JPS58167767A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS58167767A
JPS58167767A JP4991982A JP4991982A JPS58167767A JP S58167767 A JPS58167767 A JP S58167767A JP 4991982 A JP4991982 A JP 4991982A JP 4991982 A JP4991982 A JP 4991982A JP S58167767 A JPS58167767 A JP S58167767A
Authority
JP
Japan
Prior art keywords
evaporation
metal
thin film
detected
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4991982A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
一夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP4991982A priority Critical patent/JPS58167767A/en
Priority to GB8308253A priority patent/GB2119970B/en
Publication of JPS58167767A publication Critical patent/JPS58167767A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/544Controlling the film thickness or evaporation rate using measurement in the gas phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation

Abstract

PURPOSE:To form a thin film with unifom film quality and excellent reproducibility on a substrate, by a method wherein the variation in the pressure of a reactant gas accompanying to metal evaporation is detected in a vacuum container and a metal evaporation amount is controlled corresponding to the detected result. CONSTITUTION:In the vacuum container 1 of a reactive RF plating apparatus provided with the power source 5 of an evaporation source, a high frequency discharge electrode 9 for glow discharge and a D.C. power source 8 for acceleration of generated ion, an evaporation metal 4 is evaporated in an atmosphere of a reactive gas introduced from an introducing port 10 to form a thin film comprising the reaction product of the reactive gas and the evaporation metal on the surface of a substrate 3. The variation in the pressure of the reaction gas accompanying to the evaporation of the above mentioned evaporation metal is detected by a vacuum gauge 17 and the detected output thereof is pref. converted to D.C. voltage by a D.C. converting part 18 while this D.C. voltage is further amplified by a D.C. amplifier 19 to be compared to a reference voltage value by a PID controller 20 and the power source 5 of the evaporation source is controlled to stabilize a metal evaporation amount.

Description

【発明の詳細な説明】 本発明は、組成の一定な薄膜がh現性良く得られるよう
に構成した薄膜形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a thin film configured so that a thin film having a constant composition can be obtained with good heat development property.

電気的分野、化学的分野等におい℃は各種の導電性薄膜
あるいは絶縁性薄膜が用いられ、例えば最近%に技術進
歩の著るしい電子部品分野においては電子デバイス用と
して膜質が均一でl1I)現性に優れた薄膜の実現が望
まれている。
In the electrical field, chemical field, etc., various conductive thin films or insulating thin films are used.For example, in the field of electronic components, where technological progress has been remarkable in recent years, film quality is uniform for electronic devices. It is desired to realize thin films with excellent properties.

このよ5な*yav満たすための薄膜形成方法として反
応性高周波(RF )イオンブレーティング法が知られ
ている。第1図は従来におけるそのような反応性8Fイ
オンブレーテイング法を実施するために用いられる装置
iを示す概略図で、1は真空容器、2は基板ホルダー、
3は薄膜を形成すべき基板、4は蒸発源金属、5は蒸発
源電源、6は烏鯛波電源、7は整合回路、8は加速用直
流電源、9は為周波放電用電極、 10は反応ガス導入
口、11は反応カス排気口、12はパルプ、13は水晶
振動子。
A reactive radio frequency (RF) ion blating method is known as a method for forming a thin film to satisfy such *yav. FIG. 1 is a schematic diagram showing an apparatus i used for carrying out such a conventional reactive 8F ion blating method, in which 1 is a vacuum vessel, 2 is a substrate holder,
3 is a substrate on which a thin film is to be formed, 4 is an evaporation source metal, 5 is an evaporation source power source, 6 is an Karasutaba power source, 7 is a matching circuit, 8 is a DC power source for acceleration, 9 is an electrode for frequency discharge, 10 is a 11 is a reaction gas inlet, 11 is a reaction scum exhaust port, 12 is pulp, and 13 is a crystal oscillator.

