JPH11293452A - Thermal insulation coating method - Google Patents

Thermal insulation coating method

Info

Publication number
JPH11293452A
JPH11293452A JP10096219A JP9621998A JPH11293452A JP H11293452 A JPH11293452 A JP H11293452A JP 10096219 A JP10096219 A JP 10096219A JP 9621998 A JP9621998 A JP 9621998A JP H11293452 A JPH11293452 A JP H11293452A
Authority
JP
Japan
Prior art keywords
layer
thermal barrier
coating film
undercoat layer
barrier coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10096219A
Other languages
Japanese (ja)
Inventor
Takashi Shige
重  隆司
Masahiko Mega
雅彦 妻鹿
Sumio Mori
純雄 毛利
Risuke Nayama
理介 名山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10096219A priority Critical patent/JPH11293452A/en
Publication of JPH11293452A publication Critical patent/JPH11293452A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Abstract

PROBLEM TO BE SOLVED: To provide a thermal insulation coating method by which the peeling on the boundary between the surface of an undercoat layer and an Al2 O3 layer can be suppressed in the method for forming a ceramic shielding coating film by an electron beam physical deposition method (EB-PVD method), and a coating film excellent in heat cycle properties and improved in a service life can be obtd. SOLUTION: An undercoat layer 3 composed of an MCrAlY alloy layer (M: CoNi, NiCo, Ni, Co or Fe) is formed on a base material by a low pressure thermal spraying method, and thereafter, the formation of a thermal barrier coating film by an EB-PVD method is executed in a vacuum or in a nonoxidizing atmosphere in the initial stage and in a oxygen atmosphere after the coating of the surface of the undercoat layer with a ceramics layer 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガスタービン、ロケ
ットエンジン等の高温ガス環境で使用される部材に適用
される遮熱コーティング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal barrier coating method applied to members used in a high-temperature gas environment such as a gas turbine and a rocket engine.

【0002】[0002]

【従来の技術】従来、ガスタービン、ロケットエンジン
等の高温ガス環境で使用される部材への遮熱コーティン
グとしては、Y2 3 安定化ZrO2 (以下、YSZと
略称する)、MgO2 安定化ZrO2 、CeO2 安定化
ZrO2 などの熱伝導率が小さく、高温で安定なセラミ
ック材料を溶射法によってコーティングする方法が多く
用いられてきた。しかし、YSZ等のセラミックスの熱
膨張率はIN738LC(米国INCO社商品名)など
の母材又は母材に強固に固着し、密着性に優れた耐高温
酸化、耐高温腐食コーティング層を形成する目的でYS
Z等のセラミックスと母材との中間に施行される例えば
MCrAlY(M:CoNi、NiCo、Ni、Co又
はFe)などのようなアンダーコート材のそれに比べて
小さく、部材の加熱や冷却時に発生する熱膨張率の差に
起因する熱応力によって、セラミックスがダメージを受
け、最悪の場合には、使用中に剥離に至る場合もあっ
た。
Conventionally, as a thermal barrier coating to members for use in a gas turbine, hot gas environment, such as a rocket engine, Y 2 O 3 stabilized ZrO 2 (hereinafter, abbreviated as YSZ), MgO 2 stable of ZrO 2, CeO 2 stabilized ZrO 2 thermal conductivity, such as small, have been used many methods of coating by thermal spraying a stable ceramic material at high temperatures. However, the coefficient of thermal expansion of ceramics such as YSZ is intended to form a high-temperature oxidation-resistant and high-temperature corrosion-resistant coating layer that is firmly fixed to a base material such as IN738LC (trade name of INCO, USA) or a base material. And YS
It is smaller than that of an undercoat material such as MCrAlY (M: CoNi, NiCo, Ni, Co or Fe) which is applied between a ceramic such as Z and a base material, and is generated when the member is heated or cooled. Ceramics were damaged by thermal stress caused by a difference in thermal expansion coefficient, and in the worst case, peeling occurred during use.

