JPS6038874B2 - Method for manufacturing insulator gate field effect transistor - Google Patents

Method for manufacturing insulator gate field effect transistor

Info

Publication number
JPS6038874B2
JPS6038874B2 JP50025839A JP2583975A JPS6038874B2 JP S6038874 B2 JPS6038874 B2 JP S6038874B2 JP 50025839 A JP50025839 A JP 50025839A JP 2583975 A JP2583975 A JP 2583975A JP S6038874 B2 JPS6038874 B2 JP S6038874B2
Authority
JP
Japan
Prior art keywords
gate
silicon nitride
film
nitride film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50025839A
Other languages
Japanese (ja)
Other versions
JPS51100681A (en
Inventor
元孝 鴨志田
俊男 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP50025839A priority Critical patent/JPS6038874B2/en
Publication of JPS51100681A publication Critical patent/JPS51100681A/en
Publication of JPS6038874B2 publication Critical patent/JPS6038874B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は自己整合型絶縁物ゲート電界効果トランジス
タの構造の製造方法に関し、特にゲート電極とソース又
はドレィン電極との短絡事故を防止する構造を有す談自
己整合型電界効果トランジスタの製造方法を提供するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a structure of a self-aligned insulator gate field effect transistor, and more particularly to a method for manufacturing a self-aligned insulator gate field effect transistor structure having a structure that prevents a short-circuit accident between a gate electrode and a source or drain electrode. A method of manufacturing an effect transistor is provided.

従来の自己整合型でない通常の金属ゲート電極を有す絶
縁物ゲート電界効果トランジスタの断面図を第1図に示
した。
A cross-sectional view of a conventional non-self-aligned insulator gate field effect transistor having a conventional metal gate electrode is shown in FIG.