14は膜厚モニタ一部、15は蒸発速度モニタ一部。14 is a part of the film thickness monitor, and 15 is a part of the evaporation rate monitor.

16はコントローラ一部である。16 is a part of the controller.

以上において反応性Kl?イオンブレーティング法は、
真空容器1内で+1Gjild波放電用電極9によりグ
ロー放電を生じさせると共に反応ガス導入口10から導
入した反応ガスの雰囲気中で蒸発源金属4を蒸発させ1
反応ガス成分と金属成分とを化合させることにより化合
物薄膜を基&3上に付着形成させるものである。このよ
うな方法において上記グロー放電によりプラズマが生成
されるため、上記反応ガスおよび金離粒子はラジカル化
あるいはイオン化されて化学的に活性な状態となるので
通常の真空蒸着法に比較してかなり低温度の基板上へ結
晶性に優れた薄膜の形成が6J能となる。
In the above, reactive Kl? The ion brating method is
Glow discharge is generated by the +1 Gjild wave discharge electrode 9 in the vacuum container 1, and the evaporation source metal 4 is evaporated in the atmosphere of the reaction gas introduced from the reaction gas inlet 10.
A thin compound film is deposited on the base &3 by combining the reactive gas component and the metal component. In this method, plasma is generated by the glow discharge, so the reaction gas and gold particles are radicalized or ionized and become chemically active, so the deposition rate is considerably lower than that of ordinary vacuum evaporation methods. Formation of a thin film with excellent crystallinity on a substrate at a temperature of 6J is possible.

また蒸発源金属4と基板3間に加速用直流電源8を印加
又は加速用直流電源8により直流を印加する(基板3@
がθでθ〜数KV )ことにより、イオン!加速させて
基板3へ輌突させることで上配効朱tより顕著にするこ
とができる。さらにこの反応性凡Fイオンブレーティン
グ法はRP亀界を利用しているために、真空容器1内の
圧力カカなり低い(〜5X10  テorr )場合で
もグロー放電を維持させられるので、緻密で凹凸のない
平滑な薄膜の形成が可能となる。加えてイオン衝撃や輻
射による基[3表−の温度上昇が少ないので基板3の温
度制御が容易である。
Further, an accelerating DC power source 8 is applied between the evaporation source metal 4 and the substrate 3, or DC is applied by the accelerating DC power source 8 (substrate 3@
is θ and θ~several KV) By this, ion! By accelerating it and causing it to collide with the substrate 3, it is possible to make the upper effect more pronounced than in the case of red t. Furthermore, since this reactive F ion blating method utilizes the RP field, it is possible to maintain glow discharge even when the pressure inside the vacuum vessel 1 is quite low (~5X10 teorr). It is possible to form a smooth thin film without any cracks. In addition, the temperature of the substrate 3 can be easily controlled because there is little temperature rise due to ion bombardment or radiation.

さてM11’J[が均一な薄aを再現性良く形成するた
めKは、薄膜形成の全過程にわたり形成条件を一定に保
持する必要がある。
Now, in order for M11'J[ to form a uniform thin film a with good reproducibility, the formation conditions for K must be kept constant throughout the entire process of thin film formation.

%に上記のように反応ガスと金属のよ5に211類以上
の元素同士の化学反応により薄膜を形成する場合は、各
々の元素の導入量を精度良く制御することが薄膜の化学
量論的組成を一定に保つ上で1賛となる。
As mentioned above, when forming a thin film through a chemical reaction between a reactive gas and elements of class 211 or higher, such as metals, it is important to precisely control the amount of each element introduced to maintain the stoichiometry of the thin film. This is a plus in terms of keeping the composition constant.

このような背景で望ましい薄膜を形成するためのパラメ
ータとして、基板温度、尚周波電力、加速電圧、ガス圧
、蕃属蒸発速度等が挙げられるが、特に金属蒸発速度を
安定に制御することが最も型費となる。
In this context, parameters for forming a desirable thin film include substrate temperature, frequency power, accelerating voltage, gas pressure, and rust evaporation rate, but stably controlling the metal evaporation rate is the most important. This is the mold cost.