【0003】このような熱膨張率の差による問題に対処
するため、図4に示すような、熱サイクル性に優れた電
子ビーム物理蒸着法(Electoron Beam Physical Vapor
Deposition:EB−PVD法)で施行されたセラミック
柱状晶1の膜が提案されている。このような膜において
はセラミック柱状晶1の各々が、基材4の表面に形成さ
れたMCrAlYなどのアンダーコート層3にAl2
3 層2を介して強固に固着しているが、隣接するセラミ
ック柱状晶1どうしの結合力が小さいので、セラミック
柱状晶1がアンダーコート層3の伸び縮みに対応できる
ので、前記のような熱応力発生が小さく、熱サイクル性
に優れているとされている。このような遮熱コーティン
グ膜は基材4上に先ずEB−PVD法によりMCrAl
Yのアンダーコート層3を形成させ、水素熱処理又は酸
化処理を施してAl 2 3 層2を形成させ、そのAl2
3 層2の上にセラミック柱状晶1を形成させることに
よって作製されている。ここでAl2 3 層2はセラミ
ック柱状晶1のアンダーコート層3への密着性をよくす
るために形成されるものである。
[0003] The problem due to such a difference in the coefficient of thermal expansion is addressed.
Therefore, as shown in FIG.
Electoron Beam Physical Vapor
Deposition: EB-PVD method)
Columnar 1 films have been proposed. In such a membrane
Indicates that each of the ceramic columnar crystals 1 is formed on the surface of the substrate 4.
Al on the undercoat layer 3 such as MCrAlYTwoO
ThreeAlthough firmly fixed through the layer 2, the adjacent ceramic
Since the bonding strength between the columnar crystals 1 is small, ceramic
Columnar crystal 1 can cope with expansion and contraction of undercoat layer 3
Therefore, the occurrence of thermal stress as described above is small,
It is said to be excellent. Such a thermal barrier coating
First, the MC film is formed on the substrate 4 by the EB-PVD method.
Y undercoat layer 3 is formed and hydrogen heat treatment or acid
Al treatment TwoOThreeLayer 2 is formed and its AlTwo
OThreeTo form the ceramic columnar crystals 1 on the layer 2
Therefore, it is manufactured. Where AlTwoOThreeLayer 2 is ceramic
The adhesion of the columnar crystals 1 to the undercoat layer 3
It is formed for the purpose.

【0004】遮熱コーティングに通常使用されるYSZ
のような酸化物セラミックスのEB−PVD法によるコ
ーティングは、通常、酸素欠損を防ぐため酸素雰囲気下
で行われる。コーティングを酸素雰囲気下で行うこと
は、同時にアンダーコートのMCrAlYを酸化させる
ことになり、成分中最も酸化しやすいAlが表面に拡散
して酸化し、結果的にアンダーコートとセラミック(Y
SZ等)層との間のAl 2 3 層の厚みを増加させるこ
ととなる。また、成膜前の予備加熱時にもAl23
の厚みが増加する可能性がある。このように、従来のE
B−PVD法によるコーティング層ではアンダーコート
層3であるMCrAlY表面上にある厚さ2μm程度の
Al2 3 層2を介してセラミック柱状晶1が形成され
ているので、このAl2 3 層2が使用中の高温酸化雰
囲気により増加し、図5に示すようにAl2 3 層2と
アンダーコート層(MCrAlY層)3の界面に剥離発
生箇所6が生じて剥離することが報告されており、EB
−PVD法セラミック柱状晶1による遮熱コーティング
膜においては、このAl2 3 層2とアンダーコート層
(MCrAlY層)3の界面における剥離が弱点となっ
ている。
YSZ commonly used for thermal barrier coatings
Of oxide ceramics such as
The coating is usually performed in an oxygen atmosphere to prevent oxygen deficiency.
Done in Coating under oxygen atmosphere
Simultaneously oxidizes the undercoat MCrAlY
This means that the most oxidizable Al among the components diffuses to the surface
And oxidize, resulting in undercoat and ceramic (Y
SZ etc.) between the layer TwoOThreeIncrease the layer thickness
And Also, during preheating before film formation, AlTwoOThreelayer
May increase in thickness. Thus, the conventional E
Undercoat for coating layer by B-PVD method
The thickness of about 2 μm on the MCrAlY surface which is the layer 3
AlTwoOThreeCeramic columnar crystal 1 is formed via layer 2
Because this AlTwoOThreeHigh temperature oxidizing atmosphere when layer 2 is in use
Increased due to ambient air, as shown in FIG.TwoOThreeLayer 2 and
Peeling occurs at the interface of the undercoat layer (MCrAlY layer) 3
It has been reported that raw spot 6 occurs and peels off.
-Thermal barrier coating by PVD method ceramic columnar crystal 1
In the film, this AlTwoOThreeLayer 2 and undercoat layer
(MCrAlY layer) Peeling at interface of 3 is weak point
ing.

