JPH0251978B2 - - Google Patents

Info

Publication number
JPH0251978B2
JPH0251978B2 JP56183784A JP18378481A JPH0251978B2 JP H0251978 B2 JPH0251978 B2 JP H0251978B2 JP 56183784 A JP56183784 A JP 56183784A JP 18378481 A JP18378481 A JP 18378481A JP H0251978 B2 JPH0251978 B2 JP H0251978B2
Authority
JP
Japan
Prior art keywords
coating layer
component
ceramic
ceramic coating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56183784A
Other languages
Japanese (ja)
Other versions
JPS5887273A (en
Inventor
Yoshuki Kojima
Tsukasa Ogawa
Naotatsu Asahi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56183784A priority Critical patent/JPS5887273A/en
Publication of JPS5887273A publication Critical patent/JPS5887273A/en
Publication of JPH0251978B2 publication Critical patent/JPH0251978B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツク被覆層を有する部品及びそ
の製造法に係り、特に耐食性並びに耐熱性保護被
覆を施されたガスタービン部品及びその製造方法
に関する。 ガスタービンは、高温で稼動されるほど高い効
率を発揮するので、その稼動温度の上昇を絶えず
希求されている。そのことは、高温ガス流にさら
される部品に、それに対応できる耐熱性と耐食性
をそなえることを要求する。炭化ケイ素、サーメ
ツト等耐熱性の良いセラミツクや複合材料には、
製造法や強度等になお問題があるので、現状で
は、ガスタービン部品は金属材料を基本に製造さ
れている。しかし、ニツケル基、コバルト基など
の耐熱性材料は、その使用を1000℃以下に限定さ
れる。それ故、それらがガスタービン部品に適用
されるに当つては、冷却あるいは熱遮蔽する方法
が種々検討されてきた。 熱遮蔽は主に、部品本体の金属材(以下母材と
称する)の表面にセラミツク層を形成することに
よつて行なわれ、セラミツクの低い熱伝導率と高
いふく射率とによつて、部品の温度を低減する上
で有効であつた。ただ、このような被覆層は熱サ
イクルの反復等によつて、使用中母材から剥離し
その機能を失う傾向があつた。それ故、剥離の主
因である金属とセラミツクの膨張係数の相違に基
づく熱応力を緩和するために、金属母材とセラミ
ツク層との中間に両者を混合ないし複合してなる
層を設け(例えば特開昭55−113880など)、ある
いはセラミツク層に、高温、長時間の熱処理によ
つて微細な割れを形成させ(例えば特開昭56−
54905)た部品など、種々の提案がなされている。
それらはそれぞれ改善されてはいるが、熱サイク
ル試験の成績からその程度は限定されたもので、
一層の寿命向上をはかることが必要であると認め
られた。 本発明は、このような状況に対応すべく被覆の
構成や処理過程を詳しく検討した成果であつて、
延長された寿命を有する耐熱、耐食性被覆を施さ
れたガスタービン部品を提供することを目的とし
ている。 その特徴は、耐熱金属材料で構成された特に、
ガスタービン部品において、その表面に設けられ
た前記耐熱金属材料より高温耐食性に富む金属被
覆層の上に、微細な割れを有するセラミツク被覆
層が形成されていることである。 本発明においては、耐熱材料(母材)の表面
に、使用雰囲気下において該母材よりも耐食性に
富んでいる合金被覆層が設けられている。 その形状に当つては、該合金の粉末、酸素分圧
10-3トール以下に制御された雰囲気の中で、予熱
された母材にプラズマ溶射する方法によるのが適
当である。雰囲気中の酸素分圧を制限することに
よつて、溶射の際該合金層に生じやすい酸化皮膜
等による欠陥を、最少限に抑制することができ
る。また、予熱によつて溶射中の母材の表面温度
を約700〜1200℃程度に保持することが好ましく、
それによつて空孔等の少ない稠密な合金被覆層の
形成が可能となる。その結果得られた被覆層は、
高温腐食等の作用から母材を保護するとともに、
セラミツク被覆層の下地としての重要な役割を担
うことができる。なお、予熱温度が低すぎれば溶
射粒子は急冷されるため欠陥の多い被覆層が形成
され、また上記より高くすることは母材や被覆層
の変形などを生ずるので、好ましくないことは言
うまでもない。 金属被覆層は公知の組成を使用でき、例えばニ
ツケルにクロム、アルミニウム、イツトリウムお
よびケイ素からなる群から選ばれた少なくとも1
種の元素を含む合金が有用である。さらに、合金
にジルコニウムを3〜30重量%の範囲で含有させ
ることは、該合金被覆層とその上に設けられるセ
ラミツク被覆層との密着力を高めるので、好まし
い。ジルコニウム含有量の効果を高めるには3〜
30重量%が望ましい。このジルコニウムの添加効
果は、ジルコニウムの酸化物生成の自由エネルギ
ーが著しく小さいので、合金およびセラミツク被
覆形成の際、低酸素分圧下においてごく薄い酸化
膜を生じ、セラミツク層に対する合金膜の整合性
を高めることによるように推定される。 本発明においては、前記耐食性合金層の上に、
微細な割れを、有するセラミツク被覆層が設けら