この目的を達成するために従来用いられている手段は、
141図のように真空容器1内に水晶振動子13ヲ配置
してこの水晶振動子13によって金属蒸発速度を検出す
るよう托した水晶発振式モニター法である。すなわち水
晶振動子13がこれに付着する薄膜の量によって共振J
#1rIi数が比例して変化する性質を利用して、膜厚
モニター514によって先ず付着した薄膜の厚さを測定
し、その結果の出力信号な速度モニタ一部15でもって
微分することKより共振周波数の変化の割合すなわち蒸
着速度を検出し、この検出結果に応じて蒸着速f’に安
定に保つような出力信号な蒸発源電源5にフィートノく
ツクさせるようKした制御方法が採用されている。
The means traditionally used to achieve this goal are:
This is a crystal oscillation type monitoring method in which a crystal oscillator 13 is placed in a vacuum vessel 1 as shown in FIG. 141, and the metal evaporation rate is detected by this crystal oscillator 13. In other words, depending on the amount of thin film attached to the crystal resonator 13, the resonance J
#1Utilizing the property that the number of rIi changes proportionally, the thickness of the deposited thin film is first measured by the film thickness monitor 514, and the resulting output signal is differentiated by the speed monitor part 15. A control method is adopted in which the rate of change in frequency, that is, the evaporation rate is detected, and the evaporation source power supply 5, which is an output signal to keep the evaporation rate stable at f', is turned on according to the detection result. .

しかしながら上記水晶発振式モニター法は、(11k発
源やプラズマからの輻射熱により水晶振動子13が温度
上昇すると、共振8IjL数の変化が不規則的になるた
め#1定誤差が生ずる。
However, in the crystal oscillation type monitoring method described above, when the temperature of the crystal resonator 13 rises due to radiant heat from the 11k source or plasma, the change in the number of resonances 8IjL becomes irregular, resulting in #1 constant error.

(2)  水晶振動子13による検出膜厚に上限がある
(2) There is an upper limit to the film thickness detected by the crystal resonator 13.

(3)  長時間の膜形成により高周波放電電qh9や
容器内+1iIK薄膜が付着するため、^jIi1波電
力の整合か次第にくずれてきて放電状態も変化してくる
のでノイズとなって膜厚モニタ一部14 K現れてくる
(3) Due to the long-term film formation, the high-frequency discharge voltage qh9 and the +1iIK thin film inside the container adhere, so the matching of the ^jIi1 wave power gradually breaks down and the discharge state changes, causing noise and making it difficult to monitor the film thickness. Part 14 K appears.

(4)  !1!厚モニタ一部14 K mれたノイズ
は速度モニタ一部15の微分作用によって促進されるた
めより大きなノイズとなる。
(4)! 1! The noise generated by the thickness monitor part 14Km is promoted by the differential action of the speed monitor part 15, and thus becomes a larger noise.

(5)  共振周波数の変化を検出し℃から蒸発速度の
制御へ反映させる迄の処理時間が比較的長いために応答
性に劣る。
(5) Responsiveness is poor because it takes a relatively long processing time to detect a change in resonance frequency and reflect it in the control of evaporation rate from °C.

等の諸々の間離が存在していた。There were various gaps such as:

したがって従来方法によって金属蒸発速度を安定K i
iJ 御するのは困難となり、膜質が均一な薄膜wP+
m性良m性成することは不可能であった。
Therefore, the conventional method stabilizes the metal evaporation rate K i
iJ becomes difficult to control, and thin film wP+ with uniform film quality
It was impossible to make m-benign m-benign.

本発明は以上の間鵬に対処してなされたもので。The present invention has been made in response to the above problems.

