JPS6329243A - Thin film temperature sensing element - Google Patents

Thin film temperature sensing element

Info

Publication number
JPS6329243A
JPS6329243A JP17253586A JP17253586A JPS6329243A JP S6329243 A JPS6329243 A JP S6329243A JP 17253586 A JP17253586 A JP 17253586A JP 17253586 A JP17253586 A JP 17253586A JP S6329243 A JPS6329243 A JP S6329243A
Authority
JP
Japan
Prior art keywords
thin film
torr
temperature
ion plating
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17253586A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuyuki
露木 宏
Kazuyuki Ozaki
和行 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP17253586A priority Critical patent/JPS6329243A/en
Publication of JPS6329243A publication Critical patent/JPS6329243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enable mass-production by forming a titanium nitride thin film on an insulating substrate by an ion plating method and forming a resistor part of metal titanium and gaseous nitrogen. CONSTITUTION:A crucible 4 which contains metallic titanium 3 is installed at a place opposite to the substrate holder 2 of an ion plating device 1 and the container is evacuated to <=5X10<-5>Torr, preferably, <=1X10<-5>Torr; and argon gas is admitted from a gas intake 5 up to 0.2X10<-3>-5X10<-3>Torr pressure, and an ion bombardment treatment is carried out in the presence of discharge by RF electric power to clean the surface of the insulating substrate 6 fitted to the substrate holder 2 with the surface set downward. Then, the container is evacuated temporarily to <=5X10<-5>Torr and then gaseous nitrogen or gaseous ammonia is admitted from the gas intake 5 to 0.2X10<-3>-5X10<-3>Torr pressure and ion plating is performed under this pressure to form a titanium nitride thin film on the surface of the insulating substrate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、薄膜感温素子に関する。更に詳しくは、耐環
境性に優れ、しかも中温度領域の温度を精度よく測定し
得る薄膜感温素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film temperature sensitive element. More specifically, the present invention relates to a thin film temperature-sensitive element that has excellent environmental resistance and is capable of accurately measuring temperatures in a medium temperature range.

(従来の技術) 現在使用されている温度センサとしては、ガラス製温度
針、バイメタルなどの熱膨張を利用するもの、白金抵抗
体、サーミスタなどの抵抗変化を利用するもの、熱電対
などの起電力を利用するもの、磁気特性を利用するもの
、電気容量を利用するもの、赤外線を検出するものなど
がある。
(Prior technology) Temperature sensors currently in use include those that utilize thermal expansion such as glass temperature needles and bimetals, those that utilize resistance changes such as platinum resistors and thermistors, and electromotive forces such as thermocouples. There are some that use magnetic properties, some that use electrical capacitance, and some that detect infrared rays.

これらの温度セン号のうち、抵抗変化によって温度を検
出する代表的な素子としては、サーミスタや金属抵抗体
が挙げられる。サーミスタはNTClPTC5CTRに
大別されるが、PTCおよびCTRは温度に対しリニア
に抵抗変化する領域が狭く、広範囲の温度測定に不向き
である。また、NTCは、中温度領域では比較的リニア
に抵抗変化するが、負の温度−抵抗係数を示すので、温
度が上昇すると抵抗が次第に小さくなり、遂には自己発
熱して暴走する可能性が大きい(W= Z V = V
2/R)。
Among these temperature sensors, typical elements that detect temperature by resistance change include thermistors and metal resistors. Thermistors are broadly classified into NTClPTC5CTR, but PTC and CTR have a narrow range in which resistance changes linearly with temperature, making them unsuitable for measuring temperature over a wide range. In addition, although NTC's resistance changes relatively linearly in the medium temperature range, it exhibits a negative temperature-resistance coefficient, so as the temperature rises, the resistance gradually decreases, and there is a high possibility that it will eventually self-heat and go out of control. (W = Z V = V
2/R).

