JP3876176B2 - Ceramic composition for heat shielding coating film - Google Patents

Ceramic composition for heat shielding coating film Download PDF

Info

Publication number
JP3876176B2
JP3876176B2 JP2002084286A JP2002084286A JP3876176B2 JP 3876176 B2 JP3876176 B2 JP 3876176B2 JP 2002084286 A JP2002084286 A JP 2002084286A JP 2002084286 A JP2002084286 A JP 2002084286A JP 3876176 B2 JP3876176 B2 JP 3876176B2
Authority
JP
Japan
Prior art keywords
heat
coating film
shielding coating
film
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002084286A
Other languages
Japanese (ja)
Other versions
JP2003277952A (en
Inventor
一郎 永野
由起彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002084286A priority Critical patent/JP3876176B2/en
Publication of JP2003277952A publication Critical patent/JP2003277952A/en
Application granted granted Critical
Publication of JP3876176B2 publication Critical patent/JP3876176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガスタービンの動翼、静翼又は燃焼器(内筒、尾筒)などの熱遮蔽コーティングに用いる熱遮蔽コーティング膜用セラミック組成物に関する。
【0002】
【従来の技術】
近年、ガスタービンの高効率化のため、タービン入口ガス温度の高温化が進んでいる。このような状況において、熱遮蔽コーティング膜は、ガスタービン部品のメタル部材の温度上昇の抑制に非常に有効であることから、燃焼器、タービン静翼の他、より使用条件の厳しいタービン動翼にも適用されてきている。そして、タービン入口ガス温度の高温化はさらに進展しており、熱遮蔽コーティング膜が受ける熱負荷は一段と過酷になり、そのため熱遮蔽コーティング膜は様々な損傷を受けるようになってきている。
【0003】
ところで、従来の熱遮蔽コーティング膜は、耐熱合金母材の表面に金属結合層を介してセラミックス膜を形成した構造、あるいは上記母材に金属結合層、金属−セラミックスの混合層を介してセラミックス膜を形成した構造をなし、いずれも最外層のセラミックス膜が熱遮蔽コーティング膜の機能を有している。そして、これらの熱遮蔽コーティング膜において、金属結合層は主に母材とセラミックス膜、あるいは母材と金属−セラミックスの混合層との熱膨張係数の差を小さくし、これにより熱応力を緩和し、上層セラミック膜の密着性向上や、母材の耐食性、耐酸化性等の耐久力向上を図っている。
【0004】
また、通常、上記金属結合層には、高温での耐食・耐酸化性に優れたMCrAlY系合金(M:Ni、Co及びFeからなる群から選ばれる1種又は2種の元素)が用いられ、上記セラミックス膜には、遮熱及び熱衝撃の緩和を目的として、高線膨張係数かつ低熱伝導率の酸化物が用いられている。
【0005】
【発明が解決しようとする課題】
しかし、上記したセラミックス膜を主体とする熱遮蔽コーティング膜の場合、金属(母材)層とセラミックス膜との間に生じる熱膨張係数の差が大きいため、顕著な熱応力が生じる。その結果、ガスタービンを長期運転すると、運転・停止に伴う温度変化等によりセラミックス膜が剥離するという問題がある。特に、プラントの運転・停止に伴って発生する過酷な熱サイクルを受けると、セラミックス膜が比較的短期間で剥離するに到る。
【0006】
ところで、熱遮蔽コーティング膜の損傷形態には、コーティングを構成する層と母材との間に生じる熱応力に起因するセラミックス膜の剥離や、金属(母材)層が酸素(セラミックス膜は一般にポーラスであり、これを通過して来た酸素)存在下で高温にさらされて酸化膨張することに起因する、セラミックス膜近傍での金属層の剥離、あるいは、腐食性成分(S,Na,Vなど)による金属層やセラミックス膜の腐食、さらには、飛来微粒子に起因したエロージョンによるセラミックス膜の局部損耗がある。このうち最も問題となる損傷形態は、セラミックス膜の剥離である。
【0007】