例えばnチャンネルアルミニウムゲートMOSトランジ
スタを作る場合、同図Aのように先ずp型シリコンウェ
ハ101を酸化し、表面に二酸化シリコンSi02膜1
02を形成し、ソース103及びドレィン104となる
領域のシリコン基板を選択的に露出させて、n型不純物
、例えばリンを添加する。次いでゲート部105となる
所の二酸化シリコンSi02膜1 02を除去し、所望
の閥値電圧を得るべく、ゲート絶縁膜としての二酸化シ
リコンSi02膜106を形成する。その時、ソース領
域103及びドレィン領域104の上も酸化されるが、
通常、リン拡散部分は酸化速度が速いため、ソース領域
103及びドレィン領域1 04上の二酸化シリコンS
i02膜1061はゲート領域の二酸化シリコンSi0
2膜106より厚くなる。例えば1000ooで飽和水
蒸気中にて酸化すると、ゲート領域の二酸化シIJコン
Si02膜1 06の厚さが1000Aの時、ソース領
域103及びドレィン領域104上の二酸化シリコンS
i02膜1061の厚さは2500Aに達する。次いで
ソース領域103及びドレィン領域104に電極を取付
けるため、二酸化シリコンSj02膜1061に孔を開
ける工程が必要で、そのためのフオトレジスト膜107
を塗布した時の断面図が第1図Bである。次いで通常の
方法でアルミニウムを蒸着しフオトレジスト法で配線パ
ターンを形成した段階の断面図が第1図Cである。ここ
でフオトレジスト膜107をつける工程で位置合せ余裕
度を現状の紫外線露光装置では2仏ほどもたせねばなら
ない。更にアルミニウムによる電極配線の形成時のフオ
トレジスト工程の精度も2山とすると合計4叫まど余裕
度を持たせねばならず、従ってゲート電極108の端と
ソース領域103又はドレィン領域104との間の浮遊
容量も無視できない。一方第1図C中、丸印で囲んだ部
分を拡大した同図C′のように、ソース領域103(又
はドレィン領域104)を形成するPn接合1031の
縁端部とゲート電極108との最短距離L,は厚いSi
02膜1 061が介在するため池のゲート絶縁膜部よ
り厚く、従ってゲート電極108とソース又はドレィン
との短絡事故は発生し難い。一方この浮遊容量を減少さ
せるべく、ゲートの位置と、ソース、ドレィンの位置を
自己整合(self−ali則ed)させる技術が開発
されており、ゲート電極を形成してからイオン注入法で
ソースやドレィン領域を形成する方法や、ゲート電極に
シリコンを用い、ソースやドレィン領域の形成のための
不純物熱拡散のマスクを兼用させる方法などはその代表
的な例である。第2図にその工程を示す断面図をを示し
たが、例えば第2図Aのようにp型シリコンウェハ20
1を熱酸化し、隣のトランジスタ同志に、配線と基板ウ
ェハ201との間のMOS構造を介して漏洩電流が流れ
ないように、厚い二酸化シリコンSi02膜202を形
成した後、ソース、ゲート、ドレィン部となる場所のS
i02膜202を除去し、基板ウェハ201を露出させ
て、再度、所望の閥値電圧が出るような膜厚のゲート絶
縁膜203を形成する。その後、ゲート電極204とし
て多結晶シリコンを通常の気相成長法で形成する。次い
でこの多結晶シリコンのゲート電極204をマスクとし
て薄い二酸化シリコンSi02膜203を除去し、下地
の基板シリコン201を露出させてn型不純物を入れ、
ソース領域205、ドレィン領域206を形成する。こ
れは熱拡散法でもイオン注入法でも、あるいは両者を組
合わせてもよい。この段階の断面図が第2図Bである。
その後第2図Cのように、気相成長法で化学的に二酸化
シリコンSiQ膜207を被鍵し、次いでソース領域2
05、ドレィン領域206とオ−ミック接触をとるため
に孔をあげて金属配線208を行ったのが第2図Cであ
る。この構造では前記のフオトレジストのための位置合
わせ余裕度が必要無いので、ゲート電極204とソース
領域205又はドレィン領域206との重なり部分が少
なく、浮遊容量が少ないという特徴を有す。ところが、
この場合は第2図Cの丸印で囲んだ部分を拡大した図に
′からも明らかなようにソース領域205(又はドレィ
ン領域206)を形成するpn接合205′(又は20
6′)の縁端部とゲート電極204との間の最短距離L
2は、薄いゲート絶縁膜203の厚さそのものなので、
第1図C′の場合と比較してはるかに薄い。従ってゲー
ト電極204とソース領域205、ドレィン領域206
との短絡事故が多発し、ゲート絶縁膜203の厚さをあ
まり薄く出釆ないという欠点がある。本発明は、自己整
合型絶縁物ゲ−トトランジスタとしての浮遊容量の小さ
いという特徴を維持しつつ、ゲート電極とソース領域及
びドレィン領域との電気的な短絡事故を防止する製造方
法を提供することを目的とする。
For example, when making an n-channel aluminum gate MOS transistor, first oxidize a p-type silicon wafer 101 as shown in FIG.
02 is formed, a region of the silicon substrate that will become a source 103 and a drain 104 is selectively exposed, and an n-type impurity such as phosphorus is added. Next, the silicon dioxide Si02 film 102 which will become the gate portion 105 is removed, and a silicon dioxide Si02 film 106 is formed as a gate insulating film in order to obtain a desired threshold voltage. At that time, the tops of the source region 103 and drain region 104 are also oxidized;
Normally, the oxidation rate of the phosphorus diffusion portion is fast, so the silicon dioxide S on the source region 103 and drain region 104
The i02 film 1061 is silicon dioxide Si0 in the gate region.
2 film 106. For example, when the silicon dioxide IJ film 106 in the gate region is oxidized in saturated water vapor with a thickness of 1000 Å, the silicon dioxide S on the source region 103 and the drain region 104 is
The thickness of the i02 film 1061 reaches 2500A. Next, in order to attach electrodes to the source region 103 and drain region 104, it is necessary to open a hole in the silicon dioxide Sj02 film 1061, and for this purpose, a photoresist film 107 is formed.