これに対して、正の温度−抵抗係数を有するものとして
は金属抵抗体があり、これの代表的なものとしては白金
抵抗体が挙げられる。しかしながら、白金は高価である
ので、これに代わって廉価なニッケルや銅が一般的に使
用されるが、これらは精度の点で不十分であるばかりで
はなく、高温度領域では酸化されるという欠点がみられ
る。
On the other hand, there are metal resistors that have a positive temperature-resistance coefficient, and a typical example of this is a platinum resistor. However, since platinum is expensive, inexpensive nickel and copper are commonly used instead, but these have the drawback of not only being insufficient in precision but also oxidizing in high temperature ranges. can be seen.

(発明が解決しようとする問題点) 本発明者らは、従来のサーミスタや金属抵抗体にみられ
るこのような欠点を避け、中温度領域の温度を精度よく
抵抗変化から測定することができ、しかも耐環境性の点
でも優れている感温素子を求めて諸々の検討の結果、つ
ぎのような構造を有する薄膜感温素子がかかる課題を効
果的に解決せしめるものであることを見出した。
(Problems to be Solved by the Invention) The present inventors have discovered that it is possible to avoid such drawbacks found in conventional thermistors and metal resistors, and to accurately measure the temperature in the medium temperature range from resistance changes. Moreover, as a result of various studies in search of a temperature-sensitive element that is also excellent in terms of environmental resistance, it has been found that a thin-film temperature-sensitive element having the following structure can effectively solve this problem.

(問題点を解決するための手段) 従って、本発明は薄膜感温素子に係り、この薄膜感温素
子は、絶縁性基板上にイオンプレーティング法窒化チタ
ン薄膜を形成させてなる。
(Means for Solving the Problems) Therefore, the present invention relates to a thin film temperature sensing element, which is formed by forming a titanium nitride thin film by ion plating on an insulating substrate.

絶縁性基板としては、ガラス、石英、アルミナなどの板
状体あるいはステンレススチール、インコネル、モネル
、ハステロイなどの耐食性合金の板状体上に石英、アル
ミナなどの絶縁性薄膜を形成させたものなどが用いられ
る。
Examples of insulating substrates include plates of glass, quartz, alumina, etc., or plates of corrosion-resistant alloys such as stainless steel, Inconel, Monel, Hastelloy, etc., on which an insulating thin film of quartz, alumina, etc. is formed. used.

これらの絶縁性基板上へのイオンプレーティングによる
窒化チタン薄膜抵抗体の形成は、例えば第1図に示され
るような装置を用いて行われる。
Formation of titanium nitride thin film resistors on these insulating substrates by ion plating is performed using, for example, an apparatus as shown in FIG.

まず、イオンプレーティング装置1の基板ホルダ2に対
向する位置に金属チタン3を入れたルツボ4を設置し、
容器内を5 X 10  Torr以下、好ましくはI
 XIOTorr以下に排気したのち、アルゴンガスを
ガス導入口5から0.2X10 〜5 X 1O−3T
orrの圧力になるまで導入し、高周波電力的200〜
l000W、直流電圧約−200〜−1500V、基板
温度室温〜約400℃、処理時間任意の条件下で、後記
イオンプレーティングの場合と同様にRF主電力よる放
電下でイオンボンバード処理し、基板ホルダ2に下向き
に取り付けられた絶縁性基板60表面をクリーニングす
る。
First, a crucible 4 containing titanium metal 3 is installed at a position facing the substrate holder 2 of the ion plating apparatus 1,
The pressure inside the container is 5 x 10 Torr or less, preferably I
After exhausting to XIO Torr or less, argon gas is introduced from gas inlet 5 at 0.2X10 to 5X 1O-3T.
Introduce the pressure until the pressure reaches orr, and then apply high frequency power to
Ion bombardment is performed under 1000W, DC voltage approximately -200 to -1500V, substrate temperature from room temperature to approximately 400°C, and treatment time under arbitrary conditions under the discharge of RF main power as in the case of ion plating described later, and the substrate holder is 2, the surface of the insulating substrate 60 attached facing downward is cleaned.