そこで、本発明者らは熱遮蔽コーティング膜の熱膨張率に関して鋭意研究し、コーティング膜となるセラミック膜を構成する強磁性体および強誘電体の組成を制御することにより、この膜の熱膨張率の制御が可能であることを見出し、本発明を完成させるに至った。
【0008】
本発明は上記の課題を解決するためになされたものであり、過酷な熱応力下であっても剥離しにくく、耐熱サイクル性に優れた熱遮蔽コーティング膜用セラミック組成物を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記した目的を達成するために、請求項1記載の熱遮蔽コーティング膜用セラミック組成物は、耐熱合金母材の表面に被覆される熱遮蔽コーティング膜に用いられ、A2(Bx1-x2y
(但し、A:La、Ce、Sm、Sr、Ba、Nbの群から選ばれる一種の元素、B及びC:それぞれTi、Ta、Zr、Nbの群から選ばれる一種の元素、x:0≦x≦1、y:6≦y≦8)で表わされる組成からなり、A227型ペロブスカイトスラブ構造をとることを特徴とする。
【0010】
請求項2記載の熱遮蔽コーティング膜用セラミック組成物は、耐熱合金母材の表面に被覆される熱遮蔽コーティング膜に用いられ、(Ax1-x3Fe5y(但し、A及びB:それぞれY、Al、Gd、Sm、Euの群から選ばれる一種の元素、x:0≦x≦1、y:11≦y≦13)で表わされる組成からなり、A3512型ガーネット構造をとることを特徴とする。
【0011】
請求項3記載の熱遮蔽コーティング膜用セラミック組成物は、耐熱合金母材の表面に被覆される熱遮蔽コーティング膜に用いられ、(Ax1-x)Fe12y(但し、A及びB:それぞれBa、Sr、Ca、Mgの群から選ばれる一種の元素、x:0≦x≦1、y:18≦y≦20)で表わされる組成からなり、六方晶構造をとることを特徴とする。
【0012】
請求項4記載の熱遮蔽コーティング膜用セラミック組成物は、耐熱合金母材の表面に被覆される熱遮蔽コーティング膜に用いられ、ABxy(但し、A:Ti又はTaのうちいずれか一種の元素、B:Eu、Gd、Sm、Dyの群から選ばれる一種の元素、x:0≦x≦1、y:2≦y≦4)で表わされる組成からなり、正方晶構造をとることを特徴とする。
【0013】
請求項5記載の熱遮蔽コーティング膜用セラミック組成物は、耐熱合金母材の表面に被覆される熱遮蔽コーティング膜に用いられ、ABxy(但し、A:Ba、Sr、Caの群から選ばれる一種の元素、B:Zr、Ce、Prの群から選ばれる一種の元素、x:1≦x≦2、y:2≦y≦4)で表わされる組成からなり、ABO3型ペロブスカイト構造をとることを特徴とする。
【0014】
【発明の実施の形態】
本発明者らは、強磁性体および強誘電体が通常の化合物より熱膨張率が高い傾向にあることに着目し、この材料を熱遮蔽コーティング膜用の組成物として採用することにより、コーティング膜に高い熱膨張率を付与することに成功したものである。
【0015】
そして、本発明に係る熱遮蔽コーティング膜用セラミック組成物は、金属結合層を被覆した耐熱合金母材の表面に被覆するセラミックス膜の材料として用いられる。
【0016】
以下、ガスタービン動・静翼に適用した場合を実施形態として、本発明の熱遮蔽コーティング膜用セラミック組成物を用いた熱遮蔽コーティング膜を、耐熱合金母材に被覆した態様について、図1を参照して説明する。
【0017】
この図において、耐熱金属母材2の表面に金属結合層4が被覆され、金属結合層4の表面にはセラミックス膜(熱遮蔽コーティング膜)6が被覆され、セラミックス膜6の表面には縦割れ導入用被覆膜8が被覆されて、全体としてガスタービン動・静翼10が構成されている。
【0018】
耐熱金属母材2は、ガスタービン動・静翼10の構成部材であり、Ni基合金等が用いられる。
【0019】
金属結合層4は、主に耐熱金属母材2とセラミックス膜6との熱膨張係数差を小さくして熱応力を緩和し、これにより各層の密着性の向上を図るとともに、金属結合層4自体が緻密な酸化物層を形成することから、下地の耐熱金属母材2の耐酸化性・耐食性の向上を図るものである。金属結合層4は、例えば低圧プラズマ溶射法(以下、「LPPS法」と呼ぶ)、もしくは電子ビーム物理蒸着法(以下、「EB−PVD法」と呼ぶ)により、形成することができる。
【0020】
セラミックス膜6は、外部からの耐熱金属母材2の熱遮蔽を目的とするものであり、熱伝導率が低く輻射率の高い、かつ高線膨張係数を有するという特性を有している。これにより、セラミックス膜6と耐熱金属母材2との間に負荷される熱応力が緩和され、セラミックス膜の剥離が生じ難くなる。このようなことから、セラミック膜を構成するための組成物としては、
【0021】
(1)A2(Bx1-x2y
(但し、A:La、Ce、Sm、Sr、Ba、Nbの群から選ばれる一種の元素、B及びC:それぞれTi、Ta、Zr、Nbの群から選ばれる一種の元素、x:0≦x≦1、y:6≦y≦8)で表わされる組成からなり、A227型ペロブスカイトスラブ構造をとるもの、
【0022】
(2)(Ax1-x3Fe5y
(但し、A及びB:それぞれY、Al、Gd、Sm、Euの群から選ばれる一種の元素、x:0≦x≦1、y:11≦y≦13)
で表わされる組成からなり、A3512型ガーネット構造をとるもの、
【0023】
