JPS6211514B2 - - Google Patents

Info

Publication number
JPS6211514B2
JPS6211514B2 JP9560075A JP9560075A JPS6211514B2 JP S6211514 B2 JPS6211514 B2 JP S6211514B2 JP 9560075 A JP9560075 A JP 9560075A JP 9560075 A JP9560075 A JP 9560075A JP S6211514 B2 JPS6211514 B2 JP S6211514B2
Authority
JP
Japan
Prior art keywords
oxide film
insulating film
silicon oxide
conductivity type
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9560075A
Other languages
Japanese (ja)
Other versions
JPS5219968A (en
Inventor
Tooru Tsujiide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9560075A priority Critical patent/JPS5219968A/en
Publication of JPS5219968A publication Critical patent/JPS5219968A/en
Publication of JPS6211514B2 publication Critical patent/JPS6211514B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は、自己整合型のコンタクト穴を有す
る半導体集積回路装置の製造方法に関し、とくに
シリコン局部酸化プロセスを用いたMOS型FET
等の集積回路装置に好適な製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit device having self-aligned contact holes, and in particular to a method for manufacturing a MOS type FET using a silicon local oxidation process.
The present invention relates to a manufacturing method suitable for integrated circuit devices such as the above.

MOS型FETを多数集積している半導体装置に
おいては、基板と反対の導電型の不純物で形成さ
れるドレイン、ソース、及び拡散配線領域に金属
配線を接続する場合、これら領域を被覆するシリ
コン酸化膜の所定部分に写真蝕刻法でコンタクト
穴を開け拡散領域を露出させた後、金属配線を接
続する方法がとられている。この様な従来のコン
タクト穴形成法では、マスク寸法精度、オーバー
エツチ、及び目合せ精度を考慮すると、拡散層と
コンタクト穴のマスク上の大きさの余裕度は大き
くとる必要がある。とくに局部酸化プロセスを用
いた場合、拡散層の巾はフイールドシリコン酸化
膜(約1μ程度)形成時に狭められる為、コンタ
クト穴の一辺と拡散層の一辺との間はマスク上4
μを必要とする。又現像技術の難易の点で、ホト
レジストはポジタイプよりネガタイプが一般に用
いられているが、後者の場合露光の際の光のまわ
りこみ及びシリコン酸化膜からの反射がある為
に、コンタクト穴を小さくするとコンタクト穴の
抜け不良の原因になり、現在は量産ラインでは5
μ×5μが最小とされている。従つてコンタクト
穴をとる拡散層の大きさは最小12μにもなる。3
トランジスタで1ビツトを構成した場合の4Kビ
ツトメモリのコンタクト数は、1万近くにものぼ
り、コンタクトの大きさ及び拡散層との余裕度が
集積度に及ぼす影響は極めて大きい。
In a semiconductor device that integrates a large number of MOS FETs, when connecting metal wiring to the drain, source, and diffusion wiring regions formed with impurities of the opposite conductivity type to the substrate, a silicon oxide film covering these regions is used. A method is used in which a contact hole is formed in a predetermined portion of the semiconductor device by photolithography to expose a diffusion region, and then a metal wiring is connected. In such a conventional contact hole forming method, when mask dimensional accuracy, overetching, and alignment accuracy are taken into consideration, it is necessary to provide a large margin for the size of the diffusion layer and the contact hole on the mask. Particularly when using a local oxidation process, the width of the diffusion layer is narrowed when forming the field silicon oxide film (approximately 1 μm), so the distance between one side of the contact hole and one side of the diffusion layer is 400 mm on the mask.
Requires μ. Also, due to the difficulty of developing technology, negative type photoresists are generally used rather than positive types, but in the latter case, the light is reflected during exposure and is reflected from the silicon oxide film, so if the contact hole is made smaller, the contact This causes holes to fail to come out, and currently 5.
The minimum value is μ×5μ. Therefore, the size of the diffusion layer forming the contact hole is at least 12μ. 3
When one bit is composed of transistors, the number of contacts in a 4K-bit memory is nearly 10,000, and the size of the contacts and the margin with the diffusion layer have an extremely large effect on the degree of integration.

従つてこの発明の目的は、コンタクト穴が小さ
く、且つ不純物領域に対し余裕度が小さく、又、
製造工程が簡略化されて信頼度の高い半導体集積
回路装置の製造方法を提供することである。
Therefore, it is an object of the present invention to have a small contact hole, a small margin for the impurity region, and
It is an object of the present invention to provide a method for manufacturing a semiconductor integrated circuit device with a simplified manufacturing process and high reliability.

