JP2005002409A - Ceramic-coated member, method for manufacturing the same, and thermal-barrier coated high-temperature component using the ceramic-coated member - Google Patents

Ceramic-coated member, method for manufacturing the same, and thermal-barrier coated high-temperature component using the ceramic-coated member Download PDF

Info

Publication number
JP2005002409A
JP2005002409A JP2003166935A JP2003166935A JP2005002409A JP 2005002409 A JP2005002409 A JP 2005002409A JP 2003166935 A JP2003166935 A JP 2003166935A JP 2003166935 A JP2003166935 A JP 2003166935A JP 2005002409 A JP2005002409 A JP 2005002409A
Authority
JP
Japan
Prior art keywords
ceramic
coated member
bonding layer
coated
mainly composed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003166935A
Other languages
Japanese (ja)
Inventor
Kazuhide Matsumoto
一秀 松本
Yoshiyasu Ito
義康 伊藤
Tsuneji Kameda
常治 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003166935A priority Critical patent/JP2005002409A/en
Publication of JP2005002409A publication Critical patent/JP2005002409A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic-coated member of excellent heat resistance and firm adhesiveness to a base metal and having long-life heat cycle characteristic and a method for manufacturing the same, and a thermal-barrier coated high-temperature component using the ceramic-coated member. <P>SOLUTION: The ceramic-coated member is used for heat-resistant equipment. The ceramic-coated member comprises a first bonded layer consisting mainly of a base metal and alumina formed on the surface of the base metal, a second bonded layer consisting mainly of zirconia formed on the surface of the first bonded layer, and an uppermost layer consisting mainly of hafnia formed on the surface of the second bonded layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はセラミックス被覆部材とその製造方法およびセラミックス被覆部材を用いた遮熱コーティング高温部品に係り、特に耐久性に優れ、高温環境下で好適に用いられるセラミックス被覆部材とその製造方法およびセラミックス被覆部材を用いた遮熱コーティング高温部品に関する。
【0002】
【従来の技術】
一般に、発電用ガスタービンやガスタービンエンジン等においては、熱効率を向上させるために、タービンの高温化が指向されている。この高温化に伴ってタービン部材の耐熱温度や高温耐酸化性の向上が望まれ、Ni基あるいはCo基耐熱合金が開発されている。
【0003】
しかしながら、こうした合金の耐熱温度は1000℃以下であるため、より高温条件での運用を実現するために、上記耐熱合金の表面に熱伝導率の低いセラミックス皮膜を被覆することにより、タービン部材の高温下での使用を可能にしている。このようなセラミックス被覆は遮熱コーティングと呼ばれ、遮熱コーティングを施さない合金に比べ、耐熱合金基材の実質温度を50℃〜100℃抑制できる。
【0004】
そして、この遮熱コーティングを構成するセラミックス皮膜の例としてジルコニア材料があり、実機に運用されており、公知の技術として知られている。このジルコニアは優れた機械的な性質に加え、熱伝導率が低いという材料上の利点を有する。
【0005】
例えば、航空機用ジェットエンジンなどの高温にさらされるタービン翼などでは、基材である超耐熱合金の上にアルミナ層を設け、このアルミナ層の上にさらに耐熱コーティングとして、イットリアやジルコニアを含むセラミックスの固溶体を構成する技術が開示されている(例えば特許文献1参照)。
【0006】
【特許文献1】
特開2000−160324号公報
【0007】
【発明が解決しようとする課題】