れている。該層は、先ず、酸素分圧10-3トール以
下に制御された雰囲気中で、表面温度が該セラミ
ツクの再結晶化温度以上でしかも母材および被覆
層の合金それぞれの融点よりも低い温度であるよ
うに熱せられた前記合金で被覆された母材上に、
セラミツク粒子を溶射することによつてそれを被
覆し、次いで、該被覆層の表面に冷媒を吹きつけ
てそれを急冷させ割れを生じさせることによつて
形成される。 雰囲気中の酸素分圧が10-3トールより高いとき
には、合金層は、表面の酸化を防止し、母材から
の剥離を防止し、母材との整合性を得るには10-3
トール以下の酸素分圧で溶射するのがよい。酸素
分圧が10-3トール以下に制御された雰囲気中で
は、合金層中の例えばアルミニウム、イツトリウ
ム、チタンなど酸化物生成の自由エネルギーが著
しく小さな元素の酸化は起り得るけれども、その
酸化層は極めて薄いので合金層と母材との整合性
が損われることはなく、一方、合金層のセラミツ
ク層との整合性には好影響をもたらす。 また、溶射時に、母材の表面温度を前記のよう
な範囲に維持することによつて、溶射されたセラ
ミツク粒子は、合金層に到達しても、従来法にお
けるように急に低い温度になることなく、延長さ
れた時間の間該表面において液相ないし軟化状態
にあり、その上に溶射粒子が逐次衝突し集積され
る。従つて、粒子相互間に不連続境界あるいは空
孔などは生じにくく、その結果として稠密、強固
なセラミツク被覆層が合金被覆層の上に形成され
る。また、仮に該層内に、一般的な溶射層に特有
な積層状組織が一部生じても、本発明の条件下で
は再結晶化によつて減少もしくはほとんど消失す
る。 本発明において、セラミツクは公知の材料でよ
く、例えばジルコニアと、酸化カルシウム、マグ
ネシア、イツトリアからなる群から選ばれた1種
以上の酸化物とを含む材料などが有用である。 セラミツク被覆層の厚さは約1〜350μm程度
でよい。熱遮蔽の効果を得るためには、少なくと
も厚さ1μm以上とすることが望ましい。また、
350μm以上に厚くなると、冷媒噴射によつてセ
ラミツク層が十分急速に冷却されないので、生ず
る割れは幅、間隔ともに大きなものとなり、熱応
力の緩和に役立つ微細な割れを形成させることが
できない。 さて、所望の厚さに形成された前記温度になお
熱せられた状態にあるセラミツク被覆層表面に、
冷媒が吹きつけられて該被覆層を急冷する。 冷媒としてはアルゴン、ヘリウム、窒素などの
不活性ガスが使用される。それらの噴射による急
冷の結果、セラミツク被覆層には、第1図に示さ
れるように、該層の厚さ方向にほぼ直線状に成長
した微細な割れが生ずる。その割れの幅および間
隔は、層間のほか冷却条件に依存し、任意に調整
されることができる。熱応力を十分に緩和するた
めには、割れの幅、間隔ともに小さいことが望ま
しい。具体的には、割れの幅1〜50μm、間隔10
〜500μm程度にすることによつて、従来法より
かなりすぐれた成績が得られることが、熱サイク
ル試験によつて判明した。そして、本発明によれ
ば幅1〜5μmの割れを間隔10〜50μmで形成する
ことも可能である。これは、セラミツク被覆層が
稠密で強度にすぐれ、しかも、下地の稠密で強固
な合金被覆層によく密着していることによる。も
し、両層間の接着が弱ければ急冷時に層間剥離
し、また、セラミツク層に内部欠陥があつても急
冷時にはそれが障害となつて、何れにせよ好まし
い効果的割れは形成されない。 なお、セラミツク被覆層の割れ部位以外の部分
は、割れの発生後もその特長を保持している。従
つて、本発明のセラミツク被覆層は長期にわたつ
て熱遮蔽の役をはたし、その下の耐食性合金被覆
層と相まつて、例えばライナー、トラジシヨンピ
ース、ノズル、ブレードなど高温にさらされるガ
スタービン部品の寿命を延長することができる。 実施例 1 ニツケル基耐熱合金鋼からなるガスタービン部
品の表面を清浄化し、該表面をアルミナ製グリツ
ドを用いてブラスチングした。それから、排気装
置を具備した密閉器内で、雰囲気中の酸素分圧を
10-3トール以下に制御しつつ、表面温度700〜
1200℃にあるよう予熱された部品に、Ni−50重
量%、Cr−12重量%Al合金粉末をプラズマ溶射
した。酸素分圧の制御のため、溶射に先立ち、容
器を10-2〜10-3トールに排気し、その後アルゴン
を760トールになるまで導入する操作を数回くり
返して、酸素分圧10-3トール以下にした。さら
に、溶射中は排気装置を運転し、容器内圧力を
100〜150トールに保持した。酸素分圧は、固体電
解質を用いた酸素センサーによつて測つた。 また、部品の表面予熱は補助加熱装置もしくは
プラズマジエツトにより、その温度は、放射率を
補正した光高温計で測定した。 上記の条件で、約50μm厚の合金層を、部品表
面に均一に被覆した。次いで、前記と同様の条件
で、ZrO2−12重量%Y2O3粉末を、合金層の表面
温度700〜1200℃に保たれた部品に溶射し、約
10μm厚のセラミツク層を被覆した。 溶射終了後、直ちに該部品のセラミツク層表面
にアルゴンを吹きつけて、セラミツク層のみを急
冷させ、該層に割れを発生させた。その後、部品
全体を自然放冷させた。走査型電子顕微鏡により
観察したところ、幅1〜5μmの割れが間隔10〜
50μmの範囲で一様に生じていた。その割れは、
第1図のようにセラミツク層の厚さ方向にほぼ直
線的に成長しており、大部分が該層の下部に達し
ていた。該部品に熱サイクル試験を課したとこ
ろ、表の成績を得た。熱サイクル試験条件は次の
とおりである。加熱時の温度は900℃で冷却時は
室温で加熱時間は5分間、冷却速度は70℃/秒の
熱サイクルである。No.2は溶射終了後のセラミツ
ク層表面の冷却条件を変えた場合の結果で、No.1
に比べ冷却用アルゴンガス量が1/2である。冷却
速度を直接測定することは困難であるが、冷却時
間から求めた計算では約10-3℃/秒程度と推察さ
れうる。なお、No.3は公知(例えば特開昭56−