(3)(Ax1-x)Fe12y
(但し、A及びB:それぞれBa、Sr、Ca、Mgの群から選ばれる一種の元素、x:0≦x≦1、y:18≦y≦20)
で表わされる組成からなり、六方晶構造をとるもの、
【0024】
(4)ABxy
(但し、A:Ti又はTaのうちいずれか一種の元素、B:Eu、Gd、Sm、Dyの群から選ばれる一種の元素、x:0≦x≦1、y:2≦y≦4)
で表わされる組成からなり、正方晶構造をとるもの、
【0025】
(5)ABxy
(但し、A:Ba、Sr、Caの群から選ばれる一種の元素、B:Zr、Ce、Prの群から選ばれる一種の元素、x:1≦x≦2、y:2≦y≦4)
で表わされる組成からなり、ABO3型ペロブスカイト構造をとるもの
を用いることが必要である。
【0026】
なお、上記(1)〜(5)の組成式において、各x、yに規定された範囲を超えた場合は、各組成に対応した結晶構造(例えば(4)の組成の場合は正方晶構造)が得られず、そのため高線膨張係数が得られなくなるので好ましくない。
【0027】
これらの組成物のうち、(1)のペロブスカイトスラブ型酸化物としては、例えばLa2Ti27、Sr2Nb27等がある。(2)のガーネット型酸化物としては、例えばY3Fe512がある。(3)の六方晶系酸化物としては、例えばSrFe1219、BaFe1219がある。(4)の正方晶系酸化物としては、例えばEu0.5TaO3がある。(5)のペロブスカイト型酸化物としては、例えばEuTiO3、BaZrO3、SrCeO3、SrPrO3等がある。
【0028】
セラミックス膜6は、例えば大気プラズマ溶射法(以下、「APS法」と呼ぶ)もしくはEB−PVD法により成膜することができる。
【0029】
縦割れ導入用被覆膜8は、線膨張係数の大きい、例えばNiO等の酸化物皮膜からなり、この酸化物皮膜の表面をレーザなどを用いて加熱して縦亀裂を発生させると、下層のセラミックス膜6の深さ方向に達する縦割れ9が形成される。この縦割れ9は、母材2とセラミックス膜6との熱膨張係数の差による熱応力を吸収し、セラミックス膜6の密着性をさらに向上させる機能を有する。つまり、熱応力は、縦割れ9の亀裂幅が伸縮することによって吸収される。なお、酸化物皮膜は、APS法により成膜することができる。
【0030】
【実施例】
1.耐熱金属母材の調製
30×30mm角、厚さ5mmのNi基合金(Ni_16Cr_8.5Co_1.7Mo_2.6W_1.7Ta_0.9Nb_3.4Al_3.4Ti)からなる耐熱金属母材の試験片を用意し、その表面にAl23粒でグリッドブラスト処理を施し、金属結合層を被覆する低圧プラズマ溶射に適した状態にした。
【0031】
2.金属結合層の被覆
次に、この耐熱金属母材の表面に金属結合層として、CoNiCrAlY層(Co_32Ni_21Cr_8Al_0.5Y)を低圧プラズマ溶射で、厚み100μm程度になるよう被覆した。溶射条件を表1に示す。
【表1】

Figure 0003876176
【0032】
3.セラミックス膜の形成
上記金属結合層の表面に、APS法を用いて厚み200μm程度になるよう溶射を行い、セラミックス膜を形成した。溶射用粉末は、平均粒径50μm程度の造粒粉を用い、表2に示す各組成のセラミック組成物とした。溶射条件を表3に示す。
【表2】
Figure 0003876176
【表3】
Figure 0003876176
【0033】
4.縦割れ導入用被覆膜の形成
上記セラミックス膜の表面に、APS法を用い、溶射用粉末をNiOとした溶射を行い、NiOからなる縦割れ導入用被覆膜を形成した。
【0034】
5.縦割れの導入
縦割れ導入用被覆膜の表面をレーザビームで加熱して縦亀裂を発生させ、縦割れを導入した。加熱は、耐熱金属母材側を冷却しながら、縦割れ導入用被覆膜の表面に炭酸ガスレーザによるレーザビームを1回当たり30秒ずつ、2回照射して行った。その際、縦割れ導入用被覆膜の表面は最高で1400℃になった。レーザビーム1個所当たりの照射面積は、177mm2(ビーム径15mm)であった。その後、試験片全体を室温まで冷却した。なお、加熱にはレーザビームの他にアセチレンバーナ等を用いてもよい。
【0035】
6.耐熱サイクル試験
得られた試験片について、燃焼ガスバーナによりセラミック膜側の表面を1400℃まで加熱し、金属結合層とセラミック膜の界面の温度を800〜900℃とする条件で耐熱サイクル試験を行った。加熱パターンは、室温から1400℃まで5分間で昇温させ、1400℃で5分間保持し、真空熱処理後燃焼ガスを止めて10分間冷却するパターンを1サイクルとした。冷却時の試験片の温度は100℃以下であった。1サイクル終了毎に、セラミック膜に剥離が生じたか否かを目視判定し、剥離が生じるまでの加熱回数により耐熱サイクル性を評価した。得られた結果を表4に示す。
【0036】
なお、比較として、それぞれ上記各実施例と同一組成のNi基合金からなる耐熱金属母材の試験片の表面に、上記各実施例と同一組成の金属結合層を100μm厚被覆し、その表面に熱遮蔽コーティング膜としてZrO3膜を300μm厚形成したものを作成した。ZrO3膜の成膜条件は、上記各実施例におけるセラミック膜の場合と同一とした。又、ZrO3膜の表面に、上記と同一の縦割れ導入用被覆膜を形成した後、縦割れを導入した。