しかしながら、タービンをより高い効率で運用し、COやNOの排出を軽減するためには、タービン燃焼ガスの更なる高温化が要求されており、遮熱コーティングを構成するセラミックス皮膜も、それに応じてさらに高性能な、新たな材料が求められている。
【0008】
上記したようなジルコニア被覆材料に関する技術は、これまでにもいくつか開示されているが、従来のジルコニアを主成分とする遮熱コーティングで達成できる運用温度は1200℃が使用限度であり、さらなる高温化を図る上でのネックとなっていた。
【0009】
本発明は、上述したような事情を考慮してなされたものであり、耐熱性に優れ、金属基材との密着性が強固で長寿命の熱サイクル特性を有するセラミックス被覆部材とその製造方法およびセラミックス被覆部材を用いた遮熱コーティング高温部品を提供することにある。
【0010】
【課題を解決するための手段】
本発明に係るセラミックス被覆部材は、上述したような課題を解決するために、請求項1に記載したように、耐熱機器に使用されるセラミックス被覆部材であって、このセラミックス被覆部材が、金属基材とこの金属基材の表面に形成されたアルミナを主成分とする第1結合層と、前記第1結合層の表面に形成されたジルコニアを主成分とする第2結合層と、前記第2結合層の表面に形成されたハフニアを主成分とする最上層とから構成されたことを特徴とするものである。
【0011】
また、本発明に係るセラミックス被覆部材の製造方法は、上述した課題を解決するために、請求項10に記載したように、金属基材上に、アルミナを主成分とした第1結合層を拡散アルミナイジングまたはアルミナ堆積または酸素雰囲気加熱処理により形成し、ジルコニアを主成分とした第2結合層を物理蒸着法または溶射で形成し、ハフニアを主成分とした最上層を物理蒸着法または溶射により形成することを特徴とするセラミックス被覆部材の製造方法である。
【0012】
さらに、本発明に係るセラミックス被覆部材の製造方法は、請求項11に記載したように、組成式MCrAlYで表される金属材料(MはNi、Co、Feから選択される少なくとも1種の金属元素を示す)を被覆した金属基材上に、アルミナを主成分とした第1結合層を拡散アルミナイジングまたはアルミナ堆積または酸素雰囲気加熱処理により形成し、ジルコニアを主成分とした第2結合層を物理蒸着法または溶射で形成し、ハフニアを主成分とした最上層を物理蒸着法または溶射により形成することを特徴とするセラミックス被覆部材の製造方法である。
【0013】
また、本発明に係る遮熱コーティング高温部材は、上述した課題を解決するために、請求項12に記載したように、ハフニアを主成分とするセラミックス皮膜が被覆されたことを特徴とするものである。
【0014】
【発明の実施の形態】
以下に、本発明のセラミックス被覆部材の実施の形態について例示して具体的に説明する。
【0015】
本発明のセラミックス被覆部材は、ハフニアを主成分とすることを特徴とする。すなわち、金属基材の表面に第1結合層としてアルミナを主成分とする皮膜を形成し、この第1結合層の表面にジルコニアを主成分とする第2結合層を形成し、さらにこの第2結合層の表面に最上層としてハフニアを主成分とする皮膜を形成する。
【0016】
ハフニアを主成分とするセラミックス皮膜は、融点が約2000℃と高温であるため耐熱性に優れ、このハフニアを主成分とするセラミックス皮膜を金属基材に施工したセラミックス被覆部材は、従来のセラミックス被覆部材に比較して耐熱性が大幅に向上する。
【0017】
ハフニアを主成分とする最上層と金属基材間の結合層は、アルミナを主成分とする第1結合層とジルコニアを主成分とする第2結合層から構成される。本発明者らによると、ハフニアを主成分とするセラミックス皮膜は、金属基材との接合性が低く、直接金属基材表面に施工することが困難である。一方、ハフニアを主成分とするセラミックス皮膜は、ジルコニアを主成分とするセラミックス皮膜との接合性が優れている。そこで、本発明者らは、金属基材表面にまず金属基材との接合性に優れるアルミナ層を形成し、この表面にジルコニア皮膜およびハフニア皮膜を順次形成することにより接合性の問題を解消した。
【0018】
すなわち、ハフニアを主成分とする最上層はジルコニアを主成分とする第2結合層との密着性が格段に優れており、またジルコニアを主成分とする第2結合層はアルミナを主成分とする第1結合層との密着性が格段に優れており、更にアルミナを主成分とする第1結合層は金属基材との密着性が格段に優れている。従って、これらの密着性に優れた構成を組合せて、ハフニアを主成分とする最上層と金属基材間の結合層とすることにより、密着性が強固で長寿命の熱サイクル特性を有する遮熱コーティング用セラミックス皮膜を実現することができる。
【0019】
本発明のハフニアを主成分とする最上層とジルコニアを主成分とする第2結合層は、基本的には層状に積層された構造であるが、最上層側にハフニアが存在し、結合層側にジルコニアが存在する傾斜組成構造でも強固な密着性を確保することができ、長寿命の熱サイクル特性を有する遮熱コーティング用セラミックス皮膜を実現することができる。
【0020】
また、セラミックス皮膜の組織は、熱サイクル特性を左右する重要な因子である。このハフニアを主成分とする最上層とジルコニアを主成分とする第2結合層の組織を熱応力の緩和が可能な柱状晶構造とすることにより、さらに耐久性が向上し、長寿命の熱サイクル特性を有するセラミックス被覆部材とすることができる。
【0021】
この柱状晶構造を実現するために、本発明のセラミックス被覆部材は、物理蒸着法により施工することが好ましい。すなわち、本発明のセラミックス被覆部材は、溶射により形成することも可能であるが、物理蒸着法によりセラミックス被覆部材を施工すると、結晶組織が柱状に成長し、柱状の結晶組織同士が微小な間隙を有しつつ基材表面を被覆するようにセラミックス皮膜が形成される。
【0022】
このように、柱状結晶が微小な間隙を有して皮膜を形成することにより、部材を高温条件において使用する際に、金属基材の熱膨張による皮膜応力が緩和され、皮膜のクラック発生を防止することが可能である。