その後−旦、5 X 10  Torr以下、好ましく
はIX 1O−5Torr以下に排気したのち、ガス導
入口5から窒素ガスまたはアンモニアガスを0.2X1
0 〜5 X 1O−3Torrの圧力になるまで導入
し、この圧力を維持しながら下記条件下でイオンプレー
ティングを行い、絶縁性基板表面に窒化チタン薄膜を形
成させる。
After that, after exhausting to 5 X 10 Torr or less, preferably IX 1O-5 Torr or less, nitrogen gas or ammonia gas is introduced from the gas inlet 5 at 0.2
A titanium nitride thin film is formed on the surface of the insulating substrate by introducing ion plating under the following conditions while maintaining this pressure.

到達圧力    5 X 10  Torr以下高周波
電力   500〜100OW 直流電力   −500〜−1500V基板温度   
 室温〜400℃ 薄膜形成速度  5〜80久/秒 N2 、NH35〜100 m l /分絶縁性基板6
上には、例えば第2図に示されるような形状の窒化チタ
ン薄膜16が形成されるが、そのためにはイオンプレー
ティング処理に付される絶縁性基板には必要なマスキン
グが行われる。
Ultimate pressure 5 x 10 Torr or less High frequency power 500~100OW DC power -500~-1500V Substrate temperature
Room temperature to 400°C Thin film formation rate 5 to 80 k/sec N2, NH35 to 100 ml/min Insulating substrate 6
For example, a titanium nitride thin film 16 having a shape as shown in FIG. 2 is formed thereon, but for this purpose, necessary masking is performed on the insulating substrate to be subjected to the ion plating process.

この絶縁性基板が取り付けられる基板ホルダ2は、アー
スされた直流電流7に接続されている。また、イオンプ
レーティングに際しては、RF電流8に接続されたRF
コイル9にRF主電力がけ、放電させながら電子ビーム
電源10に接続された電子ビーム11を金属チタンに発
射させることが行われ、形成された薄膜の膜厚は膜厚モ
ニタ12により測定される。なお、符号13は基板加熱
用のヒータであり、14はガス排気口であり、15はシ
ャッタであり、これは金属チタンを蒸発させるとき、最
初にシャッタを閉じて金属に付着している不純物を取り
除き、基板に付着させない働きをしている。
The substrate holder 2 to which this insulating substrate is attached is connected to a grounded DC current 7. Also, during ion plating, an RF
RF main power is applied to the coil 9 to emit an electron beam 11 connected to an electron beam power source 10 onto metal titanium while discharging the coil 9, and the thickness of the formed thin film is measured by a film thickness monitor 12. The reference numeral 13 is a heater for heating the substrate, 14 is a gas exhaust port, and 15 is a shutter. When evaporating titanium metal, the shutter is first closed to remove impurities attached to the metal. It removes it and prevents it from adhering to the board.

イオンプレーティング法によって形成される窒化チタン
薄膜は、共にRF主電力よりイオン化される金属チタン
と窒素ガスまたはアンモニアガスとから容易に製造でき
るばかりではなく、得られるN膜抵抗体は本発明の目的
としている温度特性を得るのに必要な高結晶性膜であり
、しかもそれの絶縁性基板に対する密着性も良好である
。なお、この密着性は、直流電圧により絶縁性基板側を
陰極にすることにより高められる。
The titanium nitride thin film formed by the ion plating method can not only be easily manufactured from metallic titanium and nitrogen gas or ammonia gas, both of which are ionized by RF main power, but also the resulting N film resistor can be easily manufactured by the object of the present invention. It is a highly crystalline film necessary to obtain the desired temperature characteristics, and also has good adhesion to an insulating substrate. Note that this adhesion can be enhanced by using a DC voltage to make the insulating substrate side a cathode.

金属チタンと反応させる窒素源ガスとしては、窒素ガス
あるいはアンモニアガスが用いられるが、アンモニアガ
スを用いた場合は窒化チタン薄膜中に水素が入り込み、
それが薄膜感温素子作製後に抜けてピンホールが生じる
こともあるので、好ましくは窒素ガスが用いられる。
Nitrogen gas or ammonia gas is used as the nitrogen source gas to react with metallic titanium, but when ammonia gas is used, hydrogen enters the titanium nitride thin film.
Nitrogen gas is preferably used because it may escape after the thin film temperature-sensitive element is fabricated, resulting in pinholes.