本発明の特徴は、一導電型シリコン基板のコン
タクト穴に当る部分を熱酸化に対し不活性な絶縁
膜で被覆し、該絶縁膜を通して逆導電型の不純物
を該シリコン基板に導入し、次いで該絶縁膜をマ
スクとして熱酸化によりシリコン酸化膜を形成す
ると同時にこの熱酸化工程により該逆導電型の不
純物を基板内部に拡散させて逆導電型の不純物領
域を形成し、しかる後に該シリコン酸化膜により
側面を覆われた該シリコン窒化膜を除去すること
により自己整合型のコンタクト穴を形成した半導
体集積回路装置の製造方法にある。
The present invention is characterized in that a portion of a silicon substrate of one conductivity type that corresponds to the contact hole is covered with an insulating film that is inactive against thermal oxidation, an impurity of the opposite conductivity type is introduced into the silicon substrate through the insulating film, and then an impurity of the opposite conductivity type is introduced into the silicon substrate through the insulating film. A silicon oxide film is formed by thermal oxidation using the insulating film as a mask, and at the same time, this thermal oxidation step diffuses the impurity of the opposite conductivity type into the substrate to form an impurity region of the opposite conductivity type. The present invention provides a method of manufacturing a semiconductor integrated circuit device in which a self-aligned contact hole is formed by removing the silicon nitride film whose side surfaces are covered.

このようにコンタクトをとる部分のみにシリコ
ン窒化膜などの熱酸化に対し不活性な膜を設けて
いるから集積度の高い集積回路装置が得られる。
又、逆導電型の不純物の導入およびその拡散時は
マスク絶縁膜を除去することなく被着した状態で
行うから、基板を露出したままたとえばイオン注
入を行いかつ押込み拡散を行う場合と異なり、結
晶のみだれを生じることなくかつ表面の汚染を防
止できる。しかも周囲のシリコン酸化膜の形成と
導入された不純物の拡散による不純物領域の形成
とが同一の熱処理工程で行われるから全体に簡素
化された方法となり生産性の高いものである。
Since a film inactive against thermal oxidation, such as a silicon nitride film, is provided only in the contact area in this way, an integrated circuit device with a high degree of integration can be obtained.
In addition, since the introduction and diffusion of impurities of the opposite conductivity type is carried out with the mask insulating film attached without removing it, unlike the case where, for example, ion implantation is performed and forced diffusion is performed while the substrate is exposed, crystal Surface contamination can be prevented without causing drooling. Moreover, since the formation of the surrounding silicon oxide film and the formation of the impurity region by diffusion of the introduced impurity are performed in the same heat treatment step, the method is simplified as a whole and has high productivity.

次に本発明をよりよく理解するために実施例に
つき図面を用いて説明する。
Next, in order to better understand the present invention, examples will be described using drawings.

第1図A〜Dを参照すると、この発明に関連の
ある技術では、フイールドシリコン酸化膜10の
間に基板11と反対の導電型の不純物高濃度領域
12が存在し、これにコンタクトをとる方法を示
している。すなわち所定の部分のシリコン窒化膜
13を残した状態で、基板11と同一電導型の不
純物を拡散後酸化した出発基体(第1図A)に、
基板と逆電導型の不純物14をイオン.インプラ
ンテーシヨン法で打込み(第1図B)、高温で押
込を行つて高濃度領域12を形成する(第1図
C)。次にシリコン窒化膜13を熱リン酸でエツ
チング除去後、金属配線15を設ける。この方法
によりシリコン窒化膜の残つた部分のみにコンタ
クト穴を開けることが可能となる。
Referring to FIGS. 1A to 1D, in the technology related to the present invention, a high impurity concentration region 12 of the conductivity type opposite to that of the substrate 11 exists between the field silicon oxide films 10, and a method for making contact therewith. It shows. That is, while leaving a predetermined portion of the silicon nitride film 13, an impurity of the same conductivity type as the substrate 11 is diffused and oxidized onto the starting substrate (FIG. 1A).
The impurity 14, which has conductivity opposite to that of the substrate, is ionized. The high concentration region 12 is formed by implantation (FIG. 1B) and pressing at high temperature (FIG. 1C). Next, after removing the silicon nitride film 13 by etching with hot phosphoric acid, a metal wiring 15 is provided. This method makes it possible to form contact holes only in the remaining portion of the silicon nitride film.

