphorus (P) component contained in the O layer.

次に、同図へ)に示されるように、全図にデジレジスト
膜(図示せず)を形成し、公知め技術でそれをノーター
ニングし、ドライエツチングで4リシリコン層と窒化膜
5′を除去し、SBD電極窓9を形成する。9化膜5′
の・譬ターンの図に見て右端部分#−1S102膜6上
に残る。
Next, as shown in the same figure), a digi-resist film (not shown) is formed on the entire figure, it is not-turned using a known technique, and the silicon layer and nitride film 5' are removed by dry etching. Then, the SBD electrode window 9 is formed. 9 film 5'
The right end portion #-1 remains on the S102 film 6 as seen in the illustration of the parable turn.

次に、デジレジスト膜(図示せず)を全面に形h(し’
、−’、それを8BD領域のみさらされる如くにノータ
ーニングシ、コントロールエツチン/テ8BDIImに
残存していた5in2膜6を除去する〔同図0)〕。
Next, apply a digi-resist film (not shown) to the entire surface.
, -', the 5in2 film 6 remaining on the control film/te 8BDIIm is removed without turning so that only the 8BD region is exposed [FIG. 0)].

次に、全面に約1〔μm〕の厚さのアルミニウム配#層
15を形成する〔同図(j)〕。以後の工程は公知の技
術により所望の半導体装置を完成する。
Next, an aluminum wiring layer 15 with a thickness of about 1 [μm] is formed on the entire surface [FIG. 6(j)]. In the subsequent steps, a desired semiconductor device is completed using known techniques.

(7)発明の効果 以上、詳細に説明し九ように、本発明の方法によるとき
は、微細ノ臂ターンの形成に適したデジレノストのみを
用い、従来の工程よシも少ない数の工程で、絶縁膜に囲
まれ要領域内にSBDとトランゾスタが形成されるので
、当該デバイスの製造歩留9の向上と、ICの高集積化
に効果的である。
(7) Effects of the Invention As explained in detail above, when using the method of the present invention, only Digirenost suitable for forming fine arm turns is used, and the number of steps is smaller than that of the conventional process. Since the SBD and the transistor are formed within the required area surrounded by the insulating film, it is effective for improving the manufacturing yield 9 of the device and increasing the integration density of the IC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体装置の製造工程におけるその要部
の断面図、11g2図はレジスト膜の二重マスク化を説
明する九めの断面図、第3図は本発明の方法を実施する
工程における半導体装置の要部の断面図である。 l・・・P型シリコン基板、2・・・N”ff1jl込
層、3・・・?llエピタキシャル層、4・・・酸化シ
リコン膜、5・・・窒化シリコン膜、6・・・熱酸化膜
、7・・・ベース領域、8・・・酸化シリコン膜、9・
・・8BD11@g、 10・・・ペース電極窓、11
・・・エミッタ電極窓、12・・・酸化シリコン膜、1
3・・・Iリシリコン711.14・・・ニオ、夕領域
、15・・・ムを配am。 111図 第1図 第2図 1I3図 第3図
Fig. 1 is a cross-sectional view of the main parts in a conventional semiconductor device manufacturing process, Fig. 11g2 is a ninth cross-sectional view illustrating double masking of the resist film, and Fig. 3 is a step of implementing the method of the present invention. FIG. 1...P-type silicon substrate, 2...N"ff1jl layer, 3...?ll epitaxial layer, 4...silicon oxide film, 5...silicon nitride film, 6...thermal oxidation Film, 7... Base region, 8... Silicon oxide film, 9.
...8BD11@g, 10...Pace electrode window, 11
...Emitter electrode window, 12...Silicon oxide film, 1
3...I silicon 711.14...Nio, evening area, 15...Am distributed. 111Figure 1Figure 2Figure 1I3Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に選択的に絶縁膜を配設して素子領域を画定
し、かかる素子領域にシ、ツ、トキノ臂リヤダイオード
と他の能動素子とを形成する方法にして、前記絶縁膜形
成用マスクとして用い良書化シリコン膜を選択的に除去
し、該窃化シリコン膜の除、去された領域には前記他の
能動素子を、また該窒化シリコン膜の残存せしめられ九
領域にシロットキパリャダイオードを形成する工程を有
することを特徴とする半導体装置の製造方法。
A method is provided in which an insulating film is selectively provided on a semiconductor substrate to define an element region, and a rear diode and other active elements are formed in the element region, and the mask for forming the insulating film is formed. The silicon nitride film is then selectively removed using the silicon nitride film, and the other active elements are placed in the removed area, and the silicon nitride film is removed in the remaining nine areas. A method for manufacturing a semiconductor device, comprising a step of forming a diode.
JP5312782A 1982-03-31 1982-03-31 Manufacture of semiconductor device Pending JPS58170050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5312782A JPS58170050A (en) 1982-03-31 1982-03-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5312782A JPS58170050A (en) 1982-03-31 1982-03-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58170050A true JPS58170050A (en) 1983-10-06

Family

ID=12934137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5312782A Pending JPS58170050A (en) 1982-03-31 1982-03-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58170050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717844U (en) * 1993-09-10 1995-03-31 桐生機械株式会社 Manhole cover locking device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717844U (en) * 1993-09-10 1995-03-31 桐生機械株式会社 Manhole cover locking device

Similar Documents

Publication Publication Date Title
JPH0415938A (en) Formation of contact hole
JPH035058B2 (en)
US5395782A (en) Process for fabricating a semiconductor integrated circuit
JPS58170050A (en) Manufacture of semiconductor device
JPH04107831A (en) Manufacture of semiconductor device
JPS5846846B2 (en) hand tai souchi no seizou houhou
JPS58194345A (en) Semiconductor device
JPS6220711B2 (en)
JPS63313866A (en) Manufacture of semiconductor device
KR100256259B1 (en) Method of preparing common gate in semiconductor device
JPS6211514B2 (en)
JPH0410662A (en) Manufacture of semiconductor device
KR100277875B1 (en) Capacitor Manufacturing Method
JPS6038874B2 (en) Method for manufacturing insulator gate field effect transistor
JPS63288069A (en) Manufacture of mos type semiconductor element
JPH0139221B2 (en)
JPH01165159A (en) Manufacture of complementary mos semiconductor device
JPS6049677A (en) Manufacture of field-effect transistor
JPH038338A (en) Manufacture of multilayer wiring structure
JPH03211836A (en) Manufacture of semiconductor device
JPS6161546B2 (en)
JPH06120243A (en) Manufacture of semiconductor device
JPH01280352A (en) Manufacture of semiconductor device
JPH02114537A (en) Manufacture of semiconductor integrated circuit device
JPH0445523A (en) Manufacture of semiconductor device