ただし、窒素ガスが用いられた場合でも、イオンプレー
ティング法が採用される限り、イオンプレーティング気
相中にはTiN 、 Ti02 、TiXTic、グラ
ファイトCなどの混在が僅かな量であっても避けられな
い。例えば、Ti(12は使用ガス中に不純物として含
まれる02の量にしたがって多く生成し、これは半導体
的性質を有しており、負の温度−抵抗係数を有している
However, even if nitrogen gas is used, as long as the ion plating method is adopted, the presence of TiN, Ti02, TiXTic, graphite C, etc. in the ion plating gas phase, even in small amounts, can be avoided. do not have. For example, Ti(12) is produced in an amount corresponding to the amount of 02 contained as an impurity in the gas used, has semiconductor properties, and has a negative temperature-resistance coefficient.

このような観点から、形成される窒化チタン薄膜の構成
が元素比で、チタン1に対して窒素が0゜7〜1、好ま
しくは0.8〜1、酸素が0.7〜0、好ましくは0.
4〜0、炭素が0.1〜0であるように窒素源ガスが精
製して用いられる。なお、この場合のチタンと窒素との
元素比あるいは膜厚などによって、初期抵抗を任意に変
えることができる。
From this point of view, the composition of the titanium nitride thin film to be formed has an elemental ratio of nitrogen to titanium of 0.7 to 1, preferably 0.8 to 1, and oxygen of 0.7 to 0, preferably 0.
The nitrogen source gas is purified and used so that the carbon content is 4-0 and the carbon content is 0.1-0. In this case, the initial resistance can be arbitrarily changed depending on the element ratio of titanium and nitrogen or the film thickness.

(発明の効果) 本発明に係る薄膜感温素子は、つぎのような特徴を有し
ている。
(Effects of the Invention) The thin film temperature-sensitive element according to the present invention has the following characteristics.

(1)抵抗体部分が金属チタンと窒素ガスとから容易に
形成されるため、量産化が可能である。
(1) Mass production is possible because the resistor portion is easily formed from titanium metal and nitrogen gas.

(2)従来のサーミスタや金属抵抗体と比較して、耐食
性および密着性に優れ、耐環境性も良好である。
(2) Compared to conventional thermistors and metal resistors, it has excellent corrosion resistance and adhesion, and has good environmental resistance.

(3)温度−抵抗係数が正でしかもリニアであるため、
中湿度領域を中心として一40〜+400℃の広い範囲
での温度測定が可能である。
(3) Since the temperature-resistance coefficient is positive and linear,
Temperature measurement is possible over a wide range of -40°C to +400°C, mainly in the medium humidity region.

(4)回路上も簡単で出力の検出が容易である。(4) The circuit is simple and output detection is easy.

(実施例) つぎに、実施例について本発明を説明する。(Example) Next, the present invention will be explained with reference to examples.

実施例1 ガラス板(26X 48 X 2 mu)上にステンレ
ススチール板製マスクを密着させ、第2図に示されるよ
うな形状の窒化チタン薄膜(マスク開口部の寸法;薄膜
抵抗体の幅が1.2flで、抵抗体1間隔が1゜2nの
ものを24X 32.4mmの寸法内に形成させた)を
、第1図に示される態様に従って形成させた。
Example 1 A stainless steel plate mask was brought into close contact with a glass plate (26 x 48 x 2 mu), and a titanium nitride thin film having the shape shown in Fig. 2 (dimensions of the mask opening; width of the thin film resistor was 1. .2 fl, and the distance between the resistors was 1°2n, and the resistor elements were formed within the dimensions of 24×32.4 mm) according to the embodiment shown in FIG.