【表4】
Figure 0003876176
【0037】
表4から明らかなように、各実施例においては、セラミック膜に剥離が生じるまでの加熱回数(耐熱サイクル性)が優れたものになっている。特に、ペロブスカイトスラブ型酸化物の場合に耐熱サイクル性が最も優れている。
【0038】
一方、熱遮蔽コーティング膜としてZrO3膜を用いた比較例の場合は、耐熱サイクル性が大幅に低下している。
【0039】
【発明の効果】
本発明によれば、熱遮蔽コーティング膜の熱膨張率が従来に比べて高いので、熱遮蔽コーティング膜にかかる熱応力が低減されて剥離が生じ難くなる。そして、耐熱サイクル性に優れ、過酷な熱応力下にあっても剥離しにくいた熱遮蔽コーティング膜が得られる。
【図面の簡単な説明】
【図1】 本発明の熱遮蔽コーティング膜用セラミック組成物を用いた熱遮蔽コーティング膜を、耐熱合金母材に被覆した態様を示す断面図である。
【符号の説明】
2 耐熱合金母材
6 熱遮蔽コーティング膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic composition for a heat shielding coating film used for a heat shielding coating of a moving blade, a stationary blade or a combustor (an inner cylinder, a tail cylinder) of a gas turbine.
[0002]
[Prior art]
In recent years, in order to increase the efficiency of gas turbines, the temperature of gas at the turbine inlet has been increased. In such a situation, the heat shielding coating film is very effective in suppressing the temperature rise of the metal member of the gas turbine component. Therefore, in addition to the combustor and the turbine stationary blade, the turbine blade having more severe use conditions is used. Has also been applied. Further, the temperature of the turbine inlet gas is further increased, and the heat load applied to the heat shielding coating film becomes more severe. For this reason, the heat shielding coating film has been damaged variously.
[0003]
By the way, a conventional heat shielding coating film has a structure in which a ceramic film is formed on the surface of a heat-resistant alloy base material via a metal bonding layer, or a ceramic film via a metal bonding layer or a metal-ceramic mixed layer on the base material. In any case, the outermost ceramic film has the function of a heat shielding coating film. In these heat-shielding coating films, the metal bonding layer mainly reduces the difference in thermal expansion coefficient between the base material and the ceramic film or between the base material and the metal-ceramic mixed layer, thereby relaxing the thermal stress. In addition, the adhesion of the upper ceramic film is improved, and the durability such as the corrosion resistance and oxidation resistance of the base material is improved.