A cross-sectional view of the coating is shown in FIG. 1B. FIG. 1C is a cross-sectional view of a stage in which aluminum was then vapor-deposited by a conventional method and a wiring pattern was formed by a photoresist method. In the step of applying the photoresist film 107, the current ultraviolet exposure apparatus must have an alignment margin of about 2 degrees. Furthermore, the accuracy of the photoresist process when forming the aluminum electrode wiring must be 2 peaks in total, so it is necessary to have a margin of 4 peaks in total. The stray capacitance of can also not be ignored. On the other hand, as shown in FIG. 1 C', which is an enlarged view of the circled area in FIG. The distance L is thick Si
02 film 1 It is thicker than the gate insulating film portion of the reservoir in which 061 is interposed, and therefore short-circuit accidents between the gate electrode 108 and the source or drain are unlikely to occur. On the other hand, in order to reduce this stray capacitance, a technology has been developed in which the position of the gate is self-aligned with the positions of the source and drain. Typical examples include a method of forming a drain region, and a method of using silicon for the gate electrode, which also serves as a mask for thermal diffusion of impurities for forming the source and drain regions. FIG. 2 shows a cross-sectional view showing the process. For example, as shown in FIG. 2A, a p-type silicon wafer 20
After thermally oxidizing 1 and forming a thick silicon dioxide Si02 film 202 on adjacent transistors to prevent leakage current from flowing through the MOS structure between the wiring and the substrate wafer 201, the source, gate, and drain S of the place where it becomes part
The i02 film 202 is removed, the substrate wafer 201 is exposed, and a gate insulating film 203 is formed again to a thickness that allows a desired threshold voltage to be produced. Thereafter, polycrystalline silicon is formed as the gate electrode 204 by a normal vapor phase growth method. Next, using this polycrystalline silicon gate electrode 204 as a mask, the thin silicon dioxide Si02 film 203 is removed to expose the underlying substrate silicon 201 and doped with n-type impurities.
A source region 205 and a drain region 206 are formed. This may be done by a thermal diffusion method, an ion implantation method, or a combination of both. A cross-sectional view at this stage is shown in FIG. 2B.
Thereafter, as shown in FIG.
05. In order to make ohmic contact with the drain region 206, a hole is opened and a metal wiring 208 is formed as shown in FIG. 2C. Since this structure does not require the above-mentioned alignment margin for the photoresist, it has a feature that there is little overlap between the gate electrode 204 and the source region 205 or the drain region 206, and there is little stray capacitance. However,
In this case, the pn junction 205' (or 20
6') and the gate electrode 204
2 is the thickness of the thin gate insulating film 203, so
It is much thinner compared to the case of FIG. 1C'. Therefore, the gate electrode 204, the source region 205, and the drain region 206
There are many short-circuit accidents with the gate insulating film 203, and the gate insulating film 203 cannot be made very thin. An object of the present invention is to provide a manufacturing method that prevents electrical short-circuit accidents between a gate electrode and a source region and a drain region while maintaining the characteristic of a self-aligned insulator gate transistor of low stray capacitance. With the goal.