【0005】[0005]

【発明が解決しようとする課題】本発明は前記従来技術
の実情に鑑み、EB−PVD法によるセラミック遮蔽コ
ーティング膜を形成させる方法において、アンダーコー
ト層表面とAl2 3 層との界面での剥離を抑制するこ
とができ、熱サイクル性に優れ、寿命の向上したコーテ
ィング膜が得られる遮熱コーティング方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances of the prior art, the present invention relates to a method of forming a ceramic shielding coating film by an EB-PVD method, wherein a method for forming an interface between an undercoat layer surface and an Al 2 O 3 layer is provided. An object of the present invention is to provide a thermal barrier coating method capable of suppressing peeling, having excellent thermal cycling properties, and obtaining a coating film having an improved life.

【0006】[0006]

【課題を解決するための手段】本発明者らは前記課題を
解決すべく種々検討の結果、従来はセラミック柱状晶の
密着性をよくするためにはある程度の厚みが必要とされ
ていたAl2 3 層は、使用中の内部応力による破壊を
防ぐためには薄い方が(できれば無い方が)よいことを
見出し、本発明を完成した。本発明はアンダーコート層
となるMCrAlY合金(M:CoNi、NiCo、N
i、Co又はFe)を被覆した基材の表面に電子ビーム
物理蒸着法(EB−PVD法)によりセラミックスの遮
熱コーティング膜を形成させる方法において、基材上に
低圧溶射法により前記MCrAlY合金層を形成させた
後、EB−PVD法による遮熱コーティング膜の形成
を、初期段階は真空中又は非酸化性雰囲気中で行い、ア
ンダーコート層表面がセラミックス層で被覆された後は
酸素雰囲気中で行うことを特徴とする基材表面への遮熱
コーティング方法である。本発明の好ましい態様とし
て、前記セラミックス層としてYSZ層を形成させる基
材表面への遮熱コーティング方法がある。
The present inventors have conducted various studies to solve the above-mentioned problems. As a result, the inventors have found that Al 2, which had conventionally required a certain thickness in order to improve the adhesion of the ceramic columnar crystals. The inventors have found that the O 3 layer should be thinner (or better if not possible) to prevent breakage due to internal stress during use, and completed the present invention. The present invention relates to an MCrAlY alloy (M: CoNi, NiCo, N
i, Co or Fe), a method of forming a thermal barrier coating of ceramics on a surface of a substrate coated with electron beam physical vapor deposition (EB-PVD), wherein the MCrAlY alloy layer is formed on the substrate by low pressure spraying. After the formation of the thermal barrier coating film by the EB-PVD method, the initial stage is performed in a vacuum or a non-oxidizing atmosphere, and after the surface of the undercoat layer is covered with the ceramic layer, in an oxygen atmosphere. This is a method of performing thermal barrier coating on a substrate surface, which is performed. As a preferred embodiment of the present invention, there is a method of thermal barrier coating on a substrate surface on which a YSZ layer is formed as the ceramic layer.

【0007】本発明の方法においては先ずガスタービ
ン、ロケットエンジン等の高温ガス環境で使用されるI
N738LCなどの基材表面にアンダーコート層として
MCrAlY合金(M:CoNi、NiCo、Ni、C
o又はFe)の被覆層を低圧溶射法(例えば40〜50
Torr、500〜800℃)などの方法によって形成
させる。アンダーコート層の厚みは0.1〜0.2mm
程度の範囲とする。厚みが薄すぎると効果が小さく、ま
た、厚すぎると形成されるAl2 3 層が厚くなりやす
く、アンダーコート層とAl2 3 層との間で剥離しや
すくなる。アンダーコート層形成後、必要によりアンダ
ーコート層の密着性をよくするため真空熱処理を行って
もよい。なお、代表的な基材材料であるIN738LC
の標準組成は表1のとおりである。
[0007] In the method of the present invention, first, I is used in a high temperature gas environment such as a gas turbine or a rocket engine.
An MCrAlY alloy (M: CoNi, NiCo, Ni, C
o or Fe) by a low pressure spraying method (for example, 40 to 50).
(Torr, 500-800 ° C.). The thickness of the undercoat layer is 0.1 to 0.2 mm
Range. If the thickness is too small, the effect is small. If the thickness is too large, the formed Al 2 O 3 layer tends to be thick, and the undercoat layer and the Al 2 O 3 layer are easily separated. After forming the undercoat layer, if necessary, a vacuum heat treatment may be performed to improve the adhesion of the undercoat layer. In addition, IN738LC which is a typical base material is used.
Are as shown in Table 1.