[0004]
In addition, MCrAlY-based alloys (M: one or two elements selected from the group consisting of Ni, Co and Fe) which are excellent in corrosion resistance and oxidation resistance at high temperatures are usually used for the metal bond layer. In the ceramic film, an oxide having a high linear expansion coefficient and a low thermal conductivity is used for the purpose of heat insulation and relaxation of thermal shock.
[0005]
[Problems to be solved by the invention]
However, in the case of the above-described heat shielding coating film mainly composed of a ceramic film, a significant thermal stress is generated due to a large difference in thermal expansion coefficient generated between the metal (base material) layer and the ceramic film. As a result, when the gas turbine is operated for a long period of time, there is a problem that the ceramic film is peeled off due to a temperature change accompanying operation / stopping. In particular, when subjected to a severe thermal cycle that occurs with the operation / stop of the plant, the ceramic film peels off in a relatively short period of time.
[0006]
By the way, the damage form of the heat-shielding coating film includes peeling of the ceramic film due to thermal stress generated between the layer constituting the coating and the base material, and the metal (base material) layer is oxygen (ceramic film is generally porous). Peeling of the metal layer in the vicinity of the ceramic film or corrosive components (S, Na, V, etc.) resulting from oxidative expansion due to exposure to high temperature in the presence of oxygen that has passed therethrough) ) Corrosion of the metal layer and the ceramic film, and also local wear of the ceramic film due to erosion caused by flying fine particles. Of these, the most problematic form of damage is peeling of the ceramic film.
[0007]
Therefore, the present inventors have intensively studied the thermal expansion coefficient of the heat shielding coating film, and by controlling the composition of the ferromagnetic material and the ferroelectric material constituting the ceramic film to be the coating film, As a result, the present invention has been completed.
[0008]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a ceramic composition for a heat-shielding coating film that is difficult to peel off even under severe thermal stress and has excellent heat cycleability. And
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the ceramic composition for a heat shielding coating film according to claim 1 is used for a heat shielding coating film coated on the surface of a heat resistant alloy base material, and A 2 (B x C 1− x ) 2 O y
(However, A: a kind of element selected from the group of La, Ce, Sm, Sr, Ba, Nb, B and C: a kind of element selected from the group of Ti, Ta, Zr, Nb, respectively, x: 0 ≦ x ≦ 1, y: 6 ≦ y ≦ 8), and has an A 2 B 2 O 7 type perovskite slab structure.
[0010]
Thermal barrier coating film ceramic composition according to claim 2 wherein is used a thermal barrier coating film coated on the surface of the heat-resistant alloy matrix, (A x B 1-x ) 3 Fe 5 O y ( where, A And B: each of the elements selected from the group consisting of Y, Al, Gd, Sm and Eu, x: 0 ≦ x ≦ 1, y: 11 ≦ y ≦ 13), and A 3 B 5 O It has a 12- inch garnet structure.
[0011]
The ceramic composition for a heat-shielding coating film according to claim 3 is used for a heat-shielding coating film coated on the surface of a heat-resistant alloy base material, and (A x B 1-x ) Fe 12 O y (where A and B: a kind of element selected from the group of Ba, Sr, Ca, Mg, x: 0 ≦ x ≦ 1, y: 18 ≦ y ≦ 20), and has a hexagonal crystal structure And
[0012]
The ceramic composition for a heat-shielding coating film according to claim 4 is used for a heat-shielding coating film coated on the surface of a heat-resistant alloy base material, and AB x O y (A: any one of Ti and Ta) And B: a kind of element selected from the group of Eu, Gd, Sm, Dy, x: 0 ≦ x ≦ 1, y: 2 ≦ y ≦ 4), and has a tetragonal structure It is characterized by.
[0013]
The ceramic composition for a heat-shielding coating film according to claim 5 is used for a heat-shielding coating film coated on the surface of a heat-resistant alloy base material, and is composed of AB x O y (provided that A: Ba, Sr, Ca is used). An element selected from the group consisting of B: Zr, Ce and Pr, x: 1 ≦ x ≦ 2, y: 2 ≦ y ≦ 4), and an ABO 3 type perovskite structure It is characterized by taking.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have paid attention to the fact that ferromagnetic materials and ferroelectric materials tend to have a higher coefficient of thermal expansion than ordinary compounds. By adopting this material as a composition for a heat shielding coating film, a coating film can be obtained. It has succeeded in providing a high coefficient of thermal expansion.
[0015]
The ceramic composition for a heat shielding coating film according to the present invention is used as a material for a ceramic film that covers the surface of a heat-resistant alloy base material coated with a metal bonding layer.