54905)の方法で行なつた場合に比べ、本発明の
方法による部品においては約10倍から100倍以上
の熱サイクルに対する長寿命化の結果が得られ
た。
The present invention relates to a component having a ceramic coating layer and a method for manufacturing the same, and more particularly to a gas turbine component provided with a corrosion-resistant and heat-resistant protective coating and a method for manufacturing the same. Gas turbines exhibit higher efficiency as they are operated at higher temperatures, so there is a constant desire to increase the operating temperature. This requires that components exposed to high-temperature gas flows have corresponding heat resistance and corrosion resistance. Heat-resistant ceramics and composite materials such as silicon carbide and cermets are
Since there are still problems with manufacturing methods, strength, etc., gas turbine parts are currently manufactured primarily from metal materials. However, use of heat-resistant materials such as nickel-based and cobalt-based materials is limited to temperatures below 1000°C. Therefore, various methods for cooling or thermally shielding gas turbine components have been investigated when they are applied to gas turbine components. Heat shielding is mainly performed by forming a ceramic layer on the surface of the metal material (hereinafter referred to as base material) of the component body. It was effective in reducing temperature. However, such a coating layer tends to peel off from the base material during use and lose its functionality due to repeated thermal cycles. Therefore, in order to alleviate the thermal stress caused by the difference in expansion coefficients between metal and ceramic, which is the main cause of peeling, a layer made of a mixture or composite of the metal base material and the ceramic layer is provided between the metal base material and the ceramic layer (for example, 113880, etc.), or by forming fine cracks in the ceramic layer by heat treatment at high temperature and for a long time (for example, JP-A-56-113880).
Various proposals have been made, including parts that
Although each of these has been improved, the extent of the improvement has been limited based on the results of thermal cycle tests.
It was recognized that it was necessary to further improve the lifespan. The present invention is the result of a detailed study of the coating structure and treatment process in order to respond to such situations.
The objective is to provide a gas turbine component with a heat-resistant, corrosion-resistant coating that has an extended service life. Its features are especially made of heat-resistant metal materials.