第2図A〜Gを参照すると、本発明の実施例
は、第1図と同じ方法で得られた第2図Aの出発
基体を用い、第2図Bの如くゲート部分を除きシ
リコン窒化膜13を残した後、シリコン窒化膜の
ない表面にゲート酸化膜16およびポリシリコン
層を成長させる。その後第2図Cに示す如くゲー
ト電極となる部分のみにポリシリコン17を残す
ことによつてゲート電極を形成し、更にコンタク
ト穴を開ける必要のある部分以外のシリコン窒化
膜を写真蝕刻法で除いた(第2図D)後、基板と
逆導電型の不純物18を高濃度に打込み(第2図
E)、酸化を行う。これによりシリコン窒化膜が
存在する部分以外は、シリコン酸化膜19で覆わ
れると同時に、基板と逆導電型のソースおよびド
レイン領域20が形成される(第2図F)。その
後熱リン酸液に浸漬することにより、シリコン窒
化膜のみエツチング除去し、金属配線21を行う
ことにより第2図Gに示すように二つのMOSト
ランジスタの共通のソース又はドレインに金属配
線21がコンタクトした構造が完成する。
Referring to FIGS. 2A to 2G, the embodiment of the present invention uses the starting substrate of FIG. 2A obtained by the same method as that of FIG. 1, and as shown in FIG. After leaving 13, a gate oxide film 16 and a polysilicon layer are grown on the surface without the silicon nitride film. Thereafter, as shown in FIG. 2C, a gate electrode is formed by leaving polysilicon 17 only in the part that will become the gate electrode, and then the silicon nitride film is removed by photolithography except in the part where it is necessary to make a contact hole. After that (FIG. 2D), an impurity 18 of a conductivity type opposite to that of the substrate is implanted at a high concentration (FIG. 2E), and oxidation is performed. As a result, areas other than the silicon nitride film are covered with the silicon oxide film 19, and at the same time, source and drain regions 20 of the opposite conductivity type to the substrate are formed (FIG. 2F). Thereafter, only the silicon nitride film is etched away by immersion in a hot phosphoric acid solution, and the metal wiring 21 is made in contact with the common source or drain of the two MOS transistors as shown in FIG. 2G. The structure is completed.

第1図のように、コンタクト穴がフイールドシ
リコン酸化膜に囲まれた構造のものについては、
従来自己整合型のコンタクト形成法として、フイ
ールドシリコン酸化膜と高濃度領域上のシリコン
酸化膜の厚さの差を利用することによりマスク上
の高濃度領域より大きなコンタクト穴を使用す
る、いわゆる外抜きコンタクト方式が知られてい
る。しかし第2図の実施例に示す如きゲート電極
17が高濃度領域20に隣り合つており、且つそ
の高濃度領域へ金属配線をコンタクトさせる必要
がある場合は、ポリシリコン膜17を囲むシリコ
ン酸化膜19の厚さと高濃度領域20上のそれと
に差がないために外抜き法は使用できず本発明が
有効となる。前記したように従来のコンタクト形
成法はシリコン酸化膜にコンタクト穴を開ける方
法であり、ポジタイプのホトレジストを用いた場
合はマスク上のコンタクト穴の大きさは5μが限
度であるが、本実施例では窒化膜を残す構造のた
め、3μが充分実現可能である。更にオーバーエ
ツチに対しても従来の方法ではコンタクト穴の広
がる方向であるのに対し本発明の実施例では小さ
くなる方向である為第2図Cに示すゲート絶像膜
16とゲート電極17との端縁の差23は目合せ
の余裕度のみを考慮すればよく、1μで充分であ
る。従つてコンタクトを有する高濃度領域は5μ
で済む。
As shown in Figure 1, for a structure in which the contact hole is surrounded by a field silicon oxide film,
Conventional self-aligned contact formation methods utilize the difference in thickness between the field silicon oxide film and the silicon oxide film on the high concentration area to use a contact hole that is larger than the high concentration area on the mask. A contact method is known. However, if the gate electrode 17 is adjacent to the high concentration region 20 as shown in the embodiment of FIG. 2 and it is necessary to contact the metal wiring to the high concentration region, the silicon oxide film surrounding the polysilicon film 17 may Since there is no difference between the thickness of the area 19 and that of the high concentration area 20, the outer punching method cannot be used and the present invention is effective. As mentioned above, the conventional contact forming method is to make a contact hole in a silicon oxide film, and when a positive type photoresist is used, the size of the contact hole on the mask is limited to 5 μm, but in this example, the contact hole size is limited to 5μ. Because of the structure in which the nitride film remains, 3μ can be fully realized. Furthermore, with regard to over-etching, in contrast to the conventional method in which the contact hole widens, in the embodiment of the present invention, the contact hole becomes smaller, so that the relationship between the gate insulating film 16 and the gate electrode 17 shown in FIG. As for the edge difference 23, it is sufficient to consider only the margin of alignment, and 1 μ is sufficient. Therefore, the high concentration region with contacts has a thickness of 5μ.
That's enough.