[0016]
Hereinafter, with respect to an embodiment in which a heat-shielding coating film using the ceramic composition for a heat-shielding coating film of the present invention is coated on a heat-resistant alloy base material as an embodiment when applied to a gas turbine moving blade and stationary blade, FIG. The description will be given with reference.
[0017]
In this figure, the surface of the refractory metal base material 2 is coated with a metal bonding layer 4, the surface of the metal bonding layer 4 is coated with a ceramic film (heat shielding coating film) 6, and the surface of the ceramic film 6 is longitudinally cracked. The introduction coating film 8 is coated to constitute the gas turbine moving / stator blade 10 as a whole.
[0018]
The refractory metal base material 2 is a constituent member of the gas turbine moving / stator blade 10, and Ni-based alloy or the like is used.
[0019]
The metal bonding layer 4 mainly reduces the thermal expansion coefficient difference between the refractory metal base material 2 and the ceramic film 6 to alleviate the thermal stress, thereby improving the adhesion of each layer and the metal bonding layer 4 itself. Since a dense oxide layer is formed, the oxidation resistance and corrosion resistance of the base heat-resistant metal base material 2 are improved. The metal bonding layer 4 can be formed by, for example, a low pressure plasma spraying method (hereinafter referred to as “LPPS method”) or an electron beam physical vapor deposition method (hereinafter referred to as “EB-PVD method”).
[0020]
The ceramic film 6 is intended for heat shielding of the refractory metal base material 2 from the outside, and has the characteristics that the thermal conductivity is low, the emissivity is high, and the coefficient of linear expansion is high. Thereby, the thermal stress applied between the ceramic film 6 and the refractory metal base material 2 is relieved, and the ceramic film is hardly peeled off. As such, as a composition for constituting the ceramic film,
[0021]
(1) A 2 (B x C 1-x ) 2 O y
(However, A: a kind of element selected from the group of La, Ce, Sm, Sr, Ba, Nb, B and C: a kind of element selected from the group of Ti, Ta, Zr, Nb, respectively, x: 0 ≦ x ≦ 1, y: 6 ≦ y ≦ 8) having an A 2 B 2 O 7 type perovskite slab structure,
[0022]
(2) (A x B 1-x ) 3 Fe 5 O y
(However, A and B are each a kind of element selected from the group of Y, Al, Gd, Sm, and Eu, x: 0 ≦ x ≦ 1, y: 11 ≦ y ≦ 13)
Having an A 3 B 5 O 12 type garnet structure,
[0023]
(3) (A x B 1-x ) Fe 12 O y
(However, A and B are each a kind of element selected from the group of Ba, Sr, Ca and Mg, x: 0 ≦ x ≦ 1, y: 18 ≦ y ≦ 20)
Having a hexagonal crystal structure,
[0024]
(4) AB x O y
(However, A: any one element of Ti or Ta, B: one element selected from the group of Eu, Gd, Sm, Dy, x: 0 ≦ x ≦ 1, y: 2 ≦ y ≦ 4)
A composition having a tetragonal crystal structure,
[0025]
(5) AB x O y
(However, A: a kind of element selected from the group of Ba, Sr, Ca, B: a kind of element selected from the group of Zr, Ce, Pr, x: 1 ≦ x ≦ 2, y: 2 ≦ y ≦ 4 )
It is necessary to use a material having an ABO 3 type perovskite structure.
[0026]
In addition, in the composition formulas (1) to (5) above, when the range specified for each x and y is exceeded, a crystal structure corresponding to each composition (for example, a tetragonal crystal structure in the case of the composition of (4)) ) Is not obtained, and therefore, a high linear expansion coefficient cannot be obtained.
[0027]
Among these compositions, examples of the perovskite slab type oxide (1) include La 2 Ti 2 O 7 and Sr 2 Nb 2 O 7 . An example of the garnet type oxide (2) is Y 3 Fe 5 O 12 . Examples of the hexagonal oxide (3) include SrFe 12 O 19 and BaFe 12 O 19 . Examples of the tetragonal oxide (4) include Eu 0.5 TaO 3 . Examples of the perovskite oxide (5) include EuTiO 3 , BaZrO 3 , SrCeO 3 , and SrPrO 3 .
[0028]
The ceramic film 6 can be formed by, for example, an atmospheric plasma spraying method (hereinafter referred to as “APS method”) or an EB-PVD method.