【0023】
本発明のハフニアを主成分とする最上層は、その融点が2000℃以上であり、かつジルコニア皮膜の融点に比べて約200℃も高温である。また熱伝導率もジルコニア皮膜より低いため、金属基材を比較的低温に維持可能であり、遮熱コーティング皮膜としては耐熱性と遮熱性が格段に優れた皮膜である。
【0024】
またハフニアを主成分とする最上層とジルコニアを主成分とする第2結合層は、高温での結晶相を安定化させるため、Y、MgO、CaO、TiO、ランタノイド酸化物(Er、Yb、CeO、など)の少なくとも一種類以上の酸化物を添加しており、それぞれの含有量は正方晶あるいは立方晶が室温で安定して存在する含有量となっている。これらの酸化物を添加することは、単一のハフニアに比べセラミックス皮膜の機械的強度も改善され、遮熱コーティングに使用されるセラミックス皮膜に必要な特性を有している。
【0025】
本発明に係るセラミックス被覆部材10の断面図を図1に示す。
【0026】
セラミックス被覆部材10は、金属基材1と第1結合層2と第2結合層3と最上層4とが一体的に接合されて構成される。すなわち、金属基材1の表面には第1結合層2および第2結合層3が順次施工され、さらに第2結合層3の表面に、ハフニアを主成分とするセラミックス皮膜(最上層4)が形成される。
【0027】
本発明のセラミックス被覆部材の具体的な製造方法は、例えば以下のような製造方法である。
【0028】
まずNi基合金であるIN738超合金基材1を脱脂洗浄を行った。次に、アルミパック法により上記超合金基材1に拡散アルミナイジングを行い、基材表面にアルミナを主成分とした第1結合層2を形成させた。膜厚は1μm程度である。このアルミナ皮膜形成は、物理蒸着法や化学蒸着法によりアルミナを基材表面に堆積させてもよい。
【0029】
次に、上記アルミナを主成分とした第1結合層2表面に、8mass%Y−ZrOジルコニアを主成分とする第2結合層3を形成した。次に、上記ジルコニアを主成分とする第2結合層3上に、7.5mass%Y−HfOハフニアセラミックス皮膜(最上層)を形成した。
【0030】
この第2結合層3および最上層4の形成に際しては、図2に示す物理蒸着装置20を用いて物理蒸着した。
【0031】
まず真空チャンバー5内において、基材駆動装置6にアルミナを主成分とした第1結合層2を形成したIN738からなる金属基材1を装着するとともに、ルツボ7にジルコニアインゴット材8aを装着した。その後、真空チヤンバー5内を10−4Pa台まで真空引きした後、金属基材1を加熱しつつ、電子ビーム発生装置9による電子ビームでジルコニアインゴット材8aを蒸発させ、酸素を導入しつつ金属基材1上に成膜させた。このとき導入する酸素は酸素ガスでもよいが、酸素イオンを用いることもできる。金属基材1は、基材加熱装置11により700℃以上に加熱されているが、この加熱により強固な柱状晶結晶を形成させることができる。得られた8mass%Y−ZrO結合層2の膜厚は50μm程度であった。なお、このジルコニアセラミックス皮膜は、大気プラズマ溶射でも形成することができる。
【0032】
また上記施工ののち、ジルコニアインゴット材8aをハフニアインゴット材8bと交換してハフニア皮膜を形成した。得られた7.5mass%Y−HfOハフニアの膜厚は200μm程度であった。なお、このハフニアセラミックス皮膜は、大気プラズマ溶射でも形成することができる。
【0033】
次に、さらに具体的な実施例として下記要領により実施例1〜実施例3および比較例1〜2のセラミックス被覆部材を製作し、これらのセラミックス被覆部材について性能を比較および評価した。
【0034】
(実施例1)
IN738超合金に拡散アルミナイジングにより膜厚5μm程度のアルミナ結合層を形成し、その上に物理蒸着法により膜厚50μm程度の8wt%Y−ZrOジルコニア結合層を形成し、更に物理蒸着法により膜厚200μm程度の7.5mass%Y−HfOハフニアセラミックス皮膜を形成した。
【0035】
(実施例2)
IN738超合金に、減圧プラズマ溶射で膜厚100μm程度のNiCoCrAlY被覆層を形成し、その上に酸素雰囲気中で加熱処理を行って膜厚1μm程度のアルミナ結合層を形成し、更に物理蒸着法により膜厚50μm程度の8wt%Y−ZrOジルコニア結合層を形成し、更に物理蒸着法により膜厚200μm程度の7.5mass%Y−HfOハフニアセラミックス皮膜を形成した。
【0036】
(実施例3)
IN738超合金に、減圧プラズマ溶射で膜厚100μm程度のNiCoCrAlY被覆層を形成し、その上に酸素雰囲気中で加熱処理を行って膜厚1μm程度のアルミナ結合層を形成し、その上に物理蒸着法によりジルコニアとハフニアの傾斜組成層を形成し、トップ表面層に膜厚100μm程度の7.5mass%Y−HfOハフニアセラミックス皮膜を形成した。傾斜組成部分の成膜は、ジルコニアインゴットおよびハフニアインゴット表面を交互に電子ビームで照射・蒸発させることにより行った。
【0037】
(比較例1)
IN738超合金に、大気プラズマ溶射で膜厚100μm程度のNiCoCrAlY被覆層を形成し、その上に膜厚200μm程度の8wt%Y−ZrOジルコニアセラミックス皮膜を大気プラズマ溶射で形成した。
【0038】
(比較例2)
IN738超合金に拡散アルミナイジングにより膜厚5μm程度のアルミナ層を形成し、物理蒸着法により膜厚200μm程度の8wt%Y−ZrOジルコニアセラミックス皮膜を形成した。
【0039】
これらの実施例1〜実施例3および比較例1〜比較例2のセラミックス被覆部材について、熱サイクル試験による皮膜剥離寿命の評価を行った。熱サイクル試験条件は、大気中において1100℃まで30分で昇温、1100℃で30分保持、150℃まで30分で降温を1サイクルとし、皮膜が剥離するまでのサイクル数を剥離寿命とした。なお、表1に剥離寿命を比較例1を1としたときの相対熱サイクル時間として表示した。
【0040】
【表1】