In a gas turbine component, a ceramic coating layer having fine cracks is formed on a metal coating layer having higher high-temperature corrosion resistance than the heat-resistant metal material provided on the surface of the gas turbine component. In the present invention, the surface of the heat-resistant material (base material) is provided with an alloy coating layer that has higher corrosion resistance than the base material in the use atmosphere. Its shape depends on the powder of the alloy and the oxygen partial pressure.
It is appropriate to use a method of plasma spraying onto a preheated base material in an atmosphere controlled to 10 -3 Torr or less. By limiting the oxygen partial pressure in the atmosphere, defects caused by oxide films and the like that are likely to occur in the alloy layer during thermal spraying can be suppressed to a minimum. In addition, it is preferable to maintain the surface temperature of the base material during thermal spraying at approximately 700 to 1200°C by preheating.
This makes it possible to form a dense alloy coating layer with few pores. The resulting coating layer is
In addition to protecting the base material from effects such as high-temperature corrosion,
It can play an important role as a base for ceramic coating layers. It goes without saying that if the preheating temperature is too low, the sprayed particles will be rapidly cooled, resulting in the formation of a coating layer with many defects, and if the preheating temperature is too high, it will cause deformation of the base material and the coating layer, so it goes without saying that this is not preferable. The metal coating layer can have a known composition, for example, nickel and at least one member selected from the group consisting of chromium, aluminum, yttrium, and silicon.
Alloys containing certain elements are useful. Further, it is preferable that the alloy contains zirconium in a range of 3 to 30% by weight, since this increases the adhesion between the alloy coating layer and the ceramic coating layer provided thereon. To enhance the effect of zirconium content, 3~
30% by weight is desirable. The effect of adding zirconium is that the free energy of zirconium oxide formation is extremely small, so when forming alloys and ceramic coatings, a very thin oxide film is formed under low oxygen partial pressure, which improves the consistency of the alloy film to the ceramic layer. It is estimated that this may be the case. In the present invention, on the corrosion-resistant alloy layer,
A ceramic coating layer with microscopic cracks is provided. The layer is first formed in an atmosphere with an oxygen partial pressure of 10 -3 Torr or less, at a surface temperature that is higher than the recrystallization temperature of the ceramic and lower than the melting points of the base material and the alloy of the coating layer. on the base material coated with said alloy heated to a
It is formed by coating ceramic particles by thermal spraying and then spraying the surface of the coating layer with a coolant to quench it and cause it to crack. When the oxygen partial pressure in the atmosphere is higher than 10 -3 Torr, the alloy layer can prevent surface oxidation, prevent delamination from the base material, and obtain consistency with the base material at 10 -3 Torr .
It is best to spray at an oxygen partial pressure below Torr. In an atmosphere where the oxygen partial pressure is controlled to 10 -3 Torr or less, oxidation of elements in the alloy layer, such as aluminum, yttrium, and titanium, which have extremely low free energy for oxide formation, can occur; Being thin, the consistency between the alloy layer and the base material is not compromised, while the consistency of the alloy layer with the ceramic layer is positively affected. In addition, by maintaining the surface temperature of the base material within the above range during thermal spraying, the temperature of the sprayed ceramic particles does not suddenly drop to a low temperature even when they reach the alloy layer, unlike in conventional methods. It remains in a liquid phase or softened state on the surface for an extended period of time without causing any damage, and the thermal spray particles successively impinge and accumulate thereon. Therefore, discontinuous boundaries or voids between particles are less likely to occur, and as a result, a dense and strong ceramic coating layer is formed on the alloy coating layer. Further, even if a part of the laminated structure peculiar to a general thermal sprayed layer occurs in the layer, it is reduced or almost disappears by recrystallization under the conditions of the present invention. In the present invention, the ceramic may be a known material, such as a material containing zirconia and one or more oxides selected from the group consisting of calcium oxide, magnesia, and ittria. The thickness of the ceramic coating layer may be approximately 1 to 350 .mu.m. In order to obtain a heat shielding effect, it is desirable that the thickness be at least 1 μm or more. Also,
When the thickness exceeds 350 μm, the ceramic layer is not cooled quickly enough by the coolant injection, so the cracks that occur become large in both width and spacing, making it impossible to form fine cracks that are useful for alleviating thermal stress. Now, on the surface of the ceramic coating layer that has been formed to a desired thickness and is still heated to the above temperature,
A refrigerant is sprayed to rapidly cool the coating layer. Inert gases such as argon, helium, and nitrogen are used as refrigerants. As a result of the rapid cooling caused by these jets, fine cracks are formed in the ceramic coating layer that grow approximately linearly in the thickness direction of the layer, as shown in FIG. The width and spacing of the cracks depend on the cooling conditions as well as between the layers, and can be adjusted as desired. In order to sufficiently alleviate thermal stress, it is desirable that both the width and interval of cracks be small. Specifically, the crack width is 1 to 50 μm, and the interval is 10
It has been found through thermal cycle tests that considerably better results than conventional methods can be obtained by setting the thickness to about 500 μm. According to the present invention, it is also possible to form cracks with a width of 1 to 5 μm at intervals of 10 to 50 μm. This is because the ceramic coating layer is dense and has excellent strength, and also adheres well to the underlying dense and strong alloy coating layer. If the adhesion between the two layers is weak, the layers will peel off during quenching, and even if the ceramic layer has internal defects, they will become a hindrance during quenching, and in any case, no desirable effective cracks will be formed. Note that the portions of the ceramic coating layer other than the cracked portion retain their characteristics even after the cracking occurs. Therefore, the ceramic coating layer of the present invention serves as a long-term heat shield and, together with the underlying corrosion-resistant alloy coating layer, protects against gases exposed to high temperatures, such as liners, transition pieces, nozzles, blades, etc. The lifespan of turbine components can be extended. Example 1 The surface of a gas turbine component made of nickel-based heat-resistant alloy steel was cleaned and blasted using an alumina grid. Then, in a closed chamber equipped with an exhaust system, the partial pressure of oxygen in the atmosphere is reduced.