まず、容器内をI X 10  Torrに排気した後
、IX 1O−3Torrのアルゴンガスを導入し、基
板ホルダに一500Vの電圧をかけ、500WのRF電
力により、イオンボンバード処理を10分間行った。次
いで、l X 10  Torrに排気した後、基板ホ
ルダを250℃に加熱し、24m11分の流量で窒素ガ
スを導入し、500WのRF電力をかけ、放電させなが
ら、電子ビームをルツボ中の金属チタンに発射してチタ
ンを蒸発させ、薄膜形成速度24A/秒、イオンプレー
ティング時の圧力3 X 1O−4Torr、時間約1
2分間の条件下でイオンプレーティングを行い、膜厚1
.7μmの窒化チタン薄膜抵抗体を形成させた。
First, after evacuating the inside of the container to IX 10 Torr, argon gas of IX 10-3 Torr was introduced, a voltage of -500 V was applied to the substrate holder, and ion bombardment was performed for 10 minutes with RF power of 500 W. Next, after evacuation to l x 10 Torr, the substrate holder was heated to 250 °C, nitrogen gas was introduced at a flow rate of 24 m11 min, and RF power of 500 W was applied, while discharging the electron beam to the metal titanium in the crucible. The titanium was evaporated by firing at a thin film formation rate of 24 A/sec, the pressure during ion plating was 3 x 10-4 Torr, and the time was about 1.
Ion plating was performed for 2 minutes, and the film thickness was 1.
.. A 7 μm titanium nitride thin film resistor was formed.

これに、第2図に図示された如く、リード線を銀ペース
ト付けし、その上に湿度などの影響を避けるためにシリ
コーンシール材を一面に塗布し、測定試料とした。この
測定試料を低高温恒温槽に入れ、温度を一10〜+10
0″Cの間で変化させて抵抗値を測定した。
As shown in FIG. 2, a lead wire was attached with silver paste, and a silicone sealing material was applied over the lead wire to avoid the influence of humidity, etc., and the resultant was used as a measurement sample. Place this measurement sample in a low/high temperature constant temperature bath and adjust the temperature to -10 to +10
The resistance value was measured by varying the temperature between 0''C.

実施例2 実施例1において、薄膜抵抗体部分の長さを約2倍とし
た薄膜感温素子(マスク開口部の寸法;薄膜抵抗体の幅
が0.8uで、抵抗体7間隔が0.8鶴のものを、20
X 21.2wmの寸法内に形成させた)を形成させ、
抵抗値を測定した。
Example 2 In Example 1, a thin film temperature sensing element was constructed in which the length of the thin film resistor portion was approximately twice as long (dimensions of the mask opening; width of the thin film resistor was 0.8 u, and the spacing between the resistors 7 was 0.8 u). 8 cranes, 20
x 21.2wm) was formed,
The resistance value was measured.

実施例3 実施例1において、基板ホルダへの電圧を一1000V
に、窒素流量を26m1!/分に、薄膜形成速度を23
 X /秒に、またイオンプレーティング時の圧力を4
.OX 10= Torrにそれぞれ変更して薄膜感温
素子を形成させ、抵抗値を測定した。
Example 3 In Example 1, the voltage to the substrate holder was set to -1000V.
The nitrogen flow rate is 26ml! /min, thin film formation rate 23
x/sec and the pressure during ion plating to 4
.. A thin film temperature-sensitive element was formed by changing OX 10 = Torr, and the resistance value was measured.

以上の各実施例での測定結果は、第3図のグラフに示さ
れる。この結果から、温度変化に対する抵抗値の変化は
リニアであり、また温度−抵抗係数は正で、760pp
m/ ’cの値を示していることが分る。
The measurement results in each of the above examples are shown in the graph of FIG. From this result, the change in resistance value with respect to temperature change is linear, and the temperature-resistance coefficient is positive, 760pp.
It can be seen that it shows the value of m/'c.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、イオンプレーティング装置の概略図である。 第2図は、本発明に係る薄膜感温素子の一態様を示すそ
の平面図である。また、第3図は、実施例1〜3でそれ
ぞれ得られた温度と抵抗との関係を示すグラフである。 (符号の説明) 116.イオンプレーティング装置 290.基板ホルダ 308.金属チタン 409.ルツボ 610.絶縁性基板 11、、、電子ビーム
FIG. 1 is a schematic diagram of an ion plating apparatus. FIG. 2 is a plan view showing one embodiment of the thin film temperature-sensitive element according to the present invention. Moreover, FIG. 3 is a graph showing the relationship between temperature and resistance obtained in Examples 1 to 3, respectively. (Explanation of symbols) 116. Ion plating device 290. Substrate holder 308. Metal titanium 409. Crucible 610. Insulating substrate 11, electron beam