ゲッター作用における反応ガスと金属との化学反応の関
連性を利用することにより、金属蒸発にともなう反応ガ
スの圧力の変化を検出し、検出結果に応じて金属蒸発量
を制御させるようにして金楓蒸発速fY安定化させるよ
うに構成したlI#農形酸形成方法供することを目的へ
するものである。以下図面を参照し℃本発明実施例を説
明する。
By utilizing the relationship between the chemical reaction between the reactive gas and the metal in the getter action, changes in the pressure of the reactive gas accompanying metal evaporation can be detected, and the amount of metal evaporated can be controlled according to the detection results. The purpose of this invention is to provide a method for forming lI# agricultural acid that is configured to stabilize the evaporation rate fY. Embodiments of the present invention will be described below with reference to the drawings.

反応ガスのIA舊する真空容器内で活性の強い金属を蒸
発させると、この蒸発金属によって上記残留ガスが吸収
されて容器内の真空度が向上する現象はゲッター作用と
して知られ℃いる。このゲッター作用の詳細な機構は複
雑であるが一般には。
When a highly active metal is evaporated in a vacuum vessel containing a reaction gas, the remaining gas is absorbed by the evaporated metal, thereby increasing the degree of vacuum in the vessel, a phenomenon known as getter action. The detailed mechanism of this getter action is complex, but in general.

蒸発金属すなわち金属蒸気が気相中で残留ガスと反応し
てそれを吸収し、続いて容器内ETllK金属成分が付
着してからも残留ガス11−吸収するために残留ガスの
圧力いわゆるガス圧が低下して真空度は向上する、と考
えられている。1.また放電によりプラズマが発生して
いる時には、その傾向は促進されるのでゲッター作用は
より顕著になると考えられる。したがってこのゲッター
作用は反応性RFイオンブレーティング法においては%
Km著に引き起こすことができる。
The evaporated metal, that is, the metal vapor reacts with the residual gas in the gas phase and absorbs it, and even after the ETllK metal component in the container adheres to it, the pressure of the residual gas, so-called gas pressure, increases. It is thought that the degree of vacuum will improve as the pressure decreases. 1. Further, when plasma is generated by discharge, this tendency is accelerated, and the gettering effect is considered to become more pronounced. Therefore, this getter effect is % in the reactive RF ion blating method.
It can be caused by Km.

ここで今真空容器内の排気速度を定常化させた後に導入
する反応ガスの流量を一定とすればガス圧は一定に保た
れる。この時のガス圧t’Pxとし、続いて上記真空容
器内6で金属を蒸発させるとガス圧は低下し上記P1よ
り低い値のP2となる。このP2  P1=ΔPの低下
の割合は金属の蒸発量ljおよび為周波電力に依存する
Here, if the flow rate of the reactant gas introduced after stabilizing the pumping speed in the vacuum container is constant, the gas pressure can be kept constant. The gas pressure at this time is t'Px, and when the metal is subsequently evaporated in the vacuum container 6, the gas pressure decreases to a value P2 lower than the above P1. The rate of decrease in P2 P1=ΔP depends on the amount of metal evaporation lj and the frequency power.

ここで目的とする薄膜の形成は上記ガス圧P2の基で打
われるのでこのPzt−安定化する会費があり、上記Δ
Pを安定化することが望まれる。上配二つのパラメータ
のうち高周波電力の制御は比較的容易であるが、残りの
金属蒸発速度を安定に制御するのは困難である。
Since the formation of the desired thin film is achieved at the above gas pressure P2, there is a fee for stabilizing this Pzt, and the above Δ
It is desirable to stabilize P. Of the two upper parameters, it is relatively easy to control the high frequency power, but it is difficult to stably control the remaining metal evaporation rate.

しかしながら上記ゲッター作用における反応ガスと金属
との化学反応の関連性を利用することにより、上記ガス
圧の変化△PY安定KflAJ御することができる。
However, by utilizing the relationship between the chemical reaction between the reactive gas and the metal in the getter action, the change in the gas pressure ΔPY can be stabilized by controlling KflAJ.

