JPH0343988A - Manufacture of thin-type high-temperature heater - Google Patents

Manufacture of thin-type high-temperature heater

Info

Publication number
JPH0343988A
JPH0343988A JP1181034A JP18103489A JPH0343988A JP H0343988 A JPH0343988 A JP H0343988A JP 1181034 A JP1181034 A JP 1181034A JP 18103489 A JP18103489 A JP 18103489A JP H0343988 A JPH0343988 A JP H0343988A
Authority
JP
Japan
Prior art keywords
film
thin
heater
resistor
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1181034A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kusakabe
嘉彦 草壁
Noriko Morita
森田 訓子
Susumu Hoshinouchi
星之内 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1181034A priority Critical patent/JPH0343988A/en
Priority to DE69016235T priority patent/DE69016235T2/en
Priority to EP90302938A priority patent/EP0389228B1/en
Priority to US07/495,127 priority patent/US5118983A/en
Publication of JPH0343988A publication Critical patent/JPH0343988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To reduce a resistance change at the time of the use for improving reliability by providing a thin-film resistor film of a prescribed heater pattern on an insulating substrate, whose surface is opposing to this thin-film resistor film is formed of a non-oxide insulating material protective film, while coating the surface of the thin-film resistor film and baking the thin-film resistor film. CONSTITUTION:After uniformly forming a non-oxide insulating material protective film 2 having the desired thickness on a substrate 1, a thin-film resistor film 3 of the desired thickness is uniformly formed. Being etched in a desired pattern shape, the thin-film resistor film 3 is baked in a hydrogen-reduced atmosphere or in an argon atmosphere. Here, the substrate 1 is coated with the non-oxide insulating material protective film 2. Thereby, the surface accuracy of a resistor to be formed is improved and reliability of a heater is improved while promoting recrystallization of the resistor film 3 before using as a heater by baking to reduce a change of resistance during the use.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、高温加熱用小型ヒータ又は電子銃用ヒータ
のように使用温度が1000℃程度の高温用ヒータの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a high-temperature heater whose operating temperature is about 1000° C., such as a small-sized heater for high-temperature heating or a heater for an electron gun.

[従来の技術] 従来、甲板型ヒータは例えば、特開昭55−24646
号公報に記載されているように、スクリーン印刷等のい
わゆる厚膜回路形成技術を用いて製造されていた。第4
図に従来の薄型高温ヒータを利用した電子管カソード装
置の断面図を示す。図において、(1,0)はセラミッ
クス基板、(11,)は発熱体、(12)は絶縁層、(
13)はベースメタル層、(14)はカソードリード層
、(15)はカソード材層である。まず、セラミックス
基板(10)を構成する原材料膜を用意し、ロール間を
通す押し出し法、あるいはキャスティング法の印刷技術
によってシート」二に所望のパターン形状の発熱体(1
Mを形成する。この発熱体(11)J?Qはヒータ材に
焼成助剤を添加したペーストを基板上にスクリーン印刷
して形成される。スクリーン印刷後、高温(1000〜
2000℃)で焼成処理され、平板型ヒータが形成され
る。
[Prior Art] Conventionally, a deck type heater is disclosed in, for example, Japanese Patent Application Laid-Open No. 55-24646.
As described in the publication, the circuit was manufactured using a so-called thick film circuit forming technique such as screen printing. Fourth
The figure shows a cross-sectional view of an electron tube cathode device using a conventional thin high-temperature heater. In the figure, (1,0) is a ceramic substrate, (11,) is a heating element, (12) is an insulating layer, (
13) is a base metal layer, (14) is a cathode lead layer, and (15) is a cathode material layer. First, a raw material film constituting the ceramic substrate (10) is prepared, and a heating element (1
Form M. This heating element (11) J? Q is formed by screen printing a paste made by adding a firing aid to a heater material on a substrate. After screen printing, high temperature (1000 ~
2000° C.) to form a flat plate heater.

この方法では、製造時に高温処理過程が入るのでヒータ
をこの処理温度以下で使用する場合、抵抗の経時変化が
小さい等のヒータとしての高温長期安定性が期待されて
いた。しかし、スクリーン印刷によって得られるパター
ン精度は低く、シかも発熱体の厚さ制御(薄型化)が困
難なためJll電電力人きく、シかも複数のヒータ間で
は抵抗のばらつきが大きかった。その為、精度良くパタ
ーンの形成ができる手法として、P V D (Phy
sical Vapour Deposjtion)や
CVD (Chemical Vapour Depo
sition)による成膜法の開発が進められていた。
In this method, a high-temperature treatment process is involved during manufacturing, so when the heater is used at a temperature below this treatment temperature, high-temperature long-term stability as a heater, such as a small change in resistance over time, was expected. However, the pattern accuracy obtained by screen printing was low, and it was difficult to control the thickness of the heating element (reducing its thickness), resulting in large variations in resistance among multiple heaters. Therefore, P V D (Physical
Chemical Vapor Deposition) and CVD (Chemical Vapor Deposition)
The development of a film-forming method using the same technology was underway.

第5図(a)〜(b)は従来の薄膜形成法による平板薄
型ヒータの製造方法を順に示す工程図である6例えばA
l2O3等の平滑なセラミックス基板(10)上にヒー
タ用の抵抗体膜(発熱体) (11)を−様に形成しく
第5図(b))次にエツチングにより所望のヒータパタ
ーンを形成しく第5図(C))これにリード線(4)を
接合する(第5図(d))という手法で平板薄型ヒータ
を実現していた。
FIGS. 5(a) and 5(b) are process diagrams sequentially showing a method for manufacturing a flat plate thin heater using a conventional thin film forming method.
A resistor film (heating element) (11) for a heater is formed in a negative shape on a smooth ceramic substrate (10) such as l2O3 (Fig. 5(b)).Next, a desired heater pattern is formed by etching. A flat thin heater was realized by joining a lead wire (4) to this (FIG. 5(C)) (FIG. 5(d)).

[発明が解決しようとする課題] 以上のような成膜法による平板薄型ヒータはリード線に
電圧を印加しヒータとして使用している間に抵抗の変化
が生じる。これは主として抵抗体(発熱体)が薄膜であ
ることに起因する。第6図は従来の平板薄型ヒータの抵
抗値の経時変化を示す特性図であり、図において縦軸は
抵抗値、横軸は使用時間である0図に示される様に、初
期に抵抗が低下するのは、薄膜の再結晶化が進み、膜中
の結晶粒がfil大化するためである1例えば抵抗体(
発熱体)がW(タングステン)でありこれを1000℃
で使用すると、1000℃はWの再結晶温度に相当する
ため、再結晶化は進む0次に時間経過に従って抵抗が増
加するのは使用中の雰囲気により膜中に不純物が混入し
たり、酸化することに起因する。そのためヒータとして
は不安定でしかも長期信頼性に欠けるものであった。
[Problems to be Solved by the Invention] A flat plate thin heater formed by the above-described film formation method undergoes a change in resistance while being used as a heater by applying a voltage to the lead wire. This is mainly due to the fact that the resistor (heating element) is a thin film. Figure 6 is a characteristic diagram showing the change in resistance value of a conventional flat plate thin heater over time. In the figure, the vertical axis is the resistance value and the horizontal axis is the operating time. This is because recrystallization of the thin film progresses and the crystal grains in the film increase in size.1 For example, in a resistor (
The heating element) is W (tungsten), which is heated to 1000°C.
When used at 1000℃, which corresponds to the recrystallization temperature of W, recrystallization progresses.The reason why the resistance increases as time passes is due to impurities being mixed into the film or being oxidized due to the atmosphere during use. This is due to this. Therefore, the heater was unstable and lacked long-term reliability.

又、例えばAl2O3等の酸化物系の基板は、単結晶状
態で入手し易く、シかも表面を鏡面仕上げすることが可
能なため、薄膜形成においては、SiC,AIN等の焼
結基板よりも、パターン精度が良いという利点があった
が、使用後の従来の平板薄型ヒータの端部の断面を示す
添付参考写真のように、Al2O3等の酸化物系の基板
を用いたヒータは使用時に酸素に起因した熱化学的、ま
たは電気化学的な作用によって抵抗配線端部下の基板が
選択的に損傷を受け、この損傷がヒータの長寿命化を妨
げる原因となっていた。
In addition, oxide-based substrates such as Al2O3 are easily available in a single-crystal state, and their surfaces can be mirror-finished, so they are more suitable for thin film formation than sintered substrates such as SiC and AIN. Although it had the advantage of good pattern accuracy, heaters using oxide-based substrates such as Al2O3 are exposed to oxygen during use, as shown in the attached reference photo showing the cross section of the end of a conventional flat thin heater after use. The resulting thermochemical or electrochemical action selectively damages the substrate beneath the ends of the resistor wiring, and this damage has been a cause of impeding the longevity of the heater.

この発明は、かかる課題を解決するためになされたもの
で、使用時の抵抗変化の少ない、信頼性の高い薄膜高温
ヒータの製造方法を提供することを目的としている。
The present invention was made to solve this problem, and an object of the present invention is to provide a method for manufacturing a highly reliable thin film high temperature heater with little resistance change during use.

[課題を解決するための手段] この発明の薄型高温ヒータの製造方法は所定ヒータパタ
ーンの薄膜抵抗体膜を、少なくともこの薄膜抵抗体膜に
対向する面が非酸化物系絶縁材料保護膜で形成された絶
縁基板に設ける工程、上記薄膜抵抗体膜の表面を非酸化
物系絶縁材料保護膜で覆う工程、および薄膜抵抗体膜を
焼成する工程を施すものである。
[Means for Solving the Problems] A method for manufacturing a thin high-temperature heater of the present invention includes forming a thin film resistor film of a predetermined heater pattern with at least a surface facing the thin film resistor film made of a non-oxide insulating material protective film. The method includes a step of providing the thin film resistor film on an insulated substrate, a step of covering the surface of the thin film resistor film with a non-oxide insulating material protective film, and a step of firing the thin film resistor film.

[作用コ この発明においては薄膜抵抗体膜の表面を非酸化物系絶
縁材料保護膜で覆うことにより、使用雰囲気による抵抗
体の酸化を防止し使用中の抵抗の変化を抑えると共に、
使用雰囲気による劣化が少ないため、パターン形状に依
存せず面内温度分布が少なく信頼性が高くなる。又、薄
膜抵抗体膜に対向する絶縁基板面が、非酸化物系絶縁材
料保護膜で形成されているため、使用中の基板と薄膜抵
抗体膜の化学作用による基板の損傷を防止し使用中のヒ
ータ機能の低下を抑制するように作用する。さらに、薄
膜抵抗体膜を焼成することにより、ヒータとして使用す
る前に抵抗体膜の再結晶化を促し、使用中の抵抗の変化
を抑えるように作用する。
[Function] In this invention, the surface of the thin film resistor film is covered with a non-oxide insulating material protective film to prevent oxidation of the resistor due to the atmosphere in which it is used and to suppress changes in resistance during use.
Since there is little deterioration due to the usage atmosphere, there is little in-plane temperature distribution regardless of pattern shape, and reliability is high. In addition, since the insulating substrate surface facing the thin film resistor film is formed with a non-oxide insulating material protective film, damage to the board due to chemical interaction between the board and the thin film resistor film during use can be prevented. It acts to suppress the deterioration of the heater function. Furthermore, by firing the thin film resistor film, recrystallization of the resistor film is promoted before use as a heater, which acts to suppress changes in resistance during use.

[実施例] 以下にこの発明の一実施例を図に基づいて説明する。第
1図はこの発明の一実施例の薄型高温ヒータの断面図で
ある1図において(1)は絶縁基板で、平滑なセラミッ
クス板(100)と、非酸化物系絶縁材料保護膜(2)
で構成されており、(3)はヒータ用の薄膜抵抗体膜、
(4)はリード線である。それぞれの材料膜に対しては
、例えば、次のような要求を満たすことが望ましい、絶
縁基板は、熱伝導性が良く、熱膨張率が抵抗体膜のそれ
に近く、長線縁体で、高温で絶縁破壊し難く、平滑で使
用雰囲気により損傷を受は難いこと、その為例えば単結
晶状態で入手し易くしかも表面を鏡面仕上げすることが
可能なAl2O3,BeO等のセラミックスの酸化物系
絶縁材料に、熱伝導性が良く、熱膨張率が抵抗体膜のそ
れに近く、使用雰囲気により損傷を受は難い^IN、l
’3N等の非酸化物系絶縁材料保護膜を少なくとも薄膜
抵抗体膜に対向して設けることにより上記条件を満たす
絶縁基板を得ることができる。しかし、これに限らず単
一の非酸化物系絶縁材料で上記条件を満たすものは同様
に用いることができ、さらに第り図に示したように酸化
物系絶縁材料の全面に非酸化物系絶縁材料保護膜を設け
なくても、薄膜抵抗体膜対向面に非酸化物系絶縁材料保
護膜を設けたものも用いることができる。薄膜抵抗体膜
は、この発明においては従来のスクリーン印刷等による
厚膜抵抗体膜が数十μmであるのに対して、10μm以
下の厚さのものを対象とし、高温域での蒸気圧が低いこ
と、高温域での電気特性が安定なこと、そのため、Mo
、W、PttTa等が考えられる。薄膜抵抗体膜を覆う
非酸化物系絶縁材料保護膜に対しては、高温での拡散が
小さいこと、使用温度以上の軟化点あるいは融点である
こと、使用雰囲気による損傷を受は難いためには上記と
同様AIN、BN等が考えられる。リード線に対しては
、抵抗体膜の特性と同等なこと、抵抗体膜の拡散係数と
同等なこと、抵抗体膜と同材料膜が最も望ましい。
[Example] An example of the present invention will be described below based on the drawings. FIG. 1 is a cross-sectional view of a thin high-temperature heater according to an embodiment of the present invention. In FIG. 1, (1) is an insulating substrate, which includes a smooth ceramic plate (100) and a non-oxide insulating material protective film (2).
(3) is a thin film resistor film for the heater,
(4) is a lead wire. For each material film, it is desirable to meet the following requirements, for example: the insulating substrate should have good thermal conductivity, a coefficient of thermal expansion close to that of the resistor film, a long wire edge, and be able to withstand high temperatures. Ceramic oxide insulating materials such as Al2O3 and BeO, which are easy to obtain in a single crystal state and whose surfaces can be mirror-finished, are suitable for use as oxide-based insulating materials that are resistant to dielectric breakdown, smooth, and difficult to be damaged by the atmosphere in which they are used. , has good thermal conductivity, has a coefficient of thermal expansion close to that of the resistor film, and is unlikely to be damaged by the atmosphere in which it is used.
An insulating substrate that satisfies the above conditions can be obtained by providing a protective film of a non-oxide insulating material such as '3N so as to face at least the thin film resistor film. However, the present invention is not limited to this, and a single non-oxide insulating material that satisfies the above conditions can be used in the same way.Furthermore, as shown in Fig. Even if an insulating material protective film is not provided, a structure in which a non-oxide insulating material protective film is provided on the surface facing the thin film resistor film can also be used. In this invention, the thin film resistor film has a thickness of 10 μm or less, whereas conventional thick film resistor films made by screen printing etc. have a thickness of several tens of μm, and the vapor pressure in the high temperature range is Mo
, W, PttTa, etc. can be considered. The non-oxide insulating material protective film that covers the thin film resistor film must have low diffusion at high temperatures, a softening point or melting point above the operating temperature, and be resistant to damage from the operating atmosphere. Similar to the above, AIN, BN, etc. can be considered. For the lead wire, it is most desirable to have the same characteristics as the resistor film, the same diffusion coefficient as the resistor film, and a film made of the same material as the resistor film.

ここでは、上記条件を鑑み、セラミックス基板としてA
l2O3(アルミナ、サファイヤ)を用い、薄膜抵抗体
膜としてWをスパッタ法で形成し、非酸化物系絶縁材料
保護膜としてAINを用いた、薄型高温ヒータの製造方
法について述べる。
Here, in view of the above conditions, A is used as a ceramic substrate.
A method of manufacturing a thin high-temperature heater using l2O3 (alumina, sapphire), forming W as a thin film resistor film by sputtering, and using AIN as a non-oxide insulating material protective film will be described.

平滑なAl2O3基板上にスパッタ法により所望の厚さ
(数μm〜100μm)のAIN膜を一様に形成した後
、スパッタ法により所望の厚さ(数μm−10μm)の
W膜を一様に形成する。その後、所望のパターン形状に
湿式あるいは乾式法でエツチングする8例えば湿式法で
あれば次の工程でエツチングを行う。
After uniformly forming an AIN film with a desired thickness (several μm to 100 μm) on a smooth Al2O3 substrate by sputtering, a W film with a desired thickness (several μm to 10 μm) is uniformly formed using sputtering. Form. Thereafter, the desired pattern shape is etched by a wet or dry method (8) For example, if a wet method is used, etching is performed in the next step.

レジスト塗布 ↓ マスク設定 ↓ 露光 ↓ レジスト除去 ↓ Wのエツチング(K3 [Fe(CN)61 + Na
OH液)↓ レジスト除去 次に、水素還元−雰囲気中またはアルゴン雰囲気中、8
00〜1000℃で上記薄膜抵抗体膜の抵抗が安定する
まで焼成する。ここで、非酸化物系絶縁材料保護膜のA
INを平滑なAl2O3基板上に被覆することにより、
通常AIN基板として入手される焼結体では得難い平滑
度を実現できるため、その上に形成される抵抗体の面積
度がよくなリヒータの信頼性が向上する0次にリード線
を所望の場所に抵抗溶接等の手法で接合する0次にヒー
タ用薄膜抵抗体膜を覆うようにスパッタによりAIN非
酸化物系絶縁材料保護膜を形成してこの発明の一実施例
による薄型高温ヒータを得ることができる。
Resist coating ↓ Mask setting ↓ Exposure ↓ Resist removal ↓ W etching (K3 [Fe(CN)61 + Na
OH solution) ↓ Resist removal Next, in hydrogen reduction atmosphere or argon atmosphere, 8
The thin film resistor film is fired at 00 to 1000° C. until the resistance of the thin film resistor film becomes stable. Here, A of the non-oxide insulating material protective film is
By coating IN on a smooth Al2O3 substrate,
It is possible to achieve smoothness that is difficult to obtain with the sintered body normally obtained as an AIN board, so the area of the resistor formed on it is good.The reliability of the reheater is improved.The zero-order lead wire can be placed at the desired location. A thin high-temperature heater according to an embodiment of the present invention can be obtained by forming an AIN non-oxide insulating material protective film by sputtering so as to cover a thin film resistor film for a zero-order heater that is joined by a method such as resistance welding. can.

この発明の一実施例による薄型高温ヒータは、リード線
接合後のW膜の周りにのみ非酸化物系絶縁材料保護膜を
形成する例を示したが、第2図のこの発明の他の実施例
による薄型高温ヒータの断面図のように接合部を含めて
基板面全面に形成してもよい、高温での使用中に熱膨張
係数の違いにより基板、薄膜抵抗体膜、保護膜の間で歪
みが生じる可能性があるが、AINを用いた場合、AI
NはAl2O3と比べ熱膨張係数が臀のそれとほぼ等し
く、基板と抵抗体膜9− に生じる歪みを緩和するように作用するので、全面を被
覆しても、歪みが防止され望ましい。
In the thin high temperature heater according to one embodiment of the present invention, a non-oxide insulating material protective film is formed only around the W film after lead wire bonding. As shown in the cross-sectional view of a thin high-temperature heater, it may be formed on the entire surface of the substrate, including the joints, due to the difference in thermal expansion coefficient during use at high temperatures. Although distortion may occur, when using AIN, AI
Compared to Al2O3, N has a coefficient of thermal expansion that is almost equal to that of the buttock, and acts to alleviate the distortion occurring in the substrate and the resistor film 9-, so it is desirable to prevent distortion even if the entire surface is covered.

また、第3図のこの発明のさらに他の実施例による薄型
高温ヒータの断面図に示すようにセラミックス基板の両
面をまた大面積に渡って処理することも可能である。
Further, as shown in the sectional view of a thin high temperature heater according to still another embodiment of the present invention in FIG. 3, it is also possible to treat both sides of the ceramic substrate over a large area.

なお、実施例はAIN膜をスパッタ法により成膜した場
合を示したが、電子ビーム蒸着、レーザp v D法、
イオンブレーティング法、クラスターイオンビーム法で
成膜する等PVD、CVDの手法で成膜しても良いこと
は言うまでもない。
In addition, although the example shows the case where the AIN film was formed by sputtering method, electron beam evaporation, laser pvd method,
Needless to say, the film may be formed by PVD or CVD, such as ion blating method or cluster ion beam method.

また、実施例ではW膜をスパッタ法により形成する方法
について説明したが、電子ビーム蒸着、レーザPVD法
、イオンブレーティング等のいわゆるPVD法やW F
 s 、 W (CO)a 、 W C16ガス等を用
いたCVD法等の方法で形成することができることは言
うまでもない、またW以外の例えばNo等の膜を形成す
る場合も同様である。
In addition, in the examples, a method of forming a W film by sputtering method was explained, but so-called PVD methods such as electron beam evaporation, laser PVD method, ion blating method, W F film etc.
It goes without saying that the film can be formed by a method such as a CVD method using s, W (CO) a, W C16 gas, etc., and the same is true when forming a film of a material other than W, such as No, for example.

また、上記実施例では、薄膜抵抗体膜を絶縁基板に形成
した直後に焼成したが、焼成時期は限定され0 ず、使用前に薄膜抵抗体膜を少なくとも一回焼成すれば
良い。
Further, in the above embodiment, the thin film resistor film was fired immediately after being formed on the insulating substrate, but the firing timing is not limited, and the thin film resistor film may be fired at least once before use.

[発明の効果コ 以上説明してきたように、この発明はよれば所定ヒータ
パターンの薄膜抵抗体膜を、少なくともこの薄膜抵抗体
膜に対向する面が非酸化物系絶縁材料保護膜で形成され
た絶縁基板に設ける工程、上記薄膜抵抗体膜の表面を非
酸化物系絶縁材料保護膜で覆う工程、および薄膜抵抗体
膜を焼成する工程を施すことにより、使用時の抵抗変化
の少ない、信頼性の高い薄型高温ヒータの製造方法を得
ることができる。
[Effects of the Invention] As explained above, the present invention provides a method in which a thin film resistor film having a predetermined heater pattern is formed of a non-oxide insulating material protective film at least on the surface facing the thin film resistor film. By performing the steps of providing on an insulating substrate, covering the surface of the thin film resistor film with a non-oxide insulating material protective film, and baking the thin film resistor film, reliability is achieved with little change in resistance during use. It is possible to obtain a method for manufacturing a thin high-temperature heater with high performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による薄型高温ヒータの断
面図、第2図はこの発明の他の実施例による薄型高温ヒ
ータの断面図、第3図はこの発明のさらに他の実施例に
よる薄型高温ヒータの断面図、第4図は従来の薄型高温
ヒータを利用した電子管カソード装置を示す断面図、第
5図(a)〜(d)は従来の薄膜形成法による平板薄型
ヒータの製造方法を順1 に示す工程図、第6図は従来の平板薄型ヒータの抵抗値
の経時変化を示す特性図である。 図において(1)は絶縁基板、(2)は非酸化物系絶縁
材料保*ff1.(3)はヒータ用の薄膜抵抗体膜であ
る。 なお、各図中同一符号は同一部分または相当部分を示す
FIG. 1 is a sectional view of a thin high temperature heater according to an embodiment of the present invention, FIG. 2 is a sectional view of a thin high temperature heater according to another embodiment of the invention, and FIG. 3 is a sectional view of a thin high temperature heater according to another embodiment of the invention. A cross-sectional view of a thin high-temperature heater, FIG. 4 is a cross-sectional view showing an electron tube cathode device using a conventional thin high-temperature heater, and FIGS. 5(a) to (d) are a method for manufacturing a flat thin heater using a conventional thin film forming method. FIG. 6 is a characteristic diagram showing the change in resistance value of a conventional flat plate thin heater over time. In the figure, (1) is an insulating substrate, (2) is a non-oxide insulating material *ff1. (3) is a thin film resistor film for a heater. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 所定ヒータパターンの薄膜抵抗体膜を、少なくともこの
薄膜抵抗体膜に対向する面が非酸化物系絶縁材料保護膜
で形成された絶縁基板に設ける工程、上記薄膜抵抗体膜
の表面を非酸化物系絶縁材料保護膜で覆う工程、および
薄膜抵抗体膜を焼成する工程を施す薄型高温ヒータの製
造方法。
a step of providing a thin film resistor film with a predetermined heater pattern on an insulating substrate in which at least the surface facing the thin film resistor film is formed of a non-oxide insulating material protective film; A method for manufacturing a thin high-temperature heater, which includes a step of covering with a protective film of a type insulating material and a step of firing a thin film resistor film.
JP1181034A 1989-03-24 1989-07-12 Manufacture of thin-type high-temperature heater Pending JPH0343988A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1181034A JPH0343988A (en) 1989-07-12 1989-07-12 Manufacture of thin-type high-temperature heater
DE69016235T DE69016235T2 (en) 1989-03-24 1990-03-19 High temperature component.
EP90302938A EP0389228B1 (en) 1989-03-24 1990-03-19 High temperature operating element
US07/495,127 US5118983A (en) 1989-03-24 1990-03-19 Thermionic electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181034A JPH0343988A (en) 1989-07-12 1989-07-12 Manufacture of thin-type high-temperature heater

Publications (1)

Publication Number Publication Date
JPH0343988A true JPH0343988A (en) 1991-02-25

Family

ID=16093612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181034A Pending JPH0343988A (en) 1989-03-24 1989-07-12 Manufacture of thin-type high-temperature heater

Country Status (1)

Country Link
JP (1) JPH0343988A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501785A (en) * 1994-07-13 1996-03-26 Tefco International Co., Ltd. Process for manufacturing electroformed patterns
DE102012208597A1 (en) 2012-05-23 2013-11-28 Tesa Se Switchable adhesive composition, useful in a pressure sensitive adhesive bandage, comprises an adhesive, polymeric moiety and bound-in visible light curable groups
US8697932B2 (en) 2008-09-24 2014-04-15 Lumina Adhesives Ab Switchable adhesives

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501785A (en) * 1994-07-13 1996-03-26 Tefco International Co., Ltd. Process for manufacturing electroformed patterns
US8697932B2 (en) 2008-09-24 2014-04-15 Lumina Adhesives Ab Switchable adhesives
DE102012208597A1 (en) 2012-05-23 2013-11-28 Tesa Se Switchable adhesive composition, useful in a pressure sensitive adhesive bandage, comprises an adhesive, polymeric moiety and bound-in visible light curable groups

Similar Documents

Publication Publication Date Title
US4028657A (en) Deposited layer type thermometric resistance structure
CA1214230A (en) High resistance film resistor and method of making the same
JPS60138943A (en) Method of electrolytically forming connecting electrode of semiconductor device
JPH01118760A (en) Sensor
US5155340A (en) Thin high temperature heater
US5118983A (en) Thermionic electron source
JPS6190445A (en) Semiconductor device
JPH0343988A (en) Manufacture of thin-type high-temperature heater
JPS6037886B2 (en) Manufacturing method of temperature sensor for resistance thermometer
JP2804288B2 (en) High temperature operating element
JPH03131002A (en) Resistance temperature sensor
JPH03131001A (en) Resistance temperature sensor
JPH02227984A (en) Manufacture of thin type high-temperature heater
JPH0343985A (en) Thin high temperature heater and manufacture thereof
JPH0343932A (en) Electron emitting apparatus
JP2514591B2 (en) Limit current type oxygen sensor
JP2504675B2 (en) Method for manufacturing ionic conductor device
JPH04133235A (en) Mim type electron emitting element and its manufacture
JP2514582B2 (en) Method of manufacturing limiting current type oxygen sensor
JPH05174832A (en) Fuel electrode for high temperature solid electrolyte type fuel cell
JPH11293452A (en) Thermal insulation coating method
JPH0353488A (en) Thin-type high temperature heater
JPH06102232A (en) Ion conductor device and its manufacture
JPS62185316A (en) Formation of electrode
JPH02239175A (en) Formation of thin film