Figure 2005002409
【0041】
表1に示す結果に明らかなように、実施例1〜実施例3のセラミックス被覆部材は、比較例1および比較例2のセラミックス被覆部材に比べて皮膜剥離寿命が大幅に向上しており、特に比較例1との比較においては、実施例1〜実施例3のセラミックス被覆部材はそれぞれ5倍の耐久性を有することが判明した。すなわち、本発明のセラミックス被覆部材により非常に耐久性に優れたセラミックス被覆部材が得られることが判明した。
【0042】
また、比較例2のセラミックス被覆部材が比較例1のセラミックス被覆部材に対して比較的良好な結果を示すのは、比較例2のセラミックス被覆部材が、物理蒸着法による成膜工程により製造されたためと判断された。すなわち、成膜法として物理蒸着法を用いることによりさらに耐久性に優れたセラミックス被覆部材とすることが可能である。
【0043】
次に、表2に示すように、これら実施例1〜実施例3と比較例1および比較例2のセラミックス被覆部材について、バーナによりセラミックス皮膜表面を1000℃から1300℃の温度範囲において100時間加熱したときのセラミックス皮膜の焼結現象を比較した。
【0044】
【表2】
Figure 2005002409
【0045】
表2に示す結果から明らかなように、実施例1〜実施例3のセラミックス被覆部材は、比較例1および比較例2のセラミックス被覆部材に比べて耐熱性が格段に向上する。
【0046】
すなわち、比較例1および比較例2のセラミックス被覆部材が1200℃において焼結によりクラックが生じるのに対して、実施例1〜実施例3のセラミックス被覆部材は、1300℃の使用条件においても焼結の発生がなく、クラックが発生しない。
【0047】
このことは、従来のセラミックス被覆部材の実使用温度の上限が1200℃以下であるのに対して、本発明のセラミックス被覆部材は1300℃での運用が可能であることを意味する。従って、本発明により優れた耐久性および耐熱性のセラミックス被覆部材が得られることが判明した。
【0048】
すなわち、本発明のセラミックス被覆部材は、従来のセラミックス被覆部材に比較して、より高温での運用が可能なセラミックス被覆部材を提供することが可能である。そのためこのセラミックス被覆部材により優れた耐久性の遮熱コーティング高温部材を提供することが可能となる。
【0049】
【発明の効果】
以上説明したように、本発明のセラミックス被覆部材とその製造方法およびセラミックス被覆部材を用いた遮熱コーティング高温部品によれば、セラミックス被覆部材の耐熱性が大幅に向上するので、密着性が強固で長寿命の熱サイクル特性を有するセラミックス被覆部材とその製造方法およびセラミックス被覆部材を用いた遮熱コーティング高温部品を得ることができる。
【図面の簡単な説明】
【図1】本発明に係るセラミックス被覆部材の断面図。
【図2】電子ビーム物理蒸着装置の概略構成図。
【符号の説明】
1 金属基材
2 第1結合層
3 第2結合層
4 最上層
5 真空チャンバー
6 基材駆動装置
7 ルツボ
8a ジルコニアインゴット材
8b ハフニアインゴット材
9 電子ビーム発生装置
10 セラミックス被覆部材
11 基材加熱装置
20 物理蒸着装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic-coated member, a manufacturing method thereof, and a thermal barrier coating high-temperature component using the ceramic-coated member, and particularly excellent in durability and suitably used in a high-temperature environment, a manufacturing method thereof, and a ceramic-coated member. The present invention relates to a high-temperature part using a thermal barrier coating.
[0002]
[Prior art]
In general, in a power generation gas turbine, a gas turbine engine, and the like, in order to improve thermal efficiency, the temperature of the turbine is increased. As the temperature rises, it is desired to improve the heat resistance temperature and high temperature oxidation resistance of the turbine member, and Ni-based or Co-based heat-resistant alloys have been developed.
[0003]
However, since the heat-resistant temperature of such an alloy is 1000 ° C. or less, in order to realize operation under a higher temperature condition, the surface of the heat-resistant alloy is coated with a ceramic film having a low thermal conductivity so that the high temperature of the turbine member is increased. It is possible to use below. Such a ceramic coating is called a thermal barrier coating, and can suppress the substantial temperature of the heat-resistant alloy base material by 50 ° C. to 100 ° C. as compared with an alloy not subjected to the thermal barrier coating.
[0004]
A zirconia material is an example of a ceramic film constituting the thermal barrier coating, which is used in an actual machine and is known as a known technique. In addition to excellent mechanical properties, this zirconia has the material advantage of low thermal conductivity.
[0005]
For example, in turbine blades that are exposed to high temperatures such as aircraft jet engines, an alumina layer is provided on the super heat-resistant alloy as a base material, and a ceramic containing yttria and zirconia is further formed on the alumina layer as a heat-resistant coating. A technique for forming a solid solution is disclosed (see, for example, Patent Document 1).
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-160324
[Problems to be solved by the invention]
However, in order to operate the turbine with higher efficiency and reduce CO 2 and NO x emissions, further increase in the temperature of the turbine combustion gas is required. Accordingly, new materials with higher performance are being demanded.
[0008]
Several technologies related to the above-described zirconia coating materials have been disclosed so far, but the operating temperature that can be achieved with conventional thermal barrier coatings based on zirconia is 1200 ° C., which is the upper limit of use. It has become a bottleneck in achieving this.
[0009]
The present invention has been made in consideration of the above-described circumstances, and has a heat-resistant, strong adhesion to a metal substrate and has a long-life thermal cycle characteristic, and a method for producing the same, An object of the present invention is to provide a thermal barrier coating high-temperature component using a ceramic coating member.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, a ceramic-coated member according to the present invention is a ceramic-coated member used in a heat-resistant device as described in claim 1, and the ceramic-coated member is a metal-based member. A first tie layer mainly composed of alumina formed on the surface of the metal base material, a second tie layer mainly composed of zirconia formed on the surface of the first tie layer, and the second tie layer. It is composed of an uppermost layer mainly composed of hafnia formed on the surface of the bonding layer.
[0011]
Moreover, in order to solve the above-described problem, the method for producing a ceramic-coated member according to the present invention diffuses a first bonding layer mainly composed of alumina on a metal base material as described in claim 10. Formed by aluminizing or alumina deposition or heat treatment in oxygen atmosphere, the second bonding layer mainly composed of zirconia is formed by physical vapor deposition or thermal spraying, and the uppermost layer mainly composed of hafnia is formed by physical vapor deposition or thermal spraying. This is a method for producing a ceramic-coated member.
[0012]
Furthermore, the method for producing a ceramic-coated member according to the present invention includes a metal material represented by a composition formula MCrAlY (M is at least one metal element selected from Ni, Co, and Fe). The first bonding layer mainly composed of alumina is formed by diffusion aluminizing, alumina deposition or oxygen atmosphere heat treatment, and the second bonding layer mainly composed of zirconia is physically formed. A method for producing a ceramic-coated member, characterized in that it is formed by vapor deposition or thermal spraying, and an uppermost layer mainly composed of hafnia is formed by physical vapor deposition or thermal spraying.
[0013]
The thermal barrier coating high-temperature member according to the present invention is characterized in that, as described in claim 12, a ceramic film mainly composed of hafnia is coated in order to solve the above-described problem. is there.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the ceramic-coated member of the present invention will be specifically described by way of example.
[0015]
The ceramic-coated member of the present invention is characterized by containing hafnia as a main component. That is, a film mainly composed of alumina is formed as a first bonding layer on the surface of the metal substrate, a second bonding layer mainly composed of zirconia is formed on the surface of the first bonding layer, and the second bonding layer is further formed. A film mainly composed of hafnia is formed as the uppermost layer on the surface of the bonding layer.