第2図は本発明実施例による薄膜形成方法に用いられる
反応性RFブレーティング装alt示す概略図で藁1図
と同一部分は同一番号で示し1.17は真空ゲージ、 
18はDC変換部、19はDCyCダンプXJはPID
p4@@である。
FIG. 2 is a schematic diagram showing a reactive RF brating device used in the thin film forming method according to an embodiment of the present invention. The same parts as in FIG. 1 are designated by the same numbers, and 1.17 is a vacuum gauge;
18 is a DC converter, 19 is a DCyC dump XJ is a PID
It is p4@@.

以上の構成において、真空容器l内を約1×6 10丁orrまで排気した後、反応ガス導入口10から
反応ガスとして酸素ガスを導入し約8 X 10 To
rrのガス圧となるように保持する。
In the above configuration, after evacuating the inside of the vacuum container l to about 1 x 6 10 torr, oxygen gas is introduced as a reaction gas from the reaction gas inlet 10 to about 8 x 10 torr.
Maintain the gas pressure at rr.

次に高周波電界により真空容器1内にグロー放電を発生
させ、放電および上記ガス圧が定常に違した後、蒸発源
金@4とし℃例えば亜鉛を用いこれV蒸発源電源5によ
り加熱して蒸発させる。金属の蒸発にともないゲッター
作用により真空容器l内のガス圧は低下(真空度は目上
)し、金属蒸発速WIK対応してガス圧はある値をとる
Next, a glow discharge is generated in the vacuum container 1 by a high-frequency electric field, and after the discharge and the gas pressure have changed to a steady state, an evaporation source of gold @ 4° C., for example, zinc, is heated by the evaporation source power source 5 and evaporated. let As the metal evaporates, the gas pressure inside the vacuum container 1 decreases due to the getter action (the degree of vacuum is above normal), and the gas pressure assumes a certain value corresponding to the metal evaporation rate WIK.

ガス圧の値は真空ゲージ17により検出され、この検出
出力はDC変換518 KよってDCC電圧変換される
。次いでDC電圧はDCアンプ19によって増巾された
後PIDli1節器20に加えられ、予め設定ガス圧に
対応して設けられている基準電圧値と比較され、この基
準電圧値と等しくなるような出力がPIDIlliムI
から上記蒸発源電源5に加えられる。
The gas pressure value is detected by the vacuum gauge 17, and this detection output is converted to a DCC voltage by a DC converter 518K. Next, the DC voltage is amplified by the DC amplifier 19 and then applied to the PIDli1 moderator 20, where it is compared with a reference voltage value set in advance corresponding to the set gas pressure, and the output is adjusted to be equal to this reference voltage value. is PIDIllim I
is added to the evaporation source power supply 5 from above.

これに応じて蒸発源電源5は金属蒸発量t’s御し、上
記基準設定値と等しくなるような値のDC電圧に対応し
た蒸発量fKする。したがってガス圧の変化を検出する
ことKより金槁島宛速度は安定になるように制御される
In response to this, the evaporation source power supply 5 controls the metal evaporation amount t's, and the evaporation amount fK corresponds to the DC voltage having a value equal to the reference setting value. Therefore, by detecting the change in gas pressure, the speed to Kimpo Island is controlled to be stable.

〔実施例〕〔Example〕

上記反応ガスである酸素ガスと島宛源金#44である亜
鉛とが化合して酸化亜鉛(ZnO)が形成され、このZ
nO薄膜は基板3表a[IK付着される。このZnO薄
膜は組成が一定で再現性に優れたものが形成される。
Oxygen gas, which is the above-mentioned reaction gas, and zinc, which is Shimaen Gold #44, combine to form zinc oxide (ZnO).
The nO thin film is deposited on the substrate 3 surface a[IK]. This ZnO thin film has a constant composition and is formed with excellent reproducibility.