While controlling the surface temperature to below 10 -3 Torr, the surface temperature is 700~
Plasma spraying of Ni-50 wt%, Cr-12 wt% Al alloy powder was applied to the parts preheated to 1200°C. To control the oxygen partial pressure, prior to thermal spraying, the vessel was evacuated to 10 -2 to 10 -3 Torr, and then argon was introduced several times until the pressure reached 760 Torr. I made it below. Furthermore, during thermal spraying, operate the exhaust system to reduce the pressure inside the vessel.
It was held at 100-150 torr. Oxygen partial pressure was measured by an oxygen sensor using a solid electrolyte. The surface of the component was preheated using an auxiliary heating device or a plasma jet, and its temperature was measured using an optical pyrometer corrected for emissivity. Under the above conditions, an alloy layer with a thickness of about 50 μm was uniformly coated on the surface of the part. Next, under the same conditions as above, ZrO 2 -12% by weight Y 2 O 3 powder was sprayed onto the parts whose surface temperature of the alloy layer was kept at 700-1200°C, and about
A 10 μm thick ceramic layer was applied. Immediately after the thermal spraying was completed, argon was blown onto the surface of the ceramic layer of the part to rapidly cool only the ceramic layer, causing cracks to occur in the layer. Thereafter, the entire part was allowed to cool naturally. When observed using a scanning electron microscope, cracks with a width of 1 to 5 μm were observed at intervals of 10 to 5 μm.
It occurred uniformly in a range of 50 μm. The crack is
As shown in FIG. 1, it grew almost linearly in the thickness direction of the ceramic layer, and most of it reached the bottom of the layer. When the parts were subjected to a thermal cycle test, the results shown in the table were obtained. The thermal cycle test conditions are as follows. The heating temperature was 900°C, the cooling time was 5 minutes at room temperature, and the cooling rate was 70°C/sec. No. 2 is the result when the cooling conditions of the ceramic layer surface after thermal spraying are changed, and No. 1
The amount of argon gas for cooling is 1/2 compared to the previous model. Although it is difficult to directly measure the cooling rate, it can be estimated to be about 10 -3 ° C./sec based on calculations from the cooling time. Note that No. 3 is publicly known (for example, Japanese Patent Application Laid-open No. 1983-
54905), the parts produced by the method of the present invention had a lifespan of about 10 to 100 times longer with respect to thermal cycles.