[0016]
The ceramic coating mainly composed of hafnia has a high melting point of about 2000 ° C. and thus has excellent heat resistance. The ceramic coated member in which the ceramic coating composed mainly of hafnia is applied to a metal substrate is a conventional ceramic coating. Heat resistance is greatly improved compared to members.
[0017]
The bonding layer between the uppermost layer containing hafnia as a main component and the metal substrate is composed of a first bonding layer containing alumina as a main component and a second bonding layer containing zirconia as a main component. According to the present inventors, the ceramic film containing hafnia as a main component has low bondability with a metal substrate and is difficult to apply directly on the surface of the metal substrate. On the other hand, the ceramic film mainly composed of hafnia has excellent bondability with the ceramic film mainly composed of zirconia. Therefore, the inventors first formed an alumina layer excellent in bondability with a metal substrate on the surface of the metal substrate, and solved the problem of bondability by sequentially forming a zirconia film and a hafnia film on this surface. .
[0018]
That is, the uppermost layer mainly composed of hafnia has remarkably excellent adhesion to the second tie layer mainly composed of zirconia, and the second tie layer mainly composed of zirconia is mainly composed of alumina. The adhesion with the first bonding layer is remarkably excellent, and the first bonding layer mainly composed of alumina has remarkably excellent adhesion with the metal substrate. Therefore, by combining these structures with excellent adhesion to form a bonding layer between the uppermost layer mainly composed of hafnia and the metal substrate, heat insulation having strong adhesion and long-life thermal cycle characteristics. A ceramic film for coating can be realized.
[0019]
The uppermost layer mainly composed of hafnia according to the present invention and the second tie layer mainly composed of zirconia are basically laminated in a layered manner, but hafnia exists on the uppermost layer side, and the tie layer side Even in a gradient composition structure in which zirconia is present, strong adhesion can be secured, and a ceramic coating for thermal barrier coating having a long-life thermal cycle characteristic can be realized.
[0020]
Moreover, the structure of the ceramic film is an important factor that affects the thermal cycle characteristics. By making the structure of the top layer mainly composed of hafnia and the second tie layer mainly composed of zirconia into a columnar crystal structure capable of relaxing thermal stress, durability is further improved and a long-life thermal cycle is achieved. A ceramic-coated member having characteristics can be obtained.
[0021]
In order to realize this columnar crystal structure, the ceramic-coated member of the present invention is preferably applied by physical vapor deposition. That is, the ceramic-coated member of the present invention can be formed by thermal spraying. However, when the ceramic-coated member is applied by physical vapor deposition, the crystal structure grows in a columnar shape, and the columnar crystal structures have a minute gap between them. A ceramic film is formed so as to cover the surface of the substrate while having it.
[0022]
In this way, the columnar crystal forms a film with a minute gap, so that when the member is used under high temperature conditions, the film stress due to the thermal expansion of the metal substrate is relieved and cracks in the film are prevented. Is possible.
[0023]
The uppermost layer mainly composed of hafnia of the present invention has a melting point of 2000 ° C. or higher, and is about 200 ° C. higher than the melting point of the zirconia film. In addition, since the thermal conductivity is lower than that of the zirconia film, the metal substrate can be maintained at a relatively low temperature, and the heat-shielding coating film is a film excellent in heat resistance and heat-shielding property.
[0024]
In addition, the uppermost layer mainly composed of hafnia and the second tie layer mainly composed of zirconia stabilize the crystal phase at high temperature, so that Y 2 O 3 , MgO, CaO, TiO 2 , lanthanoid oxide (Er 2 O 3 , Yb 2 O 3 , CeO 2 , etc.) are added, and each content is a content in which tetragonal crystals or cubic crystals exist stably at room temperature. ing. The addition of these oxides improves the mechanical strength of the ceramic film as compared with a single hafnia, and has the necessary characteristics for the ceramic film used for the thermal barrier coating.
[0025]
A cross-sectional view of a ceramic-coated member 10 according to the present invention is shown in FIG.
[0026]
The ceramic covering member 10 is configured by integrally joining the metal substrate 1, the first bonding layer 2, the second bonding layer 3, and the uppermost layer 4. That is, the first bonding layer 2 and the second bonding layer 3 are sequentially applied on the surface of the metal substrate 1, and a ceramic film (the uppermost layer 4) mainly composed of hafnia is further formed on the surface of the second bonding layer 3. It is formed.
[0027]
A specific method for manufacturing the ceramic-coated member of the present invention is, for example, the following manufacturing method.
[0028]
First, the IN738 superalloy substrate 1 which is a Ni-based alloy was degreased and cleaned. Next, diffusion aluminizing was performed on the superalloy base material 1 by an aluminum pack method to form a first bonding layer 2 mainly composed of alumina on the surface of the base material. The film thickness is about 1 μm. In the alumina film formation, alumina may be deposited on the surface of the substrate by physical vapor deposition or chemical vapor deposition.
[0029]
Next, the second bonding layer 3 mainly composed of 8 mass% Y 2 O 3 —ZrO 2 zirconia was formed on the surface of the first bonding layer 2 mainly composed of the alumina. Next, a 7.5 mass% Y 2 O 3 —HfO 2 hafnia ceramic film (uppermost layer) was formed on the second bonding layer 3 containing zirconia as a main component.
[0030]
In forming the second bonding layer 3 and the uppermost layer 4, physical vapor deposition was performed using a physical vapor deposition apparatus 20 shown in FIG.
[0031]
First, in the vacuum chamber 5, the metal substrate 1 made of IN738 having the first bonding layer 2 mainly composed of alumina was mounted on the substrate driving device 6, and the zirconia ingot material 8 a was mounted on the crucible 7. Thereafter, the inside of the vacuum chamber 5 is evacuated to a level of 10 −4 Pa, and then the metal substrate 1 is heated, the zirconia ingot material 8 a is evaporated with an electron beam by the electron beam generator 9, and oxygen is introduced into the metal. A film was formed on the substrate 1. The oxygen introduced at this time may be oxygen gas, but oxygen ions can also be used. The metal substrate 1 is heated to 700 ° C. or higher by the substrate heating device 11, and a strong columnar crystal can be formed by this heating. The film thickness of the obtained 8 mass% Y 2 O 3 —ZrO 2 bonding layer 2 was about 50 μm. The zirconia ceramic film can also be formed by atmospheric plasma spraying.