上記蒸発速度が変化した時はただちにガス圧の変化分Δ
Pとして検出され、この変化分ΔPが安定化するまで蒸
発速度は制−されることになる。
When the above evaporation rate changes, the change in gas pressure Δ
The evaporation rate will be controlled until this change ΔP is stabilized.

第3図は本発明によって得られた特性を示すもので、横
軸は蒸着速度■、縦軸はガス圧変化分ΔPを示している
。−図から明らかなように、両省はほぼ相関性を示して
おり、ガス圧変化分△Pを調整することKより金属蒸発
速度Vが制御できることな示している。なお特性図は基
板3として(Ill)rkJシリコン、基板温f:常温
、ZnO膜厚:4μm、蒸発源ボート:タンタル、RF
llカニ100W、DCバイアス:OV、の各構成条件
で得られた場合を示している。
FIG. 3 shows the characteristics obtained by the present invention, in which the horizontal axis shows the deposition rate (■) and the vertical axis shows the gas pressure change ΔP. - As is clear from the figure, the two values show almost a correlation, indicating that the metal evaporation rate V can be controlled more than K by adjusting the gas pressure change ΔP. In the characteristic diagram, substrate 3 is (Ill) rkJ silicon, substrate temperature f: room temperature, ZnO film thickness: 4 μm, evaporation source boat: tantalum, RF
It shows the case obtained under each configuration condition: 100W, DC bias: OV.

上記!I!施例により得られた薄膜′4r:X1jI同
折および走査型電子順微鏡によってその膜の結晶性およ
び構造を測定した結果、同一蒸着速度でもつ℃複数の薄
膜を形成した場合でもいずれも膜質は71%現性に優れ
ていることな確かめた。
the above! I! As a result of measuring the crystallinity and structure of the thin film '4r: It was confirmed that the method has a 71% accuracy.

以上述べて明らかなように本発明によれば、ゲッター作
用における反応ガスと金員との化学反応の関連性を利用
することKより、金属蒸発にともなう反応ガスの圧力の
変化を検出し、検出結果に応じて金II4蒸発量を餉−
させるように構成したものであるから、金−蒸発速f1
に安定に制御することができるようKなるので績質が均
一な薄膜t−^現性良く形成することができる。
As is clear from the above description, according to the present invention, by utilizing the relationship between the chemical reaction between the reactive gas and the metal in the getter action, changes in the pressure of the reactive gas due to metal evaporation can be detected. Adjust the amount of gold II4 evaporated according to the results.
Therefore, the gold-evaporation rate f1
Since the temperature can be stably controlled, a thin film with uniform quality and good development performance can be formed.

したがって本発明によれば従来におけるような水晶発一
式によるモニター法は不費となるので、検出し祷る膜厚
Kltl限はなくなりまた検出結果をたたちに蒸発速度
の制御に反映させることができるので応答性が数置され
る等の利点が得られる。
Therefore, according to the present invention, the conventional monitoring method using a set of quartz crystals becomes unnecessary, so there is no limit to the film thickness Kltl to be detected, and the detection results can be immediately reflected in the control of the evaporation rate. Therefore, advantages such as improved responsiveness can be obtained.

さらにl1bIIIIIな水晶モニタ一式装置は不蒙と
なることで経費m絨を計ることかできる。
Furthermore, the cost of a complete crystal monitor device, which is 11bIII, is unnecessary, and the cost can be reduced by 1,000 yen.

本文′5i!施例ではZnO薄膜を形成する場合を例に
挙げたが、その他にも反応カスと金員との化学反ゝ1 応′Ik利用して薄膜を形成する場合なら同様に適用す
ることができ、例えばTiO2、Ir+!03 、 A
J20m 。
Main text'5i! In the example, the case of forming a ZnO thin film was given as an example, but the method can be similarly applied to other cases where a thin film is formed using the chemical reaction between reaction residue and metal. For example, TiO2, Ir+! 03, A
J20m.