[0029]
The longitudinal crack-introducing coating film 8 is made of an oxide film such as NiO having a large linear expansion coefficient. When the surface of the oxide film is heated using a laser or the like to generate a longitudinal crack, A vertical crack 9 reaching the depth direction of the ceramic film 6 is formed. The vertical crack 9 has a function of absorbing thermal stress due to a difference in thermal expansion coefficient between the base material 2 and the ceramic film 6 and further improving the adhesion of the ceramic film 6. That is, the thermal stress is absorbed by the expansion and contraction of the crack width of the vertical crack 9. Note that the oxide film can be formed by an APS method.
[0030]
【Example】
1. Preparation of refractory metal base material Prepare a test piece of refractory metal base material made of Ni-based alloy (Ni_16Cr_8.5Co_1.7Mo_2.6W_1.7Ta_0.9Nb_3.4Al_3.4Ti) of 30 x 30 mm square and 5 mm thickness This was subjected to grid blasting treatment with Al 2 O 3 grains to make it suitable for low pressure plasma spraying to coat the metal bonding layer.
[0031]
2. Next, a CoNiCrAlY layer (Co_32Ni_21Cr_8Al_0.5Y) was coated as a metal bonding layer on the surface of the refractory metal base material by low-pressure plasma spraying to a thickness of about 100 μm. Table 1 shows the thermal spraying conditions.
[Table 1]
Figure 0003876176
[0032]
3. Formation of Ceramic Film A ceramic film was formed on the surface of the metal bonding layer by spraying to a thickness of about 200 μm using the APS method. As the thermal spraying powder, granulated powder having an average particle diameter of about 50 μm was used, and ceramic compositions having respective compositions shown in Table 2 were used. Table 3 shows the thermal spraying conditions.
[Table 2]
Figure 0003876176
[Table 3]
Figure 0003876176
[0033]
4). Formation of Longitudinal Crack Introducing Coating Film The surface of the ceramic film was sprayed with NiO as the thermal spraying powder using the APS method to form a vertical crack introducing coating film made of NiO.
[0034]
5). Introduction of longitudinal cracks The surface of the coating film for introducing longitudinal cracks was heated with a laser beam to generate longitudinal cracks, and longitudinal cracks were introduced. The heating was performed by irradiating the surface of the coating film for introducing vertical cracks twice with a laser beam of carbon dioxide laser for 30 seconds each time while cooling the refractory metal base material side. At that time, the surface of the coating film for introducing vertical cracks reached 1400 ° C. at the maximum. The irradiation area per one laser beam was 177 mm 2 (beam diameter 15 mm). Thereafter, the entire test piece was cooled to room temperature. In addition to the laser beam, an acetylene burner or the like may be used for heating.
[0035]
6). Heat-resistant cycle test About the obtained test piece, the surface of the ceramic film side was heated to 1400 degreeC with the combustion gas burner, and the heat-resistant cycle test was done on the conditions which set the temperature of the interface of a metal bonding layer and a ceramic film to 800-900 degreeC. . The heating pattern was raised from room temperature to 1400 ° C. over 5 minutes, held at 1400 ° C. for 5 minutes, and the vacuum heat treatment was followed by stopping the combustion gas and cooling for 10 minutes as one cycle. The temperature of the test piece during cooling was 100 ° C. or lower. At the end of each cycle, whether the ceramic film was peeled or not was visually judged, and the heat cycle performance was evaluated by the number of heating times until peeling occurred. Table 4 shows the obtained results.
[0036]
As a comparison, the surface of a test piece of a heat-resistant metal base material made of a Ni-based alloy having the same composition as each of the above examples was coated with a metal bonding layer having the same composition as that of each of the above examples to a thickness of 100 μm, and the surface thereof was covered. A ZrO 3 film having a thickness of 300 μm was prepared as a heat shielding coating film. The deposition conditions for the ZrO 3 film were the same as those for the ceramic film in each of the above examples. Further, after the same coating film for introducing vertical cracks as described above was formed on the surface of the ZrO 3 film, vertical cracks were introduced.
[Table 4]
Figure 0003876176
[0037]
As is apparent from Table 4, in each example, the number of times of heating (heat cycle resistance) until peeling occurs in the ceramic film is excellent. In particular, in the case of a perovskite slab type oxide, the heat cycle resistance is most excellent.
[0038]
On the other hand, in the case of the comparative example using the ZrO 3 film as the heat shielding coating film, the heat cycle resistance is greatly reduced.
[0039]
【The invention's effect】
According to the present invention, since the thermal expansion coefficient of the heat shielding coating film is higher than that of the conventional one, the thermal stress applied to the heat shielding coating film is reduced, and peeling is less likely to occur. And the heat shielding coating film which is excellent in heat cycle resistance and hardly peeled even under severe thermal stress can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment in which a heat-shielding coating film using a ceramic composition for a heat-shielding coating film of the present invention is coated on a heat-resistant alloy base material.