[0032]
After the above construction, the zirconia ingot material 8a was replaced with the hafnia ingot material 8b to form a hafnia film. The obtained 7.5 mass% Y 2 O 3 —HfO 2 hafnia had a thickness of about 200 μm. The hafnia ceramic film can also be formed by atmospheric plasma spraying.
[0033]
Next, as further specific examples, the ceramic coated members of Examples 1 to 3 and Comparative Examples 1 and 2 were manufactured according to the following procedure, and the performances of these ceramic coated members were compared and evaluated.
[0034]
(Example 1)
An alumina bonding layer having a film thickness of about 5 μm is formed on the IN738 superalloy by diffusion aluminizing, and an 8 wt% Y 2 O 3 —ZrO 2 zirconia bonding layer having a film thickness of about 50 μm is formed thereon by physical vapor deposition. A 7.5 mass% Y 2 O 3 —HfO 2 hafnia ceramic film having a thickness of about 200 μm was formed by a vapor deposition method.
[0035]
(Example 2)
On the IN738 superalloy, a NiCoCrAlY coating layer having a film thickness of about 100 μm is formed by low pressure plasma spraying, and heat treatment is performed thereon in an oxygen atmosphere to form an alumina bonding layer having a film thickness of about 1 μm. Further, by physical vapor deposition An 8 wt% Y 2 O 3 —ZrO 2 zirconia bonding layer having a thickness of about 50 μm was formed, and a 7.5 mass% Y 2 O 3 —HfO 2 hafnia ceramic film having a thickness of about 200 μm was further formed by physical vapor deposition.
[0036]
Example 3
A NiCoCrAlY coating layer having a film thickness of about 100 μm is formed on the IN738 superalloy by low pressure plasma spraying, and heat treatment is performed thereon in an oxygen atmosphere to form an alumina bonding layer having a film thickness of about 1 μm, on which physical vapor deposition is performed. A gradient composition layer of zirconia and hafnia was formed by the method, and a 7.5 mass% Y 2 O 3 —HfO 2 hafnia ceramic film having a thickness of about 100 μm was formed on the top surface layer. The gradient composition portion was formed by alternately irradiating and evaporating the surface of the zirconia ingot and the hafnia ingot with an electron beam.
[0037]
(Comparative Example 1)
A NiCoCrAlY coating layer having a film thickness of about 100 μm was formed on the IN738 superalloy by atmospheric plasma spraying, and an 8 wt% Y 2 O 3 —ZrO 2 zirconia ceramic film having a film thickness of about 200 μm was formed thereon by air plasma spraying.
[0038]
(Comparative Example 2)
An alumina layer having a thickness of about 5 μm was formed on the IN738 superalloy by diffusion aluminizing, and an 8 wt% Y 2 O 3 —ZrO 2 zirconia ceramic film having a thickness of about 200 μm was formed by physical vapor deposition.
[0039]
About the ceramic coating | coated member of these Examples 1- Example 3 and Comparative Example 1- Comparative Example 2, the film peeling lifetime was evaluated by the thermal cycle test. The heat cycle test conditions were as follows: heating up to 1100 ° C. in 30 minutes in air, holding at 1100 ° C. for 30 minutes, cooling down to 150 ° C. in 30 minutes as one cycle, and the number of cycles until the film peels as the peeling life . In Table 1, the peel life is shown as the relative thermal cycle time when Comparative Example 1 is 1.
[0040]
[Table 1]
Figure 2005002409
[0041]
As is clear from the results shown in Table 1, the ceramic-coated members of Examples 1 to 3 have a significantly improved film peeling life compared to the ceramic-coated members of Comparative Examples 1 and 2, and in particular, In comparison with Comparative Example 1, it was found that the ceramic-coated members of Examples 1 to 3 each had a durability of 5 times. That is, it was found that a ceramic coated member having excellent durability can be obtained by the ceramic coated member of the present invention.
[0042]
The reason why the ceramic coating member of Comparative Example 2 shows a relatively good result compared to the ceramic coating member of Comparative Example 1 is that the ceramic coating member of Comparative Example 2 was manufactured by a film forming process by physical vapor deposition. It was judged. That is, by using a physical vapor deposition method as a film forming method, it is possible to obtain a ceramic-coated member having further excellent durability.
[0043]
Next, as shown in Table 2, with respect to the ceramic coated members of Examples 1 to 3 and Comparative Examples 1 and 2, the ceramic coating surface was heated with a burner at a temperature range of 1000 ° C. to 1300 ° C. for 100 hours. The sintering phenomenon of the ceramic film was compared.
[0044]
[Table 2]
Figure 2005002409
[0045]
As is clear from the results shown in Table 2, the ceramic coated members of Examples 1 to 3 have markedly improved heat resistance compared to the ceramic coated members of Comparative Examples 1 and 2.
[0046]
That is, the ceramic-coated members of Comparative Example 1 and Comparative Example 2 were cracked by sintering at 1200 ° C., whereas the ceramic-coated members of Examples 1 to 3 were sintered even under use conditions at 1300 ° C. No cracks are generated.
[0047]
This means that the upper limit of the actual use temperature of the conventional ceramic-coated member is 1200 ° C. or lower, whereas the ceramic-coated member of the present invention can be operated at 1300 ° C. Accordingly, it has been found that an excellent durable and heat-resistant ceramic-coated member can be obtained by the present invention.
[0048]
That is, the ceramic-coated member of the present invention can provide a ceramic-coated member that can be operated at a higher temperature than conventional ceramic-coated members. Therefore, it becomes possible to provide a highly durable thermal barrier coating high temperature member with this ceramic coating member.
[0049]
【The invention's effect】
As described above, according to the ceramic-coated member of the present invention, the manufacturing method thereof, and the thermal barrier coating high-temperature component using the ceramic-coated member, the heat resistance of the ceramic-coated member is greatly improved. A ceramic-coated member having a long-life thermal cycle characteristic, a manufacturing method thereof, and a thermal barrier coating high-temperature part using the ceramic-coated member can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a ceramic-coated member according to the present invention.
FIG. 2 is a schematic configuration diagram of an electron beam physical vapor deposition apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal base material 2 1st coupling layer 3 2nd coupling layer 4 Uppermost layer 5 Vacuum chamber 6 Base material drive device 7 Crucible 8a Zirconia ingot material 8b Hafnia ingot material 9 Electron beam generator 10 Ceramic coating member 11 Base material heating device 20 Physical vapor deposition equipment