【0008】[0008]

【表1】 [Table 1]

【0009】次にアンダーコート層を形成させた基材を
10-4Torr台以下の真空雰囲気下又は10-3Tor
r台以下の低圧状態のAr、H2 などの非酸化性雰囲気
下で800〜1000℃程度に予備加熱する。この予備
加熱した基材表面にEB−PVD法によりYSZ、Mg
2 安定化ZrO2 、CeO2 安定化ZrO2 などのセ
ラミックスからなる遮熱コーティング膜を形成させる。
なお、セラミックスとしてはYSZが性能もよく最も一
般的である。遮熱コーティング膜形成の初期段階はアン
ダーコート層とセラミックス層との間にAl2 3 層が
形成されるのを抑制するため、10-4Torr台以下の
真空雰囲気下又は10-3Torr台以下の低圧状態のA
r、H2 などの非酸化性雰囲気下で行うようにする。
Next, the substrate on which the undercoat layer is formed is placed in a vacuum atmosphere of 10 -4 Torr or less or 10 -3 Torr.
Preheating is performed at about 800 to 1000 ° C. in a non-oxidizing atmosphere such as Ar or H 2 at a low pressure of r or less. YSZ, Mg is applied to the pre-heated substrate surface by the EB-PVD method.
A thermal barrier coating film made of ceramics such as O 2 -stabilized ZrO 2 and CeO 2 -stabilized ZrO 2 is formed.
As a ceramic, YSZ has the best performance and is the most common. In the initial stage of formation of the thermal barrier coating film, in order to suppress the formation of an Al 2 O 3 layer between the undercoat layer and the ceramic layer, under a vacuum atmosphere of the order of 10 −4 Torr or less or in the order of 10 −3 Torr. A in the following low pressure condition
It is performed in a non-oxidizing atmosphere such as r or H 2 .

【0010】前記真空雰囲気下又は非酸化性雰囲気下で
の成膜により、アンダーコート層の表面がセラミックス
で被覆され、Al2 3 の生成の恐れが小さくなった時
点で酸素を供給し、以降は8×10-3Torr以下の低
圧状態の酸素雰囲気下で成膜を行うようにする。このよ
うにしてアンダーコート層の表面に厚さ25〜260μ
mのセラミックスからなる遮熱コーティング膜を形成さ
せる。遮熱コーティング膜の厚みが25μm未満ではセ
ラミックスによる熱障壁性が十分ではなく、また、26
0μmを超えるとセラミックス層の密着性が低下するの
で好ましくない。
Oxygen is supplied when the surface of the undercoat layer is coated with ceramics by the film formation in the vacuum atmosphere or the non-oxidizing atmosphere, and the risk of generation of Al 2 O 3 is reduced. Is formed in an oxygen atmosphere at a low pressure of 8 × 10 −3 Torr or less. In this way, a thickness of 25 to 260 μm is formed on the surface of the undercoat layer.
A thermal barrier coating film made of m ceramics is formed. If the thickness of the thermal barrier coating film is less than 25 μm, the thermal barrier properties of the ceramics are not sufficient, and
If the thickness exceeds 0 μm, the adhesion of the ceramic layer is undesirably reduced.

【0011】EB−PVD法による成膜時の雰囲気を前
記のように制御することにより、アンダーコート層とY
SZなどのセラミックス層との界面におけるAl2 3
の生成を抑制することができ、また、成膜方法がEB−
PVD法であるため、得られるYSZなどのセラミック
ス層は柱状晶となるのでYSZなどのセラミックスと母
材との熱膨張率の差による熱応力の発生も抑制されるの
で、熱サイクル性にすぐれ、寿命の向上した遮熱コーテ
ィング膜を得ることができる。
By controlling the atmosphere during film formation by the EB-PVD method as described above, the undercoat layer
Al 2 O 3 at the interface with the ceramic layer such as SZ
Can be suppressed, and the film forming method is EB-
Because the PVD method is used, the resulting ceramic layer such as YSZ becomes a columnar crystal, so that the generation of thermal stress due to the difference in the coefficient of thermal expansion between the ceramic such as YSZ and the base material is suppressed. It is possible to obtain a thermal barrier coating film having an improved life.