この発明は、自己整合型でありながらゲート絶縁膜の膜
厚を不均一にし、ゲート電極と、ソース及びドレィン領
域の不純物の高濃度領域との距離を遠ざける構造にし、
ゲート電極とソース領域及びドレィン領域との電気的な
短絡事故を阻止すると同時に、ゲート絶縁膜の周辺部以
外の部分の膜厚は所望の関値電圧が得られるよう薄くす
ることにより、他の電気的特性は変えないという思想に
基〈もである。
Although the present invention is self-aligned, it has a structure in which the thickness of the gate insulating film is made non-uniform, and the distance between the gate electrode and the high impurity concentration regions of the source and drain regions is increased.
At the same time as preventing electrical short-circuit accidents between the gate electrode and the source and drain regions, the film thickness of the gate insulating film other than the peripheral area is made thin enough to obtain the desired functional voltage. It is based on the idea that physical characteristics do not change.

またこの発明はゲート絶縁膜の部分的に厚くなっている
個所の下のソース又はドレィン領域のpn接合緑端部の
位置は、ソ−ス・ドレィン電極部より深い位置にあるか
ら、該pn接合縁端部での不純物濃度勾配を緩くした構
造となる。
Further, in this invention, since the position of the green end of the pn junction in the source or drain region under the partially thickened part of the gate insulating film is at a deeper position than the source/drain electrode part, the pn junction The structure has a gentle impurity concentration gradient at the edge.

即ちプレーナ型でpn接合を作る場合、通常、関孔部か
ら不純物を半導体中に添加する際、深さ方向より横方向
の方が拡散いこくいため、深さ方向より横方向、即ちp
n接合緑端部で不純物濃度勾配が急峻になる。本発明で
は、この緑端部の位置が半導体表面より深い位置にある
ので、その分だけ不純物濃度勾配が緩くなる点が特徴で
ある。次に本発明の実施例を、フラットMOS構造に適
用した例で説明する。
In other words, when making a planar type p-n junction, when doping impurities into a semiconductor from the barrier part, diffusion is faster in the lateral direction than in the depth direction.
The impurity concentration gradient becomes steep at the green end of the n-junction. The present invention is characterized in that the green end is located deeper than the semiconductor surface, so that the impurity concentration gradient becomes gentler. Next, an embodiment of the present invention will be described using an example applied to a flat MOS structure.