8iU2 、 TiN 、 AjN等を挙げることかで
きる。
Examples include 8iU2, TiN, AjN, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2因はそれぞれ従来および本宛E#実施
例を示す概略図、第3図は本発明により得られた特性図
である。 1・・・真空容器、3・・・基板、4・・・蒸発源全島
、5・・・蒸発源電源、17・・・真空ゲージ、18・
・・DC変換部、19・・・l)Cアンプ、加・・・P
li)調節器。 特許出願人  クラリオン株式会社 代坤人 弁坤士  永 1)武 三 部第1図 第2図 第3図 五L1取(戸/hr )  −
FIGS. 1 and 2 are schematic diagrams showing the conventional and E# embodiments, respectively, and FIG. 3 is a characteristic diagram obtained by the present invention. DESCRIPTION OF SYMBOLS 1... Vacuum container, 3... Substrate, 4... Evaporation source whole island, 5... Evaporation source power supply, 17... Vacuum gauge, 18...
...DC conversion section, 19...l) C amplifier, addition...P
li) Regulator. Patent Applicant: Clarion Co., Ltd. Representative: Yoshihiro Benkonshi 1) Takeshi Part 1 Figure 2 Figure 3 5L1 Tori (Door/hr) -

Claims (1)

【特許請求の範囲】 1、 真空容器内に導入された反応ガスの雰囲気中で金
属を蒸発させ、この金属蒸発にともなう上記反応カスの
圧力の変化を検出し、検出結果に応じて上記金属蒸発量
t111IIlさせるよ5に構成したことな特徴とする
薄膜形成方法。 λ 上記反応ガスの圧力変化量が一定となるように上記
金属蒸発量な制御することV%黴とする特許請求のwA
v!M第1項記載の薄膜形成方法。 3、 上記反応ガスの圧力変化の検出結果に応じてPI
DII[1IIKより上記金属蒸発量を制御することV
特徴とする特許請求の範@纂1項又は第2項記載の薄膜
形成方法。
[Claims] 1. Evaporating the metal in an atmosphere of a reaction gas introduced into a vacuum container, detecting a change in the pressure of the reaction scum accompanying the metal evaporation, and adjusting the metal evaporation according to the detection result. 5. A thin film forming method characterized in that the amount t111IIl is reduced. λ Controlling the amount of metal evaporation so that the amount of pressure change of the reaction gas is constant V% wA of the patent claim
v! The method for forming a thin film according to item M. 3. Depending on the detection result of the pressure change of the reaction gas, the PI
Controlling the amount of metal evaporation from DII[1IIKV
A method for forming a thin film according to claim 1 or 2.
JP4991982A 1982-03-26 1982-03-26 Formation of thin film Pending JPS58167767A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4991982A JPS58167767A (en) 1982-03-26 1982-03-26 Formation of thin film
GB8308253A GB2119970B (en) 1982-03-26 1983-03-25 Film deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4991982A JPS58167767A (en) 1982-03-26 1982-03-26 Formation of thin film

Publications (1)

Publication Number Publication Date
JPS58167767A true JPS58167767A (en) 1983-10-04

Family

ID=12844413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4991982A Pending JPS58167767A (en) 1982-03-26 1982-03-26 Formation of thin film

Country Status (2)