Claims (12)

耐熱機器に使用されるセラミックス被覆部材であって、このセラミックス被覆部材が、金属基材とこの金属基材の表面に形成されたアルミナを主成分とする第1結合層と、前記第1結合層の表面に形成されたジルコニアを主成分とする第2結合層と、前記第2結合層の表面に形成されたハフニアを主成分とする最上層とから構成されたことを特徴とするセラミックス被覆部材。A ceramic-coated member used in a heat-resistant device, wherein the ceramic-coated member includes a metal base material, a first bonding layer mainly composed of alumina formed on a surface of the metal base material, and the first bonding layer. A ceramic-coated member comprising: a second bonding layer mainly composed of zirconia formed on the surface of the first bonding layer; and an uppermost layer mainly composed of hafnia formed on the surface of the second bonding layer. . 前記最上層は、前記第2結合層との界面側において高いジルコニア組成を有し、表面側において高いハフニア組成を有する傾斜組成皮膜であることを特徴とする請求項1記載のセラミックス被覆部材。2. The ceramic-coated member according to claim 1, wherein the uppermost layer is a gradient composition film having a high zirconia composition on the interface side with the second bonding layer and a high hafnia composition on the surface side. 前記最上層は、柱状晶構造を有することを特徴とする請求項1記載のセラミックス被覆部材。The ceramic coated member according to claim 1, wherein the uppermost layer has a columnar crystal structure. 前記第2結合層は、柱状晶構造を有することを特徴とする請求項1記載のセラミックス被覆部材。The ceramic-coated member according to claim 1, wherein the second bonding layer has a columnar crystal structure. 前記最上層は、Y、MgO、CaO、TiO、ランタノイド酸化物から選択される少なくとも一種類以上の酸化物を含有することを特徴とする請求項1記載のセラミックス被覆部材。 2. The ceramic-coated member according to claim 1, wherein the uppermost layer contains at least one oxide selected from Y 2 O 3 , MgO, CaO, TiO 2 , and a lanthanoid oxide. 前記第2結合層は、Y、MgO、CaO、TiO、ランタノイド酸化物から選択される少なくとも一種類以上の酸化物を含有することを特徴とする請求項1記載のセラミックス被覆部材。2. The ceramic-coated member according to claim 1, wherein the second bonding layer contains at least one oxide selected from Y 2 O 3 , MgO, CaO, TiO 2 , and a lanthanoid oxide. 前記金属基材は、スチール、超合金、チタン合金、銅合金から選択される合金材料であることを特徴とする請求項1記載のセラミックス被覆部材。2. The ceramic-coated member according to claim 1, wherein the metal substrate is an alloy material selected from steel, a superalloy, a titanium alloy, and a copper alloy. 前記金属基材の表面に組成式MCrAlYであらわされる合金材料(MはNi、Co、Feから選択される少なくとも1種の金属元素を示す)を被覆したことを特徴とする請求項1記載のセラミックス被覆部材。2. The ceramic according to claim 1, wherein the surface of the metal substrate is coated with an alloy material represented by a composition formula MCrAlY (M represents at least one metal element selected from Ni, Co, and Fe). Covering member. 前記第1結合層は、前記金属基材表面に拡散アルミナイジングまたはアルミナ堆積により形成され、前記第2結合層は、物理蒸着法または溶射で形成され、前記最上層は、物理蒸着法または溶射で形成されたことを特徴とする請求項1記載のセラミックス被覆部材。The first bonding layer is formed by diffusion aluminizing or alumina deposition on the surface of the metal substrate, the second bonding layer is formed by physical vapor deposition or thermal spraying, and the uppermost layer is formed by physical vapor deposition or thermal spraying. The ceramic-coated member according to claim 1, wherein the ceramic-coated member is formed. 金属基材上に、アルミナを主成分とした第1結合層を拡散アルミナイジングまたはアルミナ堆積または酸素雰囲気加熱処理により形成し、ジルコニアを主成分とした第2結合層を物理蒸着法または溶射で形成し、ハフニアを主成分とした最上層を物理蒸着法または溶射により形成することを特徴とするセラミックス被覆部材の製造方法。A first bonding layer mainly composed of alumina is formed on a metal substrate by diffusion aluminizing or alumina deposition or oxygen atmosphere heat treatment, and a second bonding layer mainly composed of zirconia is formed by physical vapor deposition or thermal spraying. A method for producing a ceramic-coated member, wherein the uppermost layer containing hafnia as a main component is formed by physical vapor deposition or thermal spraying. 組成式MCrAlYで表される金属材料(MはNi、Co、Feから選択される少なくとも1種の金属元素を示す)を被覆した金属基材上に、アルミナを主成分とした第1結合層を拡散アルミナイジングまたはアルミナ堆積または酸素雰囲気加熱処理により形成し、ジルコニアを主成分とした第2結合層を物理蒸着法または溶射で形成し、ハフニアを主成分とした最上層を物理蒸着法または溶射により形成することを特徴とするセラミックス被覆部材の製造方法。A first bonding layer mainly composed of alumina is formed on a metal substrate coated with a metal material represented by the composition formula MCrAlY (M represents at least one metal element selected from Ni, Co, and Fe). It is formed by diffusion aluminizing or alumina deposition or oxygen atmosphere heat treatment, the second bonding layer mainly composed of zirconia is formed by physical vapor deposition or thermal spraying, and the uppermost layer mainly composed of hafnia is formed by physical vapor deposition or thermal spraying. A method for producing a ceramic-coated member, comprising: forming a ceramic-coated member. 請求項1〜請求項8記載のセラミックス皮膜が被覆されたことを特徴とする遮熱コーティング高温部品。A thermal barrier coating high-temperature part coated with the ceramic film according to claim 1.
JP2003166935A 2003-06-11 2003-06-11 Ceramic-coated member, method for manufacturing the same, and thermal-barrier coated high-temperature component using the ceramic-coated member Pending JP2005002409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166935A JP2005002409A (en) 2003-06-11 2003-06-11 Ceramic-coated member, method for manufacturing the same, and thermal-barrier coated high-temperature component using the ceramic-coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166935A JP2005002409A (en) 2003-06-11 2003-06-11 Ceramic-coated member, method for manufacturing the same, and thermal-barrier coated high-temperature component using the ceramic-coated member