【0012】[0012]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明するが、本発明はこの実施例に限定されるもの
ではない。本発明の方法によりアンダーコート層と遮熱
コーティング膜との界面でのAl 2 3 層の形成を抑制
して遮熱コーティング膜の成膜を実施し、従来法による
遮熱コーティング膜との性能比較を行った。
The following examples further illustrate the method of the present invention.
However, the present invention is not limited to this embodiment.
is not. Undercoat layer and heat insulation by the method of the present invention
Al at the interface with the coating film TwoOThreeSuppress layer formation
To form a thermal barrier coating film, using the conventional method
Performance comparison with the thermal barrier coating film was performed.

【0013】本実施例において用いた装置の概要を図1
に示す。図1の(a)、(b)及び(c)はそれぞれ予
備加熱中、成膜初期(非酸化性雰囲気下での成膜)及び
本成膜(酸素雰囲気下での成膜)の状態を示す図であ
る。図1において4は基材(試験片)、7は予備加熱
炉、8は電子ビーム14を発生させる高電圧型EBガ
ン、9は水冷中空のるつぼ、10は真空槽、15はAr
等の非酸化性ガス11を導入するガス導入口、12はY
SZの供給源となるYSZ棒をそれぞれ示す。この例で
はガス導入口15は一つで、源流側でバルブ(図示せ
ず)を切り換えることにより非酸化性ガス11又は酸素
13を導入するようにしているが、それぞれ別々の導入
口を設けてもよい。図2に図1のるつぼ9の詳細図を示
す。図2中の16は冷却水20を供給する冷却水導入管
である。成膜操作の概要は次のとおりである。先ず図1
(a)に示すように試験片(基材)4を、真空槽10内
の10-4Torr以下の真空雰囲気中で、予備加熱炉7
により800〜1000℃程度に加熱、保持して予熱し
た後、図1(b)に示すように水冷中空のるつぼ9直上
に搬送し、成膜した。
FIG. 1 shows the outline of the apparatus used in this embodiment.
Shown in FIGS. 1A, 1B, and 1C show the states of the initial film formation (film formation in a non-oxidizing atmosphere) and the main film formation (film formation in an oxygen atmosphere) during preheating, respectively. FIG. In FIG. 1, 4 is a substrate (test piece), 7 is a preheating furnace, 8 is a high-voltage EB gun that generates an electron beam 14, 9 is a water-cooled hollow crucible, 10 is a vacuum tank, and 15 is Ar
Gas inlet for introducing non-oxidizing gas 11 such as
The YSZ bar which is a source of SZ is shown. In this example, one gas inlet 15 is provided, and a non-oxidizing gas 11 or oxygen 13 is introduced by switching a valve (not shown) on the source stream side. Is also good. FIG. 2 shows a detailed view of the crucible 9 of FIG. Reference numeral 16 in FIG. 2 denotes a cooling water introduction pipe for supplying the cooling water 20. The outline of the film forming operation is as follows. First, FIG.
As shown in (a), a test piece (substrate) 4 is placed in a preheating furnace 7 in a vacuum atmosphere of 10 −4 Torr or less in a vacuum chamber 10.
After heating and preheating by heating to about 800 to 1000 ° C., as shown in FIG.

【0014】使用した試験片4は、図3に示す形状、寸
法のものでIN738LCの基材19上のコート面20
へ、CoNiCrAlY合金を低圧溶射して厚さ0.1
mmのアンダーコート層18を形成し、1120℃で2
時間真空熱処理後、表面をRa=3程度に研磨したもの
を用いた。
The test piece 4 used had the shape and dimensions shown in FIG. 3 and had a coated surface 20 on an IN738LC substrate 19.
CoNiCrAlY alloy is sprayed at a low pressure to a thickness of 0.1
mm undercoat layer 18 is formed at 1120 ° C.
After the vacuum heat treatment for one hour, the one whose surface was polished to Ra = 3 was used.