[Explanation of symbols]
2 Heat-resistant alloy base material 6 Heat shielding coating film

Claims (1)

耐熱合金母材の表面に被覆される熱遮蔽コーティング膜に用いられ、Sr Nb で表わされる組成からなり、A227型ペロブスカイトスラブ構造をとることを特徴とする熱遮蔽コーティング膜用セラミック組成物。A heat-shielding film used for a heat-shielding coating film coated on the surface of a heat-resistant alloy base material, comprising a composition represented by Sr 2 Nb 2 O 7 and having an A 2 B 2 O 7 -type perovskite slab structure Ceramic composition for coating film.
JP2002084286A 2002-03-25 2002-03-25 Ceramic composition for heat shielding coating film Expired - Fee Related JP3876176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084286A JP3876176B2 (en) 2002-03-25 2002-03-25 Ceramic composition for heat shielding coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084286A JP3876176B2 (en) 2002-03-25 2002-03-25 Ceramic composition for heat shielding coating film

Publications (2)

Publication Number Publication Date
JP2003277952A JP2003277952A (en) 2003-10-02
JP3876176B2 true JP3876176B2 (en) 2007-01-31

Family

ID=29231709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084286A Expired - Fee Related JP3876176B2 (en) 2002-03-25 2002-03-25 Ceramic composition for heat shielding coating film

Country Status (1)

Country Link
JP (1) JP3876176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992764A (en) * 2012-09-12 2013-03-27 河南工程学院 Rare-earth modified Sm2Ce2O7 thermal-barrier coating ceramic material and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2529781C (en) 2004-12-14 2010-10-12 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
US7622195B2 (en) * 2006-01-10 2009-11-24 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
DE102006013215A1 (en) * 2006-03-22 2007-10-04 Siemens Ag Thermal barrier coating system
US8906272B2 (en) * 2008-05-23 2014-12-09 Ishihara Sangyo Kaisha, Ltd. Infra-red reflective material and production method thereof, and paint and resin composition containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992764A (en) * 2012-09-12 2013-03-27 河南工程学院 Rare-earth modified Sm2Ce2O7 thermal-barrier coating ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JP2003277952A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP4959213B2 (en) Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
JP4969094B2 (en) Thermal barrier coating member and production thereof, and gas turbine
JP5622399B2 (en) Thermal barrier coating, turbine member equipped with the same, and gas turbine
JP2004270032A (en) Thermal barrier coating member and its producing method
WO2002103074A1 (en) Thermal barrier coating material and method for production thereof, gas turbine member using the thermal barrier coating material, and gas turbine
JP5705627B2 (en) Heat-resistant member repair method, repair heat-resistant member
JP2003160852A (en) Thermal insulating coating material, manufacturing method therefor, turbine member and gas turbine
JPH0251978B2 (en)
JP2008196040A (en) Heat resistant member
JP2004285423A (en) Material coated with thermal barrier coating which is excellent in corrosion resistance and heat resistance and its manufacturing method
JP2019507828A (en) Adhesion promoting layer for bonding a high temperature protective layer on a substrate and method for producing the same
JP4533718B2 (en) Thermal barrier coating material, gas turbine member to which thermal barrier coating material is applied, and gas turbine
JP3876176B2 (en) Ceramic composition for heat shielding coating film
JP4388466B2 (en) Gas turbine, thermal barrier coating material, manufacturing method thereof, and turbine member
JP6499271B2 (en) Thermal barrier coating and power generation system
JP4226669B2 (en) Heat resistant material
JPH0978258A (en) High-temperature member having thermal insulation coating film and its production
JPH06306640A (en) High temperature exposure material
JP2010242223A (en) Thermal barrier coating member, production method therefor, thermal barrier coating material, gas turbine, and sintered compact
JP3413096B2 (en) Heat resistant member and method of manufacturing the same
JPH0657399A (en) Ceramic-coating method for metal base material
JP5320352B2 (en) Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
JP4533719B2 (en) Thermal spray material for TBC and method for manufacturing the same, gas turbine member, and gas turbine
JP7138339B2 (en) Heat-resistant alloy member and its manufacturing method, high-temperature device and its manufacturing method
JP2005002409A (en) Ceramic-coated member, method for manufacturing the same, and thermal-barrier coated high-temperature component using the ceramic-coated member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R151 Written notification of patent or utility model registration

Ref document number: 3876176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees