JPH03131001A - Resistance temperature sensor - Google Patents

Resistance temperature sensor

Info

Publication number
JPH03131001A
JPH03131001A JP26811189A JP26811189A JPH03131001A JP H03131001 A JPH03131001 A JP H03131001A JP 26811189 A JP26811189 A JP 26811189A JP 26811189 A JP26811189 A JP 26811189A JP H03131001 A JPH03131001 A JP H03131001A
Authority
JP
Japan
Prior art keywords
resistance temperature
film
temperature sensor
resistance
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26811189A
Other languages
Japanese (ja)
Inventor
Sadaaki Miyauchi
宮内 貞章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Electric Co Ltd
Original Assignee
Tama Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama Electric Co Ltd filed Critical Tama Electric Co Ltd
Priority to JP26811189A priority Critical patent/JPH03131001A/en
Publication of JPH03131001A publication Critical patent/JPH03131001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a resistance temperature sensor with an arbitrary resistance temperature coefficient by forming nickel and iron in layer and by controlling diffusion between the nickel and iron by thermal treatment. CONSTITUTION:A 0.4mm thick alumina ceramic substrate is used as an insulation substrate 1 and a 710Angstrom iron 2 is clad onto the surface of the vacuum deposition method. Then, a nickel 3 is clad by 290Angstrom to obtain a temperature- sensitive film. This layer film-clad body is subjected to heat treatment within argon gas at 40 deg.C for one hour, thus obtaining a temperature-sensitive film. After a pattern is formed on this temperature-sensitive film by photoetching, an electrode 5 and a passivation film 6 are attached to obtain a resistance temperature sensor. This thin-film resistance temperature sensor has a resistance temperature coefficient of 3000ppm/ deg.C. Thus, it is possible to obtain a resistance temperature sensor with a variety of resistance temperature coefficients with one type of film-clad substrate.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、薄膜温度センサに関するもので、ニッケル、
鉄の金属皮膜を感温膜として用いた抵抗温度センサを提
供するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a thin film temperature sensor.
The present invention provides a resistance temperature sensor using an iron metal film as a temperature-sensitive film.

〔従来の技術〕[Conventional technology]

従来の薄膜を用いた抵抗温度センサは絶靜基板上に所望
あ組成比の合金又は単一金属を着膜しこれを熱処理する
事により所望の抵抗温度係数を得ていた。
In the conventional resistance temperature sensor using a thin film, a desired resistance temperature coefficient is obtained by depositing an alloy or a single metal of a desired composition ratio on an insulated substrate and heat-treating the film.

〔この発明が解決しようとしている問題点〕前述の製造
方法では熱処理により抵抗温度係数を制御出来る範囲が
限定され各冨の抵抗温度係数が必要な場合にはそれぞれ
着膜する材料の組成比を変える必要があった。
[Problems to be solved by the present invention] In the above-mentioned manufacturing method, the range in which the temperature coefficient of resistance can be controlled by heat treatment is limited, and when different temperature coefficients of resistance are required, the composition ratio of the materials to be deposited is changed. There was a need.

〔問題点を解決する手段〕[Means to solve problems]

本発明は、ニッケル、鉄を層状に着膜しこれを熱処理温
度によりニッケルー鉄間での拡散をI制御し任意の抵抗
温度係数の抵抗温度センサを提供するものである。
The present invention provides a resistance temperature sensor having an arbitrary resistance temperature coefficient by depositing nickel and iron in layers and controlling the diffusion between nickel and iron by controlling the heat treatment temperature.

〔実施例1〕 本発明の実施例を図面を用いて説明する。[Example 1] Embodiments of the present invention will be described using the drawings.

第1図は本発明による抵抗温度センサの構成の断面図で
ある。
FIG. 1 is a sectional view of the configuration of a resistance temperature sensor according to the present invention.

図1において厚さQ、4mmのアルミナ磁器基板を絶縁
基体とし、その表面に真空蒸着法にて鉄を710人彼透
した。続いて二ッケルを290人波着し!8温戊をj唇
な。
In FIG. 1, an alumina porcelain substrate with a thickness Q of 4 mm was used as an insulating base, and 710 layers of iron was deposited on its surface by vacuum evaporation. Next, 290 people arrived at Nickel! 8 Hot lips.

このPAf’l状着膜体をアルゴンガス中で400”C
1時間の熱処理を施し感温膜とした。
This PAf'l-like deposited body was heated to 40"C in argon gas.
Heat treatment was performed for 1 hour to obtain a temperature-sensitive film.

この感温膜をフォトエツチングにより第2図に示すよう
なバタンを形成した。
This temperature-sensitive film was photo-etched to form a pattern as shown in FIG.

さらに第3図に示す構造の電極と保護膜をつけ抵抗温度
センサを得た。
Furthermore, an electrode and a protective film having the structure shown in FIG. 3 were attached to obtain a resistance temperature sensor.

この薄膜抵抗温度センサの抵抗温度係数は3000 p
pm/’Cであった。
The resistance temperature coefficient of this thin film resistance temperature sensor is 3000 p
pm/'C.

本実施例における熱処理雰囲気は真空中あるいはアルゴ
ンガス以外の不活性ガス中でもよ0゜ 〔実施例2〕 本発明の実施例を図面を用いて説明する。
The heat treatment atmosphere in this example was 0° in vacuum or in an inert gas other than argon gas. [Example 2] An example of the present invention will be described with reference to the drawings.

第1図は本発明による抵抗温度センサの構成の断面図で
ある。
FIG. 1 is a sectional view of the configuration of a resistance temperature sensor according to the present invention.

図1において厚さ0.4mmのアルミナ磁器基板を絶緯
基体とし、その表面に真空蒸着法にて鉄を710人波着
した。続いてニッケルを290人波着し感温膜を得た。
In FIG. 1, an alumina porcelain substrate with a thickness of 0.4 mm was used as a base substrate, and 710 layers of iron were deposited on the surface by vacuum evaporation. Next, 290 layers of nickel were deposited to obtain a temperature-sensitive film.

この該層状着膜体をアルゴンガス中で500℃1時間の
熱処理を施し感温膜とした。
This layered film body was heat-treated at 500° C. for 1 hour in argon gas to form a temperature-sensitive film.

このswLgをフォトエツチングにより第2図に示すよ
うなバタンを形成した。
This swLg was photo-etched to form a button as shown in FIG.

さらに第3図に示す構造の!極と保護膜をつけ抵抗温2
度センサを得た。
Furthermore, the structure shown in Figure 3! Attach the electrode and protective film to the resistance temperature 2
I got a degree sensor.

この3膜抵抗温度センサの抵抗温度係数は2100 p
pm/’Cであった。
The resistance temperature coefficient of this three-film resistance temperature sensor is 2100 p.
pm/'C.

本実施例における熱処理雰囲気は真空中あるいはアルゴ
ンガス以外の不活性ガス中でもよい。
The heat treatment atmosphere in this embodiment may be a vacuum or an inert gas other than argon gas.

〔実施例3〕 本発明の実施例を図面を用いて説明する。[Example 3] Embodiments of the present invention will be described using the drawings.

W1図は本発明による抵抗温度センサの構成の断面図で
ある。
Figure W1 is a sectional view of the configuration of a resistance temperature sensor according to the present invention.

図1において厚さQ、4mmのアルミナ磁器基鈑を絶シ
基体とし、その表面に真空n暦法にて鉄を710人波着
した。続いてニッケルを290人波着しI6温膜を得た
In FIG. 1, an alumina porcelain base plate with a thickness Q of 4 mm was used as a solid base, and 710 layers of iron were deposited on the surface using the vacuum n-calendar method. Next, 290 people deposited nickel to obtain an I6 hot film.

このTfxNJ状着膜体をアルゴンガス中で650℃1
時間の熱処理を施し感温膜とした。
This TfxNJ-shaped film-coated body was heated at 650℃1 in argon gas.
It was heat-treated for several hours to form a temperature-sensitive film.

この感温膜をフォトエツチングにより第2図に示すよう
なバタンを形成した。
This temperature-sensitive film was photo-etched to form a pattern as shown in FIG.

さらに第3図に示す構造の電極と保護膜をつけ抵抗温度
センサを得た。
Furthermore, an electrode and a protective film having the structure shown in FIG. 3 were attached to obtain a resistance temperature sensor.

この薄膜抵抗温度センサの抵抗温度係数は1100 p
Pl/’cであった。
The resistance temperature coefficient of this thin film resistance temperature sensor is 1100 p
Pl/'c.

本実施例における熱処理雰囲気は真空中あるいはアルゴ
ンガス以外の不活性ガス中でもよい。
The heat treatment atmosphere in this embodiment may be a vacuum or an inert gas other than argon gas.

実施例1.2.3、において説明した熱処理温度、時間
と温度係数の関係を図4に示します。
Figure 4 shows the relationship between the heat treatment temperature, time, and temperature coefficient explained in Example 1.2.3.

〔この発明の効果〕[Effects of this invention]

前記の製造方法で熱処理温度を変化させて作成した抵抗
温度センサの25℃−65°Cの抵抗温度係数と熱処理
温度の関係を図4に示した。
FIG. 4 shows the relationship between the resistance temperature coefficient at 25°C to 65°C and the heat treatment temperature of the resistance temperature sensor manufactured by the above manufacturing method by varying the heat treatment temperature.

図4で明らかなように本発明の製造方法によれば18!
類の着膜基板で多種意の抵抗温度係数の抵抗温度センサ
を得ることができる。
As is clear from FIG. 4, according to the manufacturing method of the present invention, 18!
Resistance temperature sensors with various resistance temperature coefficients can be obtained using similar film-coated substrates.

ここで抵抗温度係数(TCR)は TCR(ppm/’C) = R”−R”    ’R
2S   x  面×10゜ Rss  :  65℃の抵抗値 R2S:25℃の抵抗値 である。
Here, the temperature coefficient of resistance (TCR) is TCR (ppm/'C) = R''-R'''R
2S x plane x 10°Rss: resistance value at 65°C R2S: resistance value at 25°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による抵抗温度センサの構成図、第2
図はeI温膜の構造図であり、第3図は抵抗温度センサ
の構造図である。 また第4図は本実施例により作成した抵抗温度センサの
TCRと熱処理温度の関係を図示したものである。 各図中の各符号は次の各構成を示す。 1: 絶縁基板 2: 鉄薄膜 3: ニッケルβ腰 4: ニッケル、鉄薄膜 5: 電極 6: 保t!l塗装 第2図 第3図
FIG. 1 is a configuration diagram of a resistance temperature sensor according to the present invention, and FIG.
The figure is a structural diagram of an eI hot film, and FIG. 3 is a structural diagram of a resistance temperature sensor. Further, FIG. 4 illustrates the relationship between the TCR and the heat treatment temperature of the resistance temperature sensor produced according to this example. Each symbol in each figure indicates the following configuration. 1: Insulating substrate 2: Iron thin film 3: Nickel beta film 4: Nickel, iron thin film 5: Electrode 6: Hold! l Painting Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上にニッケル、鉄の薄膜を層状に形成し、熱
処理により任意の抵抗温度係数を得ることを特徴とした
抵抗温度センサの製造方法。
A method for manufacturing a resistance temperature sensor, characterized by forming a thin film of nickel and iron in a layered manner on an insulating substrate, and obtaining an arbitrary temperature coefficient of resistance by heat treatment.
JP26811189A 1989-10-17 1989-10-17 Resistance temperature sensor Pending JPH03131001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26811189A JPH03131001A (en) 1989-10-17 1989-10-17 Resistance temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26811189A JPH03131001A (en) 1989-10-17 1989-10-17 Resistance temperature sensor

Publications (1)

Publication Number Publication Date
JPH03131001A true JPH03131001A (en) 1991-06-04

Family

ID=17454044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26811189A Pending JPH03131001A (en) 1989-10-17 1989-10-17 Resistance temperature sensor

Country Status (1)

Country Link
JP (1) JPH03131001A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430428A (en) * 1991-02-15 1995-07-04 Siemens Aktiengesellschaft High-temperature sensor made of metal of the platinum group
CN102692280A (en) * 2011-03-24 2012-09-26 兴化市新兴电子有限公司 Ntc temperature sensor chip electrode structure
CN107806939A (en) * 2017-09-28 2018-03-16 河南汇纳科技有限公司 A kind of high reliability temperature sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430428A (en) * 1991-02-15 1995-07-04 Siemens Aktiengesellschaft High-temperature sensor made of metal of the platinum group
CN102692280A (en) * 2011-03-24 2012-09-26 兴化市新兴电子有限公司 Ntc temperature sensor chip electrode structure
CN107806939A (en) * 2017-09-28 2018-03-16 河南汇纳科技有限公司 A kind of high reliability temperature sensor

Similar Documents

Publication Publication Date Title
KR970005081B1 (en) Layered film resicstor with high resistance & high stability
JPH09145489A (en) Resistance thermometer
JPS6456867A (en) Method for metallizing aln ceramic
US4690872A (en) Ceramic heater
JPS6037886B2 (en) Manufacturing method of temperature sensor for resistance thermometer
JPH03131001A (en) Resistance temperature sensor
JPH03131002A (en) Resistance temperature sensor
JPS62222616A (en) Heat-resistant electrode thin film
JPH03179793A (en) Surface structure of ceramic board and manufacture thereof
JPH04279831A (en) Platinum temperature sensor
JP2727541B2 (en) Manufacturing method of thin film thermistor
JPH03265101A (en) Platinum temperature sensor
JPS62202753A (en) Thin film type thermal head
KR20010074187A (en) Resistance thermometer device for micro thermal sensors and its fabrication method
JPS6421943A (en) Semiconductor device
JPH03262102A (en) Platinum temperature sensor
JP3026224B2 (en) Manufacturing method of bismuth / lead / strontium / calcium / copper oxide superconductor wiring
JPH0882613A (en) Manufacture for electrode film for sensor
JP4279400B2 (en) Thin film thermistor element and method for manufacturing thin film thermistor element
JP2000348902A (en) Manufacture of thermistor thin film
JPH06137804A (en) Metal thin film resistance strain gauge
JPS62241301A (en) Temperature sensitive resistance element and manufacture of the same
JP2004311624A (en) Laminate and its manufacturing method
JPH04192302A (en) Thin film thermistor element
JPS6028362B2 (en) thin film resistor