【0015】遮熱コーティング用のセラミックスとして
は7%Y2 3 部分安定化ZrO2(YSZ)を用い、
このYSZ棒(棒状インゴット)12を高電圧型EBガ
ン8からの電子ビーム14で溶融させ、蒸気化したYS
Zを回転する試験片(基材)4に蒸着させ、成膜する。
成膜初期においては図1(b)に示すように基材19表
面のアンダーコート層18と遮熱コーティング膜との界
面へのAl2 3 の生成を抑制するためガス導入口15
から非酸化性ガス(Arガス)11を導入し、10-4
orrの圧力、非酸化性雰囲気下で成膜した。
As ceramics for thermal barrier coating, 7% Y 2 O 3 partially stabilized ZrO 2 (YSZ) is used.
This YSZ rod (rod-shaped ingot) 12 is melted by an electron beam 14 from a high-voltage EB gun 8 and vaporized YS
Z is deposited on the rotating test piece (substrate) 4 to form a film.
In the initial stage of the film formation, as shown in FIG. 1B, the gas inlet 15 for suppressing the generation of Al 2 O 3 at the interface between the undercoat layer 18 on the surface of the substrate 19 and the thermal barrier coating film.
Introducing a non-oxidizing gas (Ar gas) 11, 10 -4 T
The film was formed under a non-oxidizing atmosphere at a pressure of orr.

【0016】1分間の成膜によりアンダーコート層18
の表面がYSZで被覆され(YSZ層の厚み約0.5μ
m)、Al2 3 の生成の恐れが小さくなった時点で図
1(c)に示すようにガス導入口15から酸素ガス13
を導入し、8×10-3Torrの圧力、酸素雰囲気下で
成膜を続行し、厚さ約250μmの遮熱コーティング膜
を形成させた。この例におけるアンダーコート層18と
遮熱コーティング膜との界面に生成したAl2 3 層の
厚みは0.2μmであった。
The undercoat layer 18 is formed by forming the film for one minute.
Is coated with YSZ (the thickness of the YSZ layer is about 0.5 μm).
m), when the fear of producing Al 2 O 3 is reduced, as shown in FIG.
And the film formation was continued under an oxygen atmosphere at a pressure of 8 × 10 −3 Torr to form a thermal barrier coating film having a thickness of about 250 μm. In this example, the thickness of the Al 2 O 3 layer generated at the interface between the undercoat layer 18 and the thermal barrier coating film was 0.2 μm.

【0017】従来法を模擬した比較例として予めアンダ
ーコート層18の表面にAl2 3層を形成させた試験
片を使用し、成膜初期から8×10-3Torrの圧力、
酸素雰囲気下でYSZの成膜を行い、アンダーコート層
18と遮熱コーティング膜との界面に厚さ2μmのAl
2 3 層を有する厚さ約250μmの遮熱コーティング
膜を形成させた。表2に成膜条件と得られた遮熱コーテ
ィング膜の性状を示す。表2中の(a)は従来法を模擬
した比較例、(b)が本発明の手法による実施例であ
る。
As a comparative example simulating the conventional method, a test piece in which an Al 2 O 3 layer was previously formed on the surface of the undercoat layer 18 was used, and a pressure of 8 × 10 −3 Torr was applied from the initial stage of film formation.
A YSZ film is formed in an oxygen atmosphere, and a 2 μm thick Al film is formed on the interface between the undercoat layer 18 and the thermal barrier coating film.
A thermal barrier coating film having a thickness of about 250 μm and having a 2 O 3 layer was formed. Table 2 shows the film forming conditions and the properties of the obtained thermal barrier coating film. (A) in Table 2 is a comparative example simulating the conventional method, and (b) is an example according to the method of the present invention.