Publications (1)

Publication Number Publication Date
JP2005002409A true JP2005002409A (en) 2005-01-06

Family

ID=34092933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166935A Pending JP2005002409A (en) 2003-06-11 2003-06-11 Ceramic-coated member, method for manufacturing the same, and thermal-barrier coated high-temperature component using the ceramic-coated member

Country Status (1)

Country Link
JP (1) JP2005002409A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262530A (en) * 2006-03-29 2007-10-11 Chubu Electric Power Co Inc Oxidation-resistant coating member and its manufacturing method
JP2008196040A (en) * 2007-02-16 2008-08-28 Toshiba Corp Heat resistant member
JP2008202092A (en) * 2007-02-20 2008-09-04 Toshiba Corp Ceramics-coated member, and its production method
JP2010242225A (en) * 2010-07-22 2010-10-28 Toshiba Corp Ceramic-coated member
US7955708B2 (en) 2005-10-07 2011-06-07 Sulzer Metco (Us), Inc. Optimized high temperature thermal barrier
US8337989B2 (en) 2010-05-17 2012-12-25 United Technologies Corporation Layered thermal barrier coating with blended transition
US9975812B2 (en) 2005-10-07 2018-05-22 Oerlikon Metco (Us) Inc. Ceramic material for high temperature service

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955708B2 (en) 2005-10-07 2011-06-07 Sulzer Metco (Us), Inc. Optimized high temperature thermal barrier
US11046614B2 (en) 2005-10-07 2021-06-29 Oerlikon Metco (Us) Inc. Ceramic material for high temperature service
US9975812B2 (en) 2005-10-07 2018-05-22 Oerlikon Metco (Us) Inc. Ceramic material for high temperature service
US8187717B1 (en) 2005-10-07 2012-05-29 Sulzer Metco (Us) Inc. High purity ceramic abradable coatings
US7955707B2 (en) 2005-10-07 2011-06-07 Sulzer Metco (Us), Inc. High purity ceramic abradable coatings
JP2007262530A (en) * 2006-03-29 2007-10-11 Chubu Electric Power Co Inc Oxidation-resistant coating member and its manufacturing method
EP1959100A3 (en) * 2007-02-16 2010-08-11 Kabushiki Kaisha Toshiba Heat resistant member
JP2008196040A (en) * 2007-02-16 2008-08-28 Toshiba Corp Heat resistant member
JP4607914B2 (en) * 2007-02-20 2011-01-05 株式会社東芝 Ceramic coated member and method for manufacturing the same
JP2008202092A (en) * 2007-02-20 2008-09-04 Toshiba Corp Ceramics-coated member, and its production method
US8337989B2 (en) 2010-05-17 2012-12-25 United Technologies Corporation Layered thermal barrier coating with blended transition
US8574721B2 (en) 2010-05-17 2013-11-05 United Technologies Corporation Layered thermal barrier coating with blended transition and method of application
JP2010242225A (en) * 2010-07-22 2010-10-28 Toshiba Corp Ceramic-coated member

Similar Documents

Publication Publication Date Title
JP4959213B2 (en) Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
JP4320411B2 (en) Multi-layer insulation coating system
JP4166977B2 (en) High temperature corrosion resistant alloy material, thermal barrier coating material, turbine member, and gas turbine
JP2007262447A (en) Oxidation-resistant film and its deposition method, thermal barrier coating, heat-resistant member, and gas turbine
JPH01279781A (en) Ceramic coated heat resistant member
WO2002103074A1 (en) Thermal barrier coating material and method for production thereof, gas turbine member using the thermal barrier coating material, and gas turbine
UA80723C2 (en) Chipping-resistant metal article (variants), method for reduction of chipping in metal articles
CN110284097B (en) Environmental barrier coating and coating method and application thereof
JP4031631B2 (en) Thermal barrier coating material, gas turbine member and gas turbine
KR20030011690A (en) Thermal barrier coating
JP2003160852A (en) Thermal insulating coating material, manufacturing method therefor, turbine member and gas turbine
JP4612955B2 (en) Thermal insulation
JP2004514064A (en) Materials for heat-loaded substrates
JP2003342751A (en) Heat resistant structural member and production method therefor
JP2005002409A (en) Ceramic-coated member, method for manufacturing the same, and thermal-barrier coated high-temperature component using the ceramic-coated member
JP6499271B2 (en) Thermal barrier coating and power generation system
JP4388466B2 (en) Gas turbine, thermal barrier coating material, manufacturing method thereof, and turbine member
JP4533718B2 (en) Thermal barrier coating material, gas turbine member to which thermal barrier coating material is applied, and gas turbine
JP2010242223A (en) Thermal barrier coating member, production method therefor, thermal barrier coating material, gas turbine, and sintered compact
JPS61174385A (en) Ceramic-coated fire resistant member and its production
JP5320352B2 (en) Thermal barrier coating member and manufacturing method thereof, thermal barrier coating material, gas turbine, and sintered body
JP5164250B2 (en) Thermal barrier coating member and manufacturing method thereof
JPS62211387A (en) Production of ceramic coated heat resistant member
JP2006045606A (en) Ingot for ceramic coating, ceramic-coated member, its manufacturing method, and thermal barrier coated high-temperature component
JP2003313652A (en) Ceramic film for heat shielding, ceramic-coated member coated with the film and its manufacturing method