第3図にその工程を説明する断面図を示した。先ず同図
Aのようにp型シリコンウェハ301を用意し、所望の
閥値電圧に対応する膜厚のゲート二酸化シリコンSi0
2膜302を形成する。次いで通常の方法で多結晶シリ
コンを気相成長させ、選択除去してゲート電極303を
形成する。その上にこれも通常の化学蒸着法でシリコン
窒化膜Si3N4304を成長させ、次いで、ソース領
域、ドレィン領域、ゲート領域となる部分をフオトレジ
スト膜305で被覆する。この時、ゲート電極303の
周囲に相当する部分をも露出するよう孔306があげら
れていることが本発明を実施するための重要な鍵である
。この段階の終了図が第3図Bである。この状態でシリ
コン窒化膜Si3N4304を選択的に除去すると第3
図Cのようになる。シリコン窒化膿Si3N4304の
選択エッチングには、ここではフオトレジスト305を
用い、プラズマエッチング法で作った。この時、多結晶
シリコンの電極の側面は露出されている。次いで第3図
Dに示したように飽和水蒸気中で、このシリコン窒化膿
Si3N4304をマスクとし110000で2時間酸
化し、約1ムの二酸化シリコンSj02307を、ソー
ス及びドレィンの外側の領域上に形成する。この時、先
にあげておいたゲートの周囲の溝306に対応して、そ
こにも本来の二酸化シリコンSi02のゲート絶縁膜3
02より厚い二酸化シリコン膜Si02308が形成さ
れる。更にまたこの時、ゲート電極としての多結晶シリ
コン303の側面、及びシリコン窒化膜Si3N430
4の側面と上面も酸化されるが、シリコン窒化膜Sj3
N4の酸化速度は遅いので、その二酸化シリコンSi0
2309は薄い。次いでこの二酸化シリコンSi023
09を除去し、更にシリコン窒化膜Si3N4304を
除去して、n型不純物、例えばリンを拡散させてソース
領域310、ドレィン領域311を形成し、また多結晶
シリコンのゲート電極303にもリンを拡散して導電率
を向上させる。その後、通常の化学蒸着法により二酸化
シリコンSi02膜3 1 2を気相成長させて第3図
Eのようにする。次いでソース領域310とドレィン領
域311に金属電極313をとりつけて第3図Fのよう
に完成させる。この構造によれば、ソース領域310及
びドレィン領域31 1を形成するpn接合310′,
311′のゲーート側の緑端部上は絶縁膜が厚くなって
おり、ゲート電極303からの距離が、第2図に比較し
て遠くなっている。
FIG. 3 shows a cross-sectional view illustrating the process. First, a p-type silicon wafer 301 is prepared as shown in FIG.
Two films 302 are formed. Next, polycrystalline silicon is grown in a vapor phase using a conventional method and selectively removed to form a gate electrode 303. A silicon nitride film Si3N4304 is grown thereon by the usual chemical vapor deposition method, and then the portions that will become the source region, drain region, and gate region are covered with a photoresist film 305. At this time, it is important for implementing the present invention that the hole 306 is raised so as to expose a portion corresponding to the periphery of the gate electrode 303. The final diagram of this stage is shown in FIG. 3B. If the silicon nitride film Si3N4304 is selectively removed in this state, the third
It will look like Figure C. For selective etching of silicon nitride Si3N4304, a photoresist 305 was used here, and was made by a plasma etching method. At this time, the side surfaces of the polycrystalline silicon electrodes are exposed. Next, as shown in FIG. 3D, oxidation is performed in saturated steam at 110,000 ℃ for 2 hours using this silicon nitride Si3N4304 as a mask to form approximately 1 μm of silicon dioxide Sj02307 on the outer regions of the source and drain. . At this time, corresponding to the groove 306 around the gate mentioned earlier, the original gate insulating film 3 of silicon dioxide Si02 is also formed there.
A silicon dioxide film Si02308, which is thicker than Si02308, is formed. Furthermore, at this time, the side surface of the polycrystalline silicon 303 serving as the gate electrode and the silicon nitride film Si3N430
Although the side and top surfaces of 4 are also oxidized, the silicon nitride film Sj3
Since the oxidation rate of N4 is slow, its silicon dioxide Si0
2309 is thin. Next, this silicon dioxide Si023
09 is removed, and the silicon nitride film Si3N4304 is further removed, and an n-type impurity such as phosphorus is diffused to form a source region 310 and a drain region 311. Phosphorus is also diffused into the gate electrode 303 of polycrystalline silicon. to improve conductivity. Thereafter, a silicon dioxide Si02 film 3 1 2 is grown in a vapor phase using a conventional chemical vapor deposition method to form a silicon dioxide film 3 1 2 as shown in FIG. 3E. Next, metal electrodes 313 are attached to the source region 310 and drain region 311 to complete the process as shown in FIG. 3F. According to this structure, a pn junction 310' forming a source region 310 and a drain region 311,
The insulating film is thicker on the green end of 311' on the gate side, and the distance from the gate electrode 303 is longer than in FIG.

従ってゲート電極303とソース領域310又はドレィ
ン領域311との間の電気的短絡事故が発生しなくなる
。またこの構造によれば、ソース領域を形成するpn接
合310′、ドレィン領域を形成するp対妾合311′
のゲート側のpn接合緑橋部が、いずれもゲート周囲の
厚いSi02膜308に、ソース領域310、ドレィン
領域311の表面より深い所で接しているので、該ゲー
ト側pn接合縁端部での不純物濃度勾配が緩く、従って
電界強度の集中も避けることが出来るため、ゲートSi
02膜302中へのホットキャリアの注入率を減少でき
るのでゲートとソース、ゲ−トとドレイン間の耐圧を上
げることができる。以上は、ソース及びドレィン領域上
でゲートの電極の全周囲の下の絶縁膜を厚くする例で説
明したが、必ずしも全周囲ではなく例えばドレィン側に
接するゲートの周囲の絶縁膜を厚くしただけの構造でも
よい。
Therefore, an electrical short circuit between the gate electrode 303 and the source region 310 or the drain region 311 will not occur. Further, according to this structure, a pn junction 310' forming a source region and a p-pn junction 311' forming a drain region
Since the pn junction green bridge portions on the gate side are in contact with the thick Si02 film 308 around the gate at a depth deeper than the surface of the source region 310 and drain region 311, the pn junction edge portion on the gate side is Since the impurity concentration gradient is gentle and concentration of electric field strength can be avoided,
Since the injection rate of hot carriers into the 02 film 302 can be reduced, the breakdown voltage between the gate and the source and between the gate and the drain can be increased. The above explanation is based on the example of thickening the insulating film under the entire periphery of the gate electrode on the source and drain regions, but it is not necessarily the case that the insulating film is thickened all around, but for example, just thickening the insulating film around the gate in contact with the drain side. It can also be a structure.

更にまた、フラットMOSの構造ではなく、通常の自己
整合型MOSであってもよいことは言う迄もない。ゲー
ト電極も、単に半導体のみに限られることなく、金属電
極の場合でも自己整合型であれば、本発明の方法が適用
できる。
Furthermore, it goes without saying that a normal self-aligned MOS may be used instead of the flat MOS structure. The method of the present invention is also applicable to the gate electrode, which is not limited to just a semiconductor, but can also be a metal electrode as long as it is self-aligned.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜C並びに同図C′は従釆の技術を説明するた
めの工程順を説明するための断面図、第2図A〜C並び
に同図C′は従来の自己整合型ゲート電極構造をとるト
ランジスタの製法を説明するための断面図、更に第3図
A〜Fは本発明の実施例を順次説明するための断面図で
ある。 101,201,301・・・・・・p型Siウヱハ、
102,202,307・・・・・・フィールド絶縁膜
、(厚いSi02膜)、1 03,205,3 1 0
.・・・・・ソース領域、104,206,311・…
・・ドレィン領域、105・・・・・・ゲート部、10
6,203,302……ゲートSi02膜、106′…
…ゲート酸化時に形成される高濃度層上の厚いSi02
膜、107,305……フオトレジスト膜、108……
Nゲート電極、204,303…・・・Siゲート電極
、103′,205′,310′・・…・ソース領域を
形成するpn接合、104′,205′,311′……
ドレィン領域を形成するpn接合、207,312・・
・・・・気相成長Si02膜、208,313・・・・
・・AI電極、304・・・・・・気相成長Si3N4
膜、306・・・・・・ゲートの周囲に対応する溝、3
08・・・・・・ゲートの周囲の厚いSi02膜、30
9……Siが4膜304の酸化膜。 オー函 了2函 才3図
Figures 1A to C and C' are cross-sectional views for explaining the process order for explaining the related technology, and Figures 2A to C and C' are cross-sectional views of conventional self-aligned gate electrodes. FIGS. 3A to 3F are cross-sectional views for explaining a method of manufacturing a transistor having this structure, and FIGS. 3A to 3F are cross-sectional views for sequentially explaining embodiments of the present invention. 101, 201, 301...p-type Si wafer,
102, 202, 307...Field insulating film, (thick Si02 film), 1 03, 205, 3 1 0
.. ...Source area, 104, 206, 311...
...Drain region, 105... Gate section, 10
6,203,302...Gate Si02 film, 106'...
...Thick Si02 on the high concentration layer formed during gate oxidation
Film, 107,305...Photoresist film, 108...
N gate electrode, 204, 303...Si gate electrode, 103', 205', 310'...pn junction forming the source region, 104', 205', 311'...
pn junction forming the drain region, 207, 312...
...Vapor-phase grown Si02 film, 208,313...
...AI electrode, 304... Vapor phase growth Si3N4
Membrane, 306...Groove corresponding to the periphery of the gate, 3
08...Thick Si02 film around the gate, 30
9...Si 4 film 304 oxide film. 2 boxes and 3 pictures

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板上のうすいゲート絶縁膜上に
設けられたゲート電極となる多結晶シリコンパターン上
に第1のシリコン窒化膜パターンを形成し、かつ該第1
のシリコン窒化膜パターンより所定の距離だけ離間せる
第2および第3のシリコン窒化膜パターンを半導体基板
上に形成する工程と、これらシリコン窒化膜パターンを
マスクとして熱処理を行うことにより、該第1および第
2のシリコン窒化膜パターン間および該第1および第3
のシリコン窒化膜パターン間の半導体基板の部分に該半
導体基板に埋設しかつ前記ゲート絶縁膜よりも厚い絶縁
膜を形成する工程と、しかる後に該第2、第3のシリコ
ン窒化膜パターンを除去しこれらの部分より半導体基板
に逆導電型の不純物を導入して該厚い絶縁膜の底部にp
n接合がそれぞれ終端せるソースおよびドレイン領域を
形成する工程とを有することを特徴とする絶縁物ゲート
電界効果トランジスタの製造方法。
1. A first silicon nitride film pattern is formed on a polycrystalline silicon pattern serving as a gate electrode provided on a thin gate insulating film on a semiconductor substrate of one conductivity type, and
The first and third silicon nitride film patterns are formed on the semiconductor substrate by a predetermined distance from the silicon nitride film patterns, and heat treatment is performed using these silicon nitride film patterns as masks. between the second silicon nitride film patterns and between the first and third silicon nitride film patterns;
forming an insulating film buried in the semiconductor substrate and thicker than the gate insulating film in a portion of the semiconductor substrate between the silicon nitride film patterns, and then removing the second and third silicon nitride film patterns; Impurities of opposite conductivity type are introduced into the semiconductor substrate from these parts to form a p-type impurity at the bottom of the thick insulating film.
forming source and drain regions respectively terminated by n-junctions.
JP50025839A 1975-03-03 1975-03-03 Method for manufacturing insulator gate field effect transistor Expired JPS6038874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50025839A JPS6038874B2 (en) 1975-03-03 1975-03-03 Method for manufacturing insulator gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50025839A JPS6038874B2 (en) 1975-03-03 1975-03-03 Method for manufacturing insulator gate field effect transistor

Publications (2)

Publication Number Publication Date
JPS51100681A JPS51100681A (en) 1976-09-06
JPS6038874B2 true JPS6038874B2 (en) 1985-09-03

Family

ID=12177012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50025839A Expired JPS6038874B2 (en) 1975-03-03 1975-03-03 Method for manufacturing insulator gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS6038874B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142188A (en) * 1977-05-17 1978-12-11 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
JPS5423480A (en) * 1977-07-25 1979-02-22 Agency Of Ind Science & Technol Manufacture for mis type semiconductor element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN=1972 *

Also Published As

Publication number Publication date
JPS51100681A (en) 1976-09-06

Similar Documents

Publication Publication Date Title
US4306915A (en) Method of making electrode wiring regions and impurity doped regions self-aligned therefrom
JPH0712058B2 (en) Semiconductor device and manufacturing method thereof
JP3058981B2 (en) Method for manufacturing transistor
JPS6038874B2 (en) Method for manufacturing insulator gate field effect transistor
JP2968078B2 (en) Method for manufacturing MOS transistor
JP2782781B2 (en) Method for manufacturing semiconductor device
JPS5923475B2 (en) Method for forming electrodes for semiconductor devices
JP2720911B2 (en) Method for preparing substrate surface for semiconductor device
JP2924395B2 (en) Method for manufacturing semiconductor device
JPH03239368A (en) Semiconductor device
JPS6231505B2 (en)
JPH05129335A (en) Manufacture of vertical-type transistor
JPS63129664A (en) Manufacture of semiconductor device
JP2890550B2 (en) Method for manufacturing semiconductor device
JPS5918875B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3521921B2 (en) Method for manufacturing semiconductor device
JP3071133B2 (en) Manufacturing method of semiconductor integrated circuit
KR100256259B1 (en) Method of preparing common gate in semiconductor device
JPS60136377A (en) Manufacture of semiconductor device with insulated gate
JPH02122669A (en) Manufacture of semiconductor device
KR940001258B1 (en) Method of making bicmos device
JP2637860B2 (en) Method for manufacturing semiconductor device
JPS63224363A (en) Manufacture of semiconductor integrated circuit
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS6248907B2 (en)