Claims (2)

【特許請求の範囲】[Claims] 1. 絶縁性基板上にイオンプレーティング法窒化チタ
ン薄膜を形成させてなる薄膜感温素子。
1. A thin film temperature-sensitive element made by forming a titanium nitride thin film using ion plating on an insulating substrate.
2. 金属チタンと窒素ガスとから窒化チタンが形成さ
れた特許請求の範囲第1項記載の薄膜感温素子。
2. 2. The thin film temperature-sensitive element according to claim 1, wherein titanium nitride is formed from metallic titanium and nitrogen gas.
JP17253586A 1986-07-22 1986-07-22 Thin film temperature sensing element Pending JPS6329243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17253586A JPS6329243A (en) 1986-07-22 1986-07-22 Thin film temperature sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17253586A JPS6329243A (en) 1986-07-22 1986-07-22 Thin film temperature sensing element

Publications (1)

Publication Number Publication Date
JPS6329243A true JPS6329243A (en) 1988-02-06

Family

ID=15943701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17253586A Pending JPS6329243A (en) 1986-07-22 1986-07-22 Thin film temperature sensing element

Country Status (1)

Country Link
JP (1) JPS6329243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150889A (en) * 2007-12-20 2009-07-09 General Electric Co <Ge> Gas sensor and method of making

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552936A (en) * 1978-10-13 1980-04-17 Matsushita Electric Ind Co Ltd Humidity detector
JPS5768001A (en) * 1980-10-16 1982-04-26 Osaka Prefecture Titanium nitride moisture sensor
JPS58167767A (en) * 1982-03-26 1983-10-04 Clarion Co Ltd Formation of thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552936A (en) * 1978-10-13 1980-04-17 Matsushita Electric Ind Co Ltd Humidity detector
JPS5768001A (en) * 1980-10-16 1982-04-26 Osaka Prefecture Titanium nitride moisture sensor
JPS58167767A (en) * 1982-03-26 1983-10-04 Clarion Co Ltd Formation of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150889A (en) * 2007-12-20 2009-07-09 General Electric Co <Ge> Gas sensor and method of making

Similar Documents

Publication Publication Date Title
US6014073A (en) Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element
US4276535A (en) Thermistor
JPS6351501B2 (en)
US3203830A (en) Electrical resistor
Siddall et al. Vacuum-deposited metal film resistors
JPS61191954A (en) Metal oxide thin film gas sensor element
JPS6329243A (en) Thin film temperature sensing element
JPS63211702A (en) Temperature sensor
JP5725318B2 (en) pH sensor and pH measuring method
JP2996922B2 (en) Tin oxide thin film sensor for sensing hydrogen and method of manufacturing the same
Nagai et al. SiC thin-film thermistor
KR100475590B1 (en) Thin-film temperature sensor using chalcogenide glass semiconductor and method for manufacturing the same
US3315208A (en) Nitrogen stabilized titanium thin film resistor and method of making same
Kumar Hydrogen sulfide gas sensing properties of SnO2 thin films prepared by thermal evaporation technique
Hossein-Babaei et al. Thickness dependence of sensitivity in thin film tin oxide gas sensors deposited by vapor pyrolysis
US6480093B1 (en) Composite film resistors and method of making the same
JP2646246B2 (en) Method for producing gas-sensitive membrane element
JP2753654B2 (en) Moisture sensitive element
KR100629651B1 (en) a platinum electrode resistor with CrOx layer and manufacturing method thereof
SU1741041A1 (en) Conductometric gas analyzer sensitive element
JP2622144B2 (en) Method for producing gas-sensitive thin film
HOSSEIN et al. Thickness dependence of sensitivity in thin film tin oxide gas sensors deposited by vapor pyrolysis
JPH07198648A (en) Gas detecting film and manufacture thereof
JPH06213853A (en) Manufacture of gas detecting element
JP2001110606A (en) Resistance bulb for thermometer unaffected by magnetic field under very low temperature