【表】 実施例 2 実施例1と同様の溶射条件でNi−50重量%、
Cr−12重量%Al合金にZrを加えた合金を溶射し、
次にZrO2−12重量%Y2O3を実施例1と同様の方
法で溶射した。Zr量を種々変化させた場合の試
験片について金属合金溶射層、ZrO2−12重量%
Y2O3溶射層の密着力について調べた。密着力の
評価は直径30mm、長さ50mmの円柱状試料の円形端
面に上記溶射層を形成し、その上に接着剤を用い
て同じ寸法の円柱状試料(溶射層なし)を接着
し、それらを引張り、破断強度から溶射層の密着
力を求めた。破断はいずれも金属合金層とZrO2
−12重量%Y2O3溶射層の境界部分であつた。 その結果は、第1図に示すとおりで、ジルコニ
ウムを3重量%程度以上含有させることによつ
て、密着力を2倍ないしそれ以上に高めることが
できることが判明した。 又、実施例1と同様の熱サイクル試験の結果、
実施例1とほぼ同等もしくはそれ以上の良好な結
果が得られた。 なお、本発明において実施例1および2で用い
たNi−50重量%、Cr−12重量%Al、ZrO2−12重
量%Y2O3に特に限定されることはない。
[Table] Example 2 Under the same thermal spraying conditions as Example 1, Ni-50% by weight,
Spraying a Cr-12% Al alloy with Zr added,
Next, ZrO 2 -12% by weight Y 2 O 3 was thermally sprayed in the same manner as in Example 1. Metal alloy sprayed layer, ZrO 2 −12% by weight for test pieces with various Zr contents
The adhesion of the Y 2 O 3 sprayed layer was investigated. The adhesion was evaluated by forming the above thermal sprayed layer on the circular end face of a cylindrical sample with a diameter of 30 mm and a length of 50 mm, and then using an adhesive to adhere a cylindrical sample of the same size (without a thermal spray layer) on top of it. was pulled, and the adhesion strength of the sprayed layer was determined from the breaking strength. Both fractures occur in the metal alloy layer and ZrO 2
-12% by weight Y 2 O 3 was present at the boundary between the sprayed layers. The results are shown in FIG. 1, and it was found that by containing zirconium in an amount of about 3% by weight or more, the adhesion strength could be doubled or more. In addition, the results of a heat cycle test similar to Example 1,
Good results almost equal to or better than those of Example 1 were obtained. Note that the present invention is not particularly limited to Ni-50% by weight, Cr-12% by weight Al, and ZrO2-12 % by weight Y2O3 used in Examples 1 and 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガスタービン部品の模式的部
分断面図であり、第2図は合金層のジルコニウム
含量と合金層・セラミツク層間の密着力との関係
を示す。 1……セラミツク層、2……割れ、3……合金
層、4……母材。
FIG. 1 is a schematic partial sectional view of a gas turbine component of the present invention, and FIG. 2 shows the relationship between the zirconium content of the alloy layer and the adhesion between the alloy layer and the ceramic layer. 1...Ceramic layer, 2...Crack, 3...Alloy layer, 4...Base material.

Claims (1)

【特許請求の範囲】 1 耐熱金属材料で構成された部品において、該
部品はこの表面に設けられた前記耐熱金属材料よ
りも高温耐食性に富む金属被覆層及び該被覆層上
に形成された微細な割れを有するセラミツク被覆
とを有し、前記セラミツク被覆層はジルコニア
と、酸化カルシウム、マグネシアおよびイツトリ
アからなる群から選ばれた少なくとも1種とを含
有し且つ幅1〜50μmの割れが間隔10〜500μmで
形成されていることを特徴とするセラミツク被覆
層を有する部品。 2 前記金属被覆層は、クロムと、アルミニウ
ム、イツトリウムおよびケイ素からなる群から選
ばれた少なくとも1種とを含有するNi基合金か
らなることを特徴とする特許請求の範囲第1項記
載のセラミツク被覆層を有する部品。 3 前記Ni基合金がジルコニウムを3〜30重量
%含有することを特徴とする特許請求の範囲第2
項記載のセラミツク被覆層を有する部品。 4 前記部品は高温燃焼ガスにさらされるガスタ
ービン構成部品であることを特徴とする特許請求
の範囲第1項〜第3項のいずれかに記載のセラミ
ツク層を有する部品。 5 耐熱金属材料から構成された部品の製造法に
おいて、 (a) 前記耐熱金属材料よりも高温耐食性に富む合
金粉末を、低酸素分圧雰囲気中で、前記部品の
表面に溶射し被覆する工程、 (b) ジルコニアと、酸化カルシウム、マグネシア
およびイツトリアからなる群から選ばれた少な
くとも1種とを含有するセラミツク粉末を、低
酸素分圧雰囲気中で前記金属被覆層の表面に溶
射する工程、 および (c) 前記セラミツク被覆層を形成後急冷すること
により幅が1〜50μmの割れを10〜500μm間隔
で形成する工程、 を包含することを特徴とするセラミツク被覆層を
有する部品の製造方法。 6 前記工程(a)において部品が、表面温度で700
〜1200℃に予熱されていることを特徴とする特許
請求の範囲第5項記載のセラミツク被覆層を有す
る部品の製造方法。 7 前記工程(b)において部品が、セラミツクの再
結晶化温度よりも高く、該耐熱材料および合金の
それぞれの融点以下の表面温度に予熱されている
ことを特徴とする特許請求の範囲第5項もしくは
第6項記載のセラミツク被覆層を有する部品の製
造方法。 8 前記部品は高温燃焼ガスにさらされるガスタ
ービン構成部品であることを特徴とする特許請求
の範囲第5項〜第7項のいずれかに記載のセラミ
ツク被覆層を有する部品の製造方法。
[Scope of Claims] 1. A component made of a heat-resistant metal material, which includes a metal coating layer provided on the surface of the component and having higher high-temperature corrosion resistance than the heat-resistant metal material, and a fine microstructure formed on the coating layer. a ceramic coating having cracks, the ceramic coating layer containing zirconia and at least one selected from the group consisting of calcium oxide, magnesia, and ittria, and having cracks with a width of 1 to 50 μm at intervals of 10 to 500 μm. A component having a ceramic coating layer, characterized in that it is formed of a ceramic coating layer. 2. The ceramic coating according to claim 1, wherein the metal coating layer is made of a Ni-based alloy containing chromium and at least one member selected from the group consisting of aluminum, yttrium, and silicon. Parts with layers. 3. Claim 2, wherein the Ni-based alloy contains 3 to 30% by weight of zirconium.