【0018】本発明の効果を確認するために、前記
(a)及び(b)の遮熱コーティング膜を形成させた試
験片について1000℃で1000時間の大気中酸化試
験を行った結果を表3に示す。表3から、従来の方法で
は1000℃で1000時間の加熱によりAl2 3
厚の増加が生じ、従来から弱いとされていたAl2 3
/MCrAlY界面において1000時間未満で剥離し
てしまった。これに対して、本発明の方法の場合、Al
2 3 層の増加は認められるものの、初期のAl2 3
層が薄い分、形成厚さが少なく、1000時間段階でも
剥離するに至っておらず、長寿命化が達成されているこ
とがわかる。
In order to confirm the effects of the present invention, the results of an atmospheric oxidation test at 1000 ° C. for 1000 hours for the test pieces on which the above-mentioned thermal barrier coating films (a) and (b) were formed are shown in Table 3. Shown in From Table 3, an increase in Al 2 O 3 layer thickness is caused by the heating of 1000 hours at 1000 ° C. in a conventional manner, Al 2 O 3 which has been a weak conventionally
/ MCrAlY interface peeled off in less than 1000 hours. In contrast, in the case of the method of the present invention, Al
Although an increase in the 2 O 3 layer is observed, the initial Al 2 O 3
Since the layer is thin, the formed thickness is small and the layer has not been peeled off even at the stage of 1000 hours, which indicates that a long life has been achieved.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【発明の効果】本発明の方法によれば、EB−PVD法
による遮熱コーティング膜の形成においてMCrAlY
合金からなるアンダーコート層と遮熱コーティング膜と
の界面に形成されるAl2 3 層の厚みを薄くすること
ができ、遮熱コーティングの長寿命化が可能であり、特
に、高温保持時間の長い、産業用ガスタービン等の部材
に適用する場合に効果的である。
According to the method of the present invention, MCrAlY is used for forming a thermal barrier coating film by the EB-PVD method.
The thickness of the Al 2 O 3 layer formed at the interface between the undercoat layer made of the alloy and the thermal barrier coating film can be reduced, and the life of the thermal barrier coating can be extended. It is effective when applied to a long member such as an industrial gas turbine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例において用いた装置の概要を示す説明
図。
FIG. 1 is an explanatory diagram showing an outline of an apparatus used in an embodiment.

【図2】図1の装置におけるるつぼ9の詳細図。FIG. 2 is a detailed view of a crucible 9 in the apparatus of FIG.

【図3】実施例において使用した試験片の性状を示す説
明図。
FIG. 3 is an explanatory diagram showing properties of a test piece used in an example.

【図4】EB−PVD法による遮熱コーティング膜の状
態を示す説明図。
FIG. 4 is an explanatory diagram showing a state of a thermal barrier coating film formed by an EB-PVD method.

【図5】EB−PVD法による遮熱コーティング膜にお
ける剥離発生状況を示す説明図。
FIG. 5 is an explanatory view showing the state of occurrence of peeling in a thermal barrier coating film by the EB-PVD method.

【符号の説明】[Explanation of symbols]

1 セラミック柱状晶 2 Al2 3 層 3 ア
ンダーコート層 4 基材 6 剥離発生箇所 7 予備加熱炉 8 高電圧型EBガン 9 るつぼ 10 真空槽 11 非酸化性ガス 12 YSZ棒 13 酸素
14 電子ビーム 15 ガス導入口 16 冷却水導入口 17 コ
ート面 18 アンダコート層 19 基材 20 冷却水
1 ceramic columnar crystals 2 Al 2 O 3 layer 3 undercoat layer 4 substrate 6 delamination occurrence point 7 preheating furnace 8 high-voltage type EB gun 9 crucible 10 vacuum tank 11 non-oxidizing gas 12 YSZ rod 13 oxygen 14 electron beam 15 Gas inlet 16 Cooling water inlet 17 Coated surface 18 Undercoat layer 19 Base material 20 Cooling water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 名山 理介 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Risuke Nayama 2-1-1 Shinhama, Arai-cho, Takasago-shi, Hyogo Inside the Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アンダーコート層となるMCrAlY合
金(M:CoNi、NiCo、Ni、Co又はFe)を
被覆した基材の表面に電子ビーム物理蒸着法によりセラ
ミックスの遮熱コーティング膜を形成させる方法におい
て、基材上に低圧溶射法により前記MCrAlY合金層
を形成させた後、電子ビーム物理蒸着法による遮熱コー
ティング膜の形成を初期段階は真空中又は非酸化性雰囲
気中で行い、アンダーコート層表面がセラミックス層で
被覆された後は酸素雰囲気中で行うことを特徴とする基
材表面への遮熱コーティング方法。
1. A method of forming a ceramic thermal barrier coating film on a surface of a base material coated with an MCrAlY alloy (M: CoNi, NiCo, Ni, Co or Fe) to be an undercoat layer by electron beam physical vapor deposition. After the MCrAlY alloy layer is formed on the base material by low pressure spraying, the formation of a thermal barrier coating film by electron beam physical vapor deposition is performed in a vacuum or in a non-oxidizing atmosphere in the initial stage, and the surface of the undercoat layer is formed. A method of performing thermal barrier coating on the surface of a substrate, wherein the method is performed in an oxygen atmosphere after the substrate is coated with a ceramic layer.
【請求項2】 前記セラミックスがY2 3 安定化Zr
2 であることを特徴とする請求項1に記載の基材表面
への遮熱コーティング方法。
2. The method according to claim 1, wherein the ceramic is Y 2 O 3 stabilized Zr.
2. The method according to claim 1, wherein the coating is O2.
JP10096219A 1998-04-08 1998-04-08 Thermal insulation coating method Withdrawn JPH11293452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10096219A JPH11293452A (en) 1998-04-08 1998-04-08 Thermal insulation coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10096219A JPH11293452A (en) 1998-04-08 1998-04-08 Thermal insulation coating method

Publications (1)

Publication Number Publication Date
JPH11293452A true JPH11293452A (en) 1999-10-26

Family

ID=14159136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10096219A Withdrawn JPH11293452A (en) 1998-04-08 1998-04-08 Thermal insulation coating method

Country Status (1)

Country Link
JP (1) JPH11293452A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103075A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Heavy Industries, Ltd. Method for repairing ni base alloy component
FR2882764A1 (en) * 2005-03-03 2006-09-08 Air Liquide METHOD FOR COATING AN OXYGEN-GAS OXYGEN EQUIPMENT OR ELEMENT
WO2009016932A1 (en) * 2007-08-02 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Oxide coating film, material coated with oxide coating film, and method for formation of oxide coating film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103075A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Heavy Industries, Ltd. Method for repairing ni base alloy component
US7172787B2 (en) 2001-06-13 2007-02-06 Mitsubishi Heavy Industries, Ltd. Method of repairing a Ni-base alloy part
FR2882764A1 (en) * 2005-03-03 2006-09-08 Air Liquide METHOD FOR COATING AN OXYGEN-GAS OXYGEN EQUIPMENT OR ELEMENT
WO2009016932A1 (en) * 2007-08-02 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Oxide coating film, material coated with oxide coating film, and method for formation of oxide coating film
US8465852B2 (en) 2007-08-02 2013-06-18 Kobe Steel, Ltd. Oxide film, oxide film coated material and method for forming an oxide film

Similar Documents

Publication Publication Date Title
US6123997A (en) Method for forming a thermal barrier coating
JP2695835B2 (en) Ceramic coated heat resistant material
US5792521A (en) Method for forming a multilayer thermal barrier coating
JP4607914B2 (en) Ceramic coated member and method for manufacturing the same
JP2002513081A (en) Product with corrosion protection layer and method of manufacturing corrosion protection layer
EP0044329A1 (en) Columnar grain ceramic thermal barrier coatings on polished substrates.
JP2001225411A (en) Method for forming ceramic coating comprising porous layer, and coated article
JPH0251978B2 (en)
US20080160208A1 (en) System and method for restoring or regenerating an article
CN101248214B (en) Method for providing a thermal barrier coating and substrate having such coating
JP2008095191A (en) Method for forming thermal barrier coating
JP3579262B2 (en) Bonding coat for thermal barrier coating system
JP2018162506A (en) High temperature member and manufacturing method of the same
JPH06306640A (en) High temperature exposure material
WO1992005298A1 (en) Columnar ceramic thermal barrier coating with improved adherence
JPH0978258A (en) High-temperature member having thermal insulation coating film and its production
EP1074637B1 (en) Method for forming a thermal barrier coating by electron beam physical vapor deposition
US20100254820A1 (en) Article with restored or regenerated structure
JPH11293452A (en) Thermal insulation coating method
JP4690709B2 (en) Heat resistant material and manufacturing method thereof
JPH0657399A (en) Ceramic-coating method for metal base material
JP3411823B2 (en) High temperature member and method of manufacturing the same
KR100270226B1 (en) The heat protect coating and the same method
JP2005002409A (en) Ceramic-coated member, method for manufacturing the same, and thermal-barrier coated high-temperature component using the ceramic-coated member
RU2089655C1 (en) Method of application of protective coating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705