Country Link
JP (1) JPS58167767A (en)
GB (1) GB2119970B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103359A (en) * 1985-10-29 1987-05-13 Toyo Metaraijingu Kk Manufacture of transparent film of interrupting gas
JPS6329243A (en) * 1986-07-22 1988-02-06 Nok Corp Thin film temperature sensing element
JP2014504679A (en) * 2011-02-04 2014-02-24 ピヴォット アー.エス. Magnetron sputtering process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553853A (en) * 1984-02-27 1985-11-19 International Business Machines Corporation End point detector for a tin lead evaporator
JPS61242631A (en) * 1985-04-20 1986-10-28 Nippon Soken Inc Method and device for producing ultrafine particles of compound
GB9005321D0 (en) * 1990-03-09 1990-05-02 Matthews Allan Modulated structure composites produced by vapour disposition
CH686253A5 (en) * 1992-08-28 1996-02-15 Balzers Hochvakuum A method for controlling the degree of reaction and coating plant.
EP0656430B2 (en) * 1993-11-09 2000-01-12 Galileo Vacuum Systems S.R.L. Process and apparatus for the codeposition of metallic oxides on plastic films.
CN113930738B (en) * 2020-06-29 2023-09-12 宝山钢铁股份有限公司 Metal vapor modulation device for vacuum coating and modulation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210872A (en) * 1975-07-16 1977-01-27 Matsushita Electric Ind Co Ltd Apparatus for production of compound thin films

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2371009A1 (en) * 1976-11-15 1978-06-09 Commissariat Energie Atomique METHOD FOR CONTROL OF LAYER DEPOSIT BY REACTIVE SPRAYING AND IMPLEMENTATION DEVICE
DE2821119C2 (en) * 1978-05-13 1983-08-25 Leybold-Heraeus GmbH, 5000 Köln Method and arrangement for regulating the discharge process in a cathode sputtering system
DE2834813C2 (en) * 1978-08-09 1983-01-20 Leybold-Heraeus GmbH, 5000 Köln Method and device for regulating the evaporation rate of oxidizable substances during reactive vacuum evaporation
GB2084197B (en) * 1980-09-23 1984-02-22 Univ Delaware Deposition material by vacuum evaporation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210872A (en) * 1975-07-16 1977-01-27 Matsushita Electric Ind Co Ltd Apparatus for production of compound thin films

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103359A (en) * 1985-10-29 1987-05-13 Toyo Metaraijingu Kk Manufacture of transparent film of interrupting gas
JPS6329243A (en) * 1986-07-22 1988-02-06 Nok Corp Thin film temperature sensing element
JP2014504679A (en) * 2011-02-04 2014-02-24 ピヴォット アー.エス. Magnetron sputtering process

Also Published As

Publication number Publication date
GB2119970A (en) 1983-11-23
GB8308253D0 (en) 1983-05-05
GB2119970B (en) 1985-11-27

Similar Documents

Publication Publication Date Title
US6342134B1 (en) Method for producing piezoelectric films with rotating magnetron sputtering system
KR970003888B1 (en) Device and method for accurate etching and removal of thin film
JP3688725B2 (en) Method for forming a metal oxide layer, vacuum processing apparatus therefor and member coated with at least one metal oxide layer
US4526802A (en) Film deposition equipment
JPS58167767A (en) Formation of thin film
US4579639A (en) Method of sensing the amount of a thin film deposited during an ion plating process
US4129167A (en) Nb3 Ge superconductive films grown with nitrogen
US5170098A (en) Plasma processing method and apparatus for use in carrying out the same
US4151329A (en) Nb3 Ge Superconductive films
JPH06158316A (en) Method and coating device for controlling reactivity
US3491000A (en) Method of producing vanadium dioxide thin films
JP2998257B2 (en) Insulating film forming method
US3664943A (en) Method of producing tantalum nitride film resistors
JPH07180055A (en) Vacuum film forming device
JPH04136165A (en) Reactive gas introducing type film forming device
JPS6211492B2 (en)
JP2003516472A (en) How to adjust the sputtering process
JPH0878791A (en) Thin-film forming device
JPS5894703A (en) Method of producing transparent electrode and device for producing same
JP3937272B2 (en) Sputtering apparatus and sputtering method
JP2979832B2 (en) Manufacturing method of low stress metal film
JPS596376A (en) Sputtering apparatus
JPS61232620A (en) Etching method for semiconductor substrate
TW201522685A (en) Multi-sputtering cathodes stabilized process control method for reactive-sputtering deposition
JPH05230636A (en) Formation of metallic oxide thin film