Components having a ceramic coating layer as described in . 4. The component having a ceramic layer according to any one of claims 1 to 3, wherein the component is a gas turbine component exposed to high-temperature combustion gas. 5. A method for manufacturing a component made of a heat-resistant metal material, including (a) spraying and coating the surface of the component in a low oxygen partial pressure atmosphere with an alloy powder having higher high-temperature corrosion resistance than the heat-resistant metal material; (b) spraying ceramic powder containing zirconia and at least one member selected from the group consisting of calcium oxide, magnesia, and ittria onto the surface of the metal coating layer in a low oxygen partial pressure atmosphere, and ( c) A method for manufacturing a component having a ceramic coating layer, comprising the step of: forming cracks having a width of 1 to 50 μm at intervals of 10 to 500 μm by rapidly cooling the ceramic coating layer after forming the ceramic coating layer. 6 In step (a) above, the parts have a surface temperature of 700
A method for manufacturing a component having a ceramic coating layer according to claim 5, wherein the component is preheated to ~1200°C. 7. Claim 5, characterized in that in step (b), the component is preheated to a surface temperature higher than the recrystallization temperature of the ceramic and lower than the respective melting points of the heat-resistant material and alloy. Alternatively, a method for manufacturing a component having a ceramic coating layer according to item 6. 8. The method for manufacturing a component having a ceramic coating layer according to any one of claims 5 to 7, wherein the component is a gas turbine component exposed to high-temperature combustion gas.
JP56183784A 1981-11-18 1981-11-18 Parts having ceramic coated layer and their production Granted JPS5887273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183784A JPS5887273A (en) 1981-11-18 1981-11-18 Parts having ceramic coated layer and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183784A JPS5887273A (en) 1981-11-18 1981-11-18 Parts having ceramic coated layer and their production

Publications (2)

Publication Number Publication Date
JPS5887273A JPS5887273A (en) 1983-05-25
JPH0251978B2 true JPH0251978B2 (en) 1990-11-09

Family

ID=16141872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183784A Granted JPS5887273A (en) 1981-11-18 1981-11-18 Parts having ceramic coated layer and their production

Country Status (1)

Country Link
JP (1) JPS5887273A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155255A (en) * 1991-12-03 1993-06-22 Nissan Motor Co Ltd Mounting structure for automotive engine
JPH11222661A (en) * 1997-11-18 1999-08-17 Sermatech Internatl Inc Strain-allowable ceramic coating
JP2005180257A (en) * 2003-12-18 2005-07-07 Hitachi Ltd Heat resistant member including heat shield coating
JP2007270245A (en) * 2006-03-31 2007-10-18 Mitsubishi Heavy Ind Ltd Thermal shield coating member and manufacturing method therefor, and thermal shield coating member, gas turbine and sintered body
JPWO2013061945A1 (en) * 2011-10-26 2015-04-02 株式会社ディ・ビー・シー・システム研究所 Heat-resistant alloy member and manufacturing method thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204382A (en) * 1985-03-07 1986-09-10 Nissei Plastics Ind Co Tie-bar for mold opening and shutting device
EP0211579B1 (en) * 1985-08-02 1990-03-28 Ngk Insulators, Ltd. Method of making a silicon nitride sintered member
JP2736525B2 (en) * 1987-09-14 1998-04-02 バブコツク日立株式会社 Spray method
JPH03223455A (en) * 1990-01-29 1991-10-02 Sugitani Kinzoku Kogyo Kk Ceramic thermal spraying material
US5082741A (en) * 1990-07-02 1992-01-21 Tocalo Co., Ltd. Thermal spray material and thermal sprayed member using the same
US5032557A (en) * 1990-07-02 1991-07-16 Tocalo Co., Ltd. Thermal spray material and and thermal sprayed member using the same
JP2669928B2 (en) * 1990-09-20 1997-10-29 日本原子力研究所 Underlayer plasma spray coating
