JP2979832B2 - Manufacturing method of low stress metal film - Google Patents

Manufacturing method of low stress metal film

Info

Publication number
JP2979832B2
JP2979832B2 JP4086829A JP8682992A JP2979832B2 JP 2979832 B2 JP2979832 B2 JP 2979832B2 JP 4086829 A JP4086829 A JP 4086829A JP 8682992 A JP8682992 A JP 8682992A JP 2979832 B2 JP2979832 B2 JP 2979832B2
Authority
JP
Japan
Prior art keywords
film
metal film
stress
manufacturing
internal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4086829A
Other languages
Japanese (ja)
Other versions
JPH05311414A (en
Inventor
拓也 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4086829A priority Critical patent/JP2979832B2/en
Publication of JPH05311414A publication Critical patent/JPH05311414A/en
Application granted granted Critical
Publication of JP2979832B2 publication Critical patent/JP2979832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は内部応力が小さく安定な
金属膜の作製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a stable metal film having a small internal stress.

【0002】[0002]

【従来の技術】従来、金属膜は化学気相成長法、スパッ
タリング法及び真空蒸着法によって成膜されており、特
に低応力の金属膜を形成する場合には、スパッタガス圧
を最適化したスパッタリング法が用いられている。
2. Description of the Related Art Conventionally, a metal film has been formed by a chemical vapor deposition method, a sputtering method, and a vacuum evaporation method. Method is used.

【0003】[0003]

【発明が解決しようとする課題】例えばX線リソグラフ
ィーに用いられるX線マスクの作製においては、内部応
力がおよそ1×107 N/m2 以下の低応力のX線吸収
体が必要不可欠である。しかしTa膜及びW膜の内部応
力は成膜後、大気中で圧縮応力側へ変化し、安定化する
のに数ヵ月もの長い期間が必要になり、製造直後に所望
の寸法精度を確保することができなかった。
For example, in the production of an X-ray mask used for X-ray lithography, a low-stress X-ray absorber having an internal stress of about 1 × 10 7 N / m 2 or less is indispensable. . However, the internal stress of the Ta film and the W film changes to the compressive stress side in the atmosphere after the film is formed, and it takes a long period of several months to be stabilized. Could not.

【0004】[0004]

【課題を解決するための手段】本発明は、スパッタリン
グ法により所定の引張り応力を有する金属膜を成膜後直
ちに酸素中でアニールし、短時間で内部応力の安定化を
図るものである。
SUMMARY OF THE INVENTION The present invention aims to stabilize internal stress in a short time by annealing a metal film having a predetermined tensile stress by sputtering in oxygen immediately after the formation.

【0005】[0005]

【作用】Ta及びW等の金属膜の内部応力の変化は膜中
に酸素が拡散することに依って起こる。酸素雰囲気中で
アニールすると酸素の拡散が加速され、短時間で安定な
吸収体を得ることができる。また内部応力の変化量は成
膜条件によって異なるが、内部応力が小さい領域ではほ
ぼ一定の値となる。そこで、アニール後の内部応力がゼ
ロあるいはゼロに近くなるように予め所定の引張り応力
を有する膜を形成しておくことにより、低応力で安定な
金属膜を製造することが可能となる。
The change in the internal stress of a metal film such as Ta and W occurs due to the diffusion of oxygen into the film. When annealing is performed in an oxygen atmosphere, diffusion of oxygen is accelerated, and a stable absorber can be obtained in a short time. Further, the amount of change in the internal stress varies depending on the film forming conditions, but is substantially constant in a region where the internal stress is small. Therefore, by forming a film having a predetermined tensile stress in advance so that the internal stress after annealing becomes zero or close to zero, a low stress and stable metal film can be manufactured.

【0006】[0006]

【実施例】以下に本発明の実施例としてスパッタリング
法による方法を説明する。スパッタリング法で例えばT
a膜を成膜すると、その内部応力はArガス圧によって
図1の様に変化する。内部応力がゼロになるのは3Pa
付近と6Pa以上の2領域であるが、6Pa以上では低
密度の膜になるためX線マスクの構成要素であるX線吸
収体パターン等の用途には適さない。高密度で低応力な
Ta膜を得るためには3Pa付近でスパッタガス圧及び
その他のパラメーターを最適化して成膜しなければなら
ない。図2はスパッタガス圧に対する内部応力の変化量
を示している。スパッタガスとしてはArを用い、基板
温度は室温とし、RFパワーは1kwとした。3.5P
a以下ではほぼ一定の値(3×107 N/m2 )圧縮応
力側へ変化する。そこでスパッタガス圧を2.7Paに
設定して3×107 N/m2 の引張り応力を持つTa膜
を成膜し、100℃の酸素雰囲気中で1時間アニールす
ると内部応力がゼロで安定なTaが得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method by a sputtering method will be described below as an embodiment of the present invention. For example, T
When the a film is formed, the internal stress changes as shown in FIG. 1 depending on the Ar gas pressure. The internal stress becomes zero at 3 Pa
There are two regions, namely, the vicinity and 6 Pa or more. However, if the pressure is 6 Pa or more, the film becomes a low-density film. In order to obtain a high-density, low-stress Ta film, it is necessary to optimize the sputtering gas pressure and other parameters at around 3 Pa to form a film. FIG. 2 shows the variation of the internal stress with respect to the sputtering gas pressure. Ar was used as a sputtering gas, the substrate temperature was room temperature, and the RF power was 1 kW. 3.5P
Below a, it changes to a substantially constant value (3 × 10 7 N / m 2 ) to the compressive stress side. Therefore, a Ta film having a tensile stress of 3 × 10 7 N / m 2 is formed by setting the sputtering gas pressure to 2.7 Pa, and annealing is performed for 1 hour in an oxygen atmosphere at 100 ° C., whereby the internal stress is zero and stable. Ta is obtained.

【0007】[0007]

【発明の効果】以上のように本方法を用いると、低応力
で安定な金属膜を短時間で作製することができる。
As described above, by using this method, a stable metal film with low stress can be formed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スパッタリング法によるスパッタガス(Ar)
の圧力とTa膜の応力の関係を示す図である。
FIG. 1 shows a sputtering gas (Ar) by a sputtering method.
FIG. 4 is a diagram showing a relationship between the pressure of the Ta film and the stress of the Ta film.

【図2】成膜時のスパッタガス(Ar)の圧力とTa膜
の内部応力の変化量を示す図である。
FIG. 2 is a diagram showing the pressure of a sputter gas (Ar) and the amount of change in the internal stress of a Ta film during film formation.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スパッタリング法により所定の引張り応
力を有する金属膜を成膜し、酸素雰囲気中でアニールし
て低応力とすることを特徴とする低応力金属膜の作製方
法。
1. A method for producing a low-stress metal film, comprising: forming a metal film having a predetermined tensile stress by a sputtering method; and annealing the film in an oxygen atmosphere to reduce the stress.
JP4086829A 1992-04-08 1992-04-08 Manufacturing method of low stress metal film Expired - Lifetime JP2979832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4086829A JP2979832B2 (en) 1992-04-08 1992-04-08 Manufacturing method of low stress metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4086829A JP2979832B2 (en) 1992-04-08 1992-04-08 Manufacturing method of low stress metal film

Publications (2)

Publication Number Publication Date
JPH05311414A JPH05311414A (en) 1993-11-22
JP2979832B2 true JP2979832B2 (en) 1999-11-15

Family

ID=13897707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4086829A Expired - Lifetime JP2979832B2 (en) 1992-04-08 1992-04-08 Manufacturing method of low stress metal film

Country Status (1)

Country Link
JP (1) JP2979832B2 (en)

Also Published As

Publication number Publication date
JPH05311414A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
KR890004447A (en) Superconducting Materials and Manufacturing Method of Superconducting Thin Film
JPS6376325A (en) X-ray absorber film of mask for x-ray lithography
US4154632A (en) Method of diffusing aluminum into silicon substrate for manufacturing semiconductor device
JP2979832B2 (en) Manufacturing method of low stress metal film
JPH0797567B2 (en) Method of forming thin film
JPH02163363A (en) Production of transparent conductive film
US3437577A (en) Method of fabricating uniform rare earth iron garnet thin films by sputtering
JPS5627136A (en) Manufacture of photorecording thin film
JPS5947845B2 (en) Transparent conductive film manufacturing method
JPS63260138A (en) Formation of silicon oxide film
JPH0261089B2 (en)
KR100214840B1 (en) Method for forming polysilicon layer of semiconductor device
JPS63193520A (en) Manufacture of polycrystalline silicon thin film
JPH0641729A (en) Material for vapor deposition
JPH0343988A (en) Manufacture of thin-type high-temperature heater
JPS61104070A (en) Formation of thin film
JPS5814329A (en) Production of magnetic recording medium
JPS5814503B2 (en) Nisanca vanadium
JPH03295896A (en) Production of oxide superconductor thin film by molecular beam epitaxy
JPS61190067A (en) Production of thin film
JPS5837976B2 (en) Impurity diffusion method
JPS63283179A (en) Manufacture of jusephson-junction device
JPS6390127A (en) Formation of ohmic electrode
JPS58103131A (en) Manufacture of compound semiconductor device
JPH02133303A (en) Production of oxide superconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817