第3図は第2図の実施例においてポリシリコン
17とアルミゲート又はアルミ配線層21との間
の容量をへらすために更にリンガラス膜24をコ
ンタクト穴およびシリコン酸化膜19上に成長し
た場合(第3図A)のコンタクト穴の開け方を示
したものでリンガラス膜24とシリコン酸化膜1
9のエツチング速度の差を利用することにより、
第3図Bの如く前記した外抜きコンタクト方式が
可能となる。
FIG. 3 shows a case in which a phosphor glass film 24 is further grown on the contact hole and the silicon oxide film 19 in order to reduce the capacitance between the polysilicon 17 and the aluminum gate or aluminum wiring layer 21 in the embodiment shown in FIG. This figure shows how to make the contact hole in Figure 3A), where the phosphor glass film 24 and the silicon oxide film 1
By utilizing the difference in etching speed of 9,
As shown in FIG. 3B, the above-mentioned external contact method becomes possible.

以上の実施例に示したように、フイールドシリ
コン酸化膜又はポリシリコンゲート又は配線のい
ずれに隣接したコンタクト穴も自己整合型にする
ことができる。
As shown in the above embodiments, contact holes adjacent to either the field silicon oxide film or the polysilicon gate or wiring can be self-aligned.

上にシリコン窒化膜を用いて説明したがこれを
酸化アルミニウム膜等の他の耐熱酸化膜で置換す
ることも可能で、この場合は酸化アルミニウム中
をリン.ボロンなどの不純物が通過できることを
利用し第2図の実施例でのインプランテイシヨン
の代りに拡散法を用いることができる。
Although the above explanation was made using a silicon nitride film, it is also possible to replace this with another heat-resistant oxide film such as an aluminum oxide film. Taking advantage of the fact that impurities such as boron can pass through, a diffusion method can be used instead of the implantation in the embodiment of FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜Dは本発明に関係のある技術の各工
程における断面図、第2図A〜Gは本発明の実施
例の各工程における断面図、第3図A,Bは第2
図の実施例の変形例の断面図である。 13:シリコン窒化膜、11:一導電型シリコ
ン基板、10,16,19:シリコン酸化膜、1
2,20:逆導電型領域、17:シリコン.ゲー
ト電極。
FIGS. 1A to 1D are cross-sectional views of each step of the technology related to the present invention, FIGS. 2A to G are sectional views of each step of the embodiment of the present invention, and FIGS. 3A and B are
FIG. 7 is a sectional view of a modification of the illustrated embodiment; 13: Silicon nitride film, 11: One conductivity type silicon substrate, 10, 16, 19: Silicon oxide film, 1
2, 20: opposite conductivity type region, 17: silicon. gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 厚いフイールドシリコン酸化膜が形成された
一導電型のシリコン基板の該フイールドシリコン
酸化膜に隣接せる素子形成領域上に熱酸化に対し
て不活性な絶縁膜を形成する工程と、前記絶縁膜
を選択的に除去することにより、前記フイールド
シリコン酸化膜に接する第1および第2の部分な
らびに中央に位置する第3の部分を残余せしめる
工程と、前記絶縁膜の第1および第3の部分間な
らびに第2および第3の部分間のシリコン基板表
面にゲート酸化膜をそれぞれ形成する工程と、前
記ゲート酸化膜上にそれぞれポリシリコンのゲー
ト電極を形成する工程と、前記絶縁膜の第1およ
び第2の部分を除去した後、残存せる前記絶縁膜
の第3の部分下も含め前記ゲート電極間ならびに
ゲート電極とフイールドシリコン酸化膜間のシリ
コン基板の個所に逆導電型の不純物を導入する工
程と、次いで該絶縁膜の第3の部分をマスクとし
て熱酸化をほどこすことにより該絶縁膜の第3の
部分の周縁部に隣接せるシリコン酸化膜を形成す
ると同時に、前記シリコン基板に導入された逆導
電型の不純物をこの熱酸化により基板深く拡散し
て該絶縁膜の第3の部分の下からその周囲に延在
せる逆導電型のソースもしくはドレイン領域を形
成し前記両ゲート電極とフイールドシリコン酸化
膜間のシリコン基板の個所にもそれぞれ逆導電型
のソースもしくはドレイン領域を形成する工程
と、しかる後、前記絶縁膜の第3の部分を除去す
ることによつて、前記熱酸化により形成されたシ
リコン酸化膜に両側端が隣接せる前記逆導電型の
ソースもしくはドレイン領域のコンタクト部の表
面を露出させる工程と、該コンタクト部の該両側
端間の全表面領域上に被着し該両側端にそれぞれ
隣接せる該シリコン酸化膜の部分上にそれぞれ延
在することによつて前記両ゲート電極に一部重畳
せる前記ソースもしくはドレイン領域の配線層を
形成する工程とを具備したことを特徴とする半導
体集積回路装置の製造方法。
1. A step of forming an insulating film that is inactive against thermal oxidation on an element formation region adjacent to the field silicon oxide film of a silicon substrate of one conductivity type on which a thick field silicon oxide film is formed, and selectively removing the first and second portions in contact with the field silicon oxide film and a third portion located at the center; forming a gate oxide film on the surface of the silicon substrate between the second and third portions; forming a polysilicon gate electrode on the gate oxide film; After removing the portion, introducing an impurity of the opposite conductivity type into a portion of the silicon substrate between the gate electrode and between the gate electrode and the field silicon oxide film, including under the third portion of the remaining insulating film; Next, thermal oxidation is performed using the third portion of the insulating film as a mask to form a silicon oxide film adjacent to the periphery of the third portion of the insulating film, and at the same time, the reverse conductivity introduced into the silicon substrate is removed. This thermal oxidation diffuses type impurities deep into the substrate to form a source or drain region of opposite conductivity type extending from below the third portion of the insulating film to the periphery of the third portion of the insulating film. The silicon formed by the thermal oxidation is removed by forming a source or drain region of opposite conductivity type in the silicon substrate in between, and then by removing the third portion of the insulating film. a step of exposing the surface of the contact portion of the source or drain region of the opposite conductivity type whose both ends are adjacent to the oxide film, and coating the contact portion over the entire surface area between the both ends of the contact portion and forming a contact portion on each of the both ends. a step of forming a wiring layer for the source or drain region so as to partially overlap the gate electrodes by extending over adjacent portions of the silicon oxide film. A method of manufacturing a circuit device.
JP9560075A 1975-08-06 1975-08-06 Semiconductor ic manufacturig process Granted JPS5219968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9560075A JPS5219968A (en) 1975-08-06 1975-08-06 Semiconductor ic manufacturig process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9560075A JPS5219968A (en) 1975-08-06 1975-08-06 Semiconductor ic manufacturig process

Publications (2)

Publication Number Publication Date
JPS5219968A JPS5219968A (en) 1977-02-15
JPS6211514B2 true JPS6211514B2 (en) 1987-03-12

Family

ID=14142037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9560075A Granted JPS5219968A (en) 1975-08-06 1975-08-06 Semiconductor ic manufacturig process

Country Status (1)

Country Link
JP (1) JPS5219968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138525U (en) * 1988-03-07 1989-09-21
JPH0253321U (en) * 1988-10-08 1990-04-17

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586126A (en) * 1981-07-03 1983-01-13 Fujitsu Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138525U (en) * 1988-03-07 1989-09-21
JPH0253321U (en) * 1988-10-08 1990-04-17

Also Published As

Publication number Publication date
JPS5219968A (en) 1977-02-15

Similar Documents

Publication Publication Date Title
US5320932A (en) Method of forming contact holes
JPH0485876A (en) Method of forming contact region of semiconductor device and manufacture of semiconductor device utilizing said method
JPH11354735A (en) Manufacture of semiconductor element
JPH1092933A (en) Manufacture of semiconductor device
JPH03129818A (en) Manufacture of semiconductor device
JPS6211514B2 (en)
JPS5918874B2 (en) hand tai souchi no seizou houhou
JP3239911B2 (en) Method for manufacturing solid-state imaging device
JPS6366069B2 (en)
JPH08298314A (en) Nonvolatile semiconductor memory and its manufacture
JP2000068509A (en) Manufacture of semiconductor device
JP2003188371A (en) Method of manufacturing semiconductor device and semiconductor device
JPS6115579B2 (en)
JPS63313866A (en) Manufacture of semiconductor device
JPH0369168A (en) Thin film field effect transistor
JP2943855B2 (en) Method for manufacturing semiconductor device
JPS6294985A (en) Manufacture of mos semiconductor device
KR0130200B1 (en) Manufacture of semiconductor device
JPS5978575A (en) Manufacture of mos type semiconductor device
JPS5867060A (en) Manufacture of semiconductor integrated circuit device
JPH0582066B2 (en)
JPH0653519A (en) Semiconductor non-volatile memory and fabrication thereof
JPS60788B2 (en) Manufacturing method of silicon gate MIS semiconductor device
JPS59134868A (en) Manufacture of semiconductor device
JPS6161546B2 (en)