JPH0789779A (en) * 1993-09-20 1995-04-04 Hitachi Ltd Self-recovery function coating material and its production
DE19743579C2 (en) * 1997-10-02 2001-08-16 Mtu Aero Engines Gmbh Thermal barrier coating and process for its manufacture
US6180262B1 (en) * 1997-12-19 2001-01-30 United Technologies Corporation Thermal coating composition
US5879753A (en) * 1997-12-19 1999-03-09 United Technologies Corporation Thermal spray coating process for rotor blade tips using a rotatable holding fixture
KR20010062209A (en) * 1999-12-10 2001-07-07 히가시 데쓰로 Processing apparatus with a chamber having therein a high-etching resistant sprayed film
US6730413B2 (en) * 2001-07-31 2004-05-04 General Electric Company Thermal barrier coating
JP4607530B2 (en) * 2004-09-28 2011-01-05 株式会社日立製作所 Heat resistant member having a thermal barrier coating and gas turbine
JP4568094B2 (en) * 2004-11-18 2010-10-27 株式会社東芝 Thermal barrier coating member and method for forming the same
US20080166489A1 (en) * 2005-08-04 2008-07-10 United Technologies Corporation Method for microstructure control of ceramic thermal spray coating
US20100098923A1 (en) * 2006-10-05 2010-04-22 United Technologies Corporation Segmented abradable coatings and process (ES) for applying the same
JP5281995B2 (en) * 2009-09-24 2013-09-04 株式会社日立製作所 Heat resistant member having a thermal barrier coating and gas turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155255A (en) * 1991-12-03 1993-06-22 Nissan Motor Co Ltd Mounting structure for automotive engine
JPH11222661A (en) * 1997-11-18 1999-08-17 Sermatech Internatl Inc Strain-allowable ceramic coating
JP4658273B2 (en) * 1997-11-18 2011-03-23 サーマテック インターナショナル インコーポレイテッド Strain-tolerant ceramic coating
JP2005180257A (en) * 2003-12-18 2005-07-07 Hitachi Ltd Heat resistant member including heat shield coating
JP4645030B2 (en) * 2003-12-18 2011-03-09 株式会社日立製作所 Heat resistant member with thermal barrier coating
JP2007270245A (en) * 2006-03-31 2007-10-18 Mitsubishi Heavy Ind Ltd Thermal shield coating member and manufacturing method therefor, and thermal shield coating member, gas turbine and sintered body
JPWO2013061945A1 (en) * 2011-10-26 2015-04-02 株式会社ディ・ビー・シー・システム研究所 Heat-resistant alloy member and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5887273A (en) 1983-05-25

Similar Documents

Publication Publication Date Title
JPH0251978B2 (en)
US4457948A (en) Quench-cracked ceramic thermal barrier coatings
US4861618A (en) Thermal barrier coating system
US5391404A (en) Plasma sprayed mullite coatings on silicon-base ceramics
EP1995350B1 (en) High temperature component with thermal barrier coating
US4916022A (en) Titania doped ceramic thermal barrier coatings
JP3434504B2 (en) Insulation method for metal substrate
JPH01279781A (en) Ceramic coated heat resistant member
JPH10507230A (en) Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same
WO1999018259A1 (en) Thermal barrier coating with alumina bond inhibitor
JPH0118994B2 (en)
CA1330638C (en) Thermal barrier coating system
Sun et al. The spalling modes and degradation mechanism of ZrO 2-8 wt.% Y 2 O 3/CVD-Al 2 O 3/Ni-22Cr-10Al-1Y thermal-barrier coatings
JP2002339052A (en) Heat-insulating film coated member and thermal-spray powder
Zhang et al. Thermal shock resistance of thermal barrier coatings modified by selective laser remelting and alloying techniques
JPH06306640A (en) High temperature exposure material
GB2159838A (en) Surface strengthening of overlay coatings
WO1992005298A1 (en) Columnar ceramic thermal barrier coating with improved adherence
JPS61174385A (en) Ceramic-coated fire resistant member and its production
JPS62210329A (en) Ceramic coated heat-resistant material and manufacture thereof
JPH07292453A (en) Heat shielding coating method for preventing high temperature oxidation
JPS62211387A (en) Production of ceramic coated heat resistant member
JPS62211390A (en) Ceramic coated heat resistant member and its production
JP3876176B2 (en) Ceramic composition for heat shielding coating film
JPS62211386A (en) Ceramic coated heat resistant member and its production