JP2003342751A - Heat resistant structural member and production method therefor - Google Patents
Heat resistant structural member and production method thereforInfo
- Publication number
- JP2003342751A JP2003342751A JP2002149694A JP2002149694A JP2003342751A JP 2003342751 A JP2003342751 A JP 2003342751A JP 2002149694 A JP2002149694 A JP 2002149694A JP 2002149694 A JP2002149694 A JP 2002149694A JP 2003342751 A JP2003342751 A JP 2003342751A
- Authority
- JP
- Japan
- Prior art keywords
- structural member
- heat
- coating layer
- thermal barrier
- barrier coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000010410 layer Substances 0.000 claims abstract description 226
- 239000000463 material Substances 0.000 claims abstract description 68
- 229910002076 stabilized zirconia Inorganic materials 0.000 claims abstract description 45
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 28
- 239000000956 alloy Substances 0.000 claims abstract description 28
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 claims abstract description 27
- 239000002131 composite material Substances 0.000 claims abstract description 22
- 239000011247 coating layer Substances 0.000 claims abstract description 12
- 239000003381 stabilizer Substances 0.000 claims abstract description 10
- 229910017709 Ni Co Inorganic materials 0.000 claims abstract description 5
- 229910003267 Ni-Co Inorganic materials 0.000 claims abstract description 5
- 229910003262 Ni‐Co Inorganic materials 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims description 125
- 239000002184 metal Substances 0.000 claims description 125
- 239000012720 thermal barrier coating Substances 0.000 claims description 109
- 238000000034 method Methods 0.000 claims description 49
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 46
- 238000007740 vapor deposition Methods 0.000 claims description 23
- 239000000843 powder Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 19
- 238000007750 plasma spraying Methods 0.000 claims description 17
- 238000005328 electron beam physical vapour deposition Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052746 lanthanum Inorganic materials 0.000 claims description 11
- 239000002994 raw material Substances 0.000 claims description 11
- 229910052684 Cerium Inorganic materials 0.000 claims description 10
- 229910052772 Samarium Inorganic materials 0.000 claims description 10
- 229910052693 Europium Inorganic materials 0.000 claims description 8
- 229910052779 Neodymium Inorganic materials 0.000 claims description 8
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 7
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 7
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000000087 stabilizing effect Effects 0.000 claims description 5
- 239000002344 surface layer Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 238000005551 mechanical alloying Methods 0.000 claims description 4
- 238000001694 spray drying Methods 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims 1
- 238000005245 sintering Methods 0.000 abstract description 11
- 230000006866 deterioration Effects 0.000 abstract description 6
- 238000005336 cracking Methods 0.000 abstract description 5
- 241001174930 Pyrochroa Species 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 description 28
- 239000002585 base Substances 0.000 description 22
- 230000004888 barrier function Effects 0.000 description 21
- 230000000694 effects Effects 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 7
- 229910000601 superalloy Inorganic materials 0.000 description 7
- 229910000946 Y alloy Inorganic materials 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000000280 densification Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000002040 relaxant effect Effects 0.000 description 3
- 238000012827 research and development Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000010436 fluorite Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 102100024522 Bladder cancer-associated protein Human genes 0.000 description 1
- 101150110835 Blcap gene Proteins 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 101100493740 Oryza sativa subsp. japonica BC10 gene Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
- C23C28/3215—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/40—Coatings including alternating layers following a pattern, a periodic or defined repetition
- C23C28/42—Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Physical Vapour Deposition (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は耐熱構造部材および
その製造方法に係り、特にガスタービンの動翼、静翼、
燃焼器、ジェットエンジンなどの高温機器部品の構成材
として適用された場合においても、遮熱コーティング層
の収縮による割れや剥離が少なく長期間にわたって優れ
た耐熱性および耐久性を発揮する耐熱構造部材およびそ
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant structural member and a method for manufacturing the same, and more particularly to a moving blade, a stationary blade of a gas turbine,
Even when applied as a constituent material for high temperature equipment parts such as combustors and jet engines, there is little cracking or peeling due to shrinkage of the thermal barrier coating layer, and a heat-resistant structural member that exhibits excellent heat resistance and durability over a long period of time. The present invention relates to a manufacturing method thereof.
【0002】[0002]
【従来の技術】化石燃料の燃焼に伴う炭酸ガスの放出に
よる地球温暖化を防止する観点や省資源による経済性の
向上という観点から、ガスタービンやジェットエンジン
などの原動機においては熱効率のさらなる向上が求めら
れており、精力的な研究開発が進められている。例えば
ガスタービン発電設備においては、運転温度を高めて燃
焼機出口ガス温度が高いほど発電効率が向上することが
知られている。したがって高効率化を達成するために
は、エネルギーロスを低減させるとともに、高温度の燃
焼ガスにさらされるガスタービンの動翼、静翼または燃
焼器などの高熱機器を構成する耐熱構造部材に作用する
高温度を緩和したり、高温度運転に耐えるように部材自
体の耐用温度(耐熱温度)を高めたりする方向で研究開
発が進められている。2. Description of the Related Art From the viewpoint of preventing global warming due to the release of carbon dioxide gas accompanying the combustion of fossil fuels and improving the economic efficiency by saving resources, further improvement in thermal efficiency is required for prime movers such as gas turbines and jet engines. It is being sought after, and energetic research and development is underway. For example, in a gas turbine power generation facility, it is known that the power generation efficiency is improved as the operating temperature is increased and the combustor outlet gas temperature is higher. Therefore, in order to achieve high efficiency, the energy loss is reduced and the heat-resistant structural members constituting high-heat equipment such as rotor blades, vanes or combustors of a gas turbine exposed to high-temperature combustion gas act. Research and development is being conducted in the direction of relaxing the high temperature and increasing the service temperature (heat resistant temperature) of the member itself so as to withstand the high temperature operation.
【0003】上記耐熱構造部材の耐久性(信頼性)を向上
させるために、まず構造部材自体の耐熱性を向上させる
研究が実施されてきた。例えば、既に高温部品用構造材
料としてNi基合金、Co基合金またはFe基合金等か
ら成る耐熱超合金の研究開発が進んでおり、実用化され
ているものも多い。また、一方向凝固法により柱状晶の
みからなる合金結晶組織を形成したり、単結晶のみから
成る合金組織を形成したりすることにより、構造材料の
高温強度をさらに向上させることも試行されている。In order to improve the durability (reliability) of the heat-resistant structural member, research has been conducted to improve the heat resistance of the structural member itself. For example, research and development of heat-resistant superalloys made of Ni-based alloys, Co-based alloys, Fe-based alloys, etc. have already been advanced as structural materials for high-temperature parts, and many of them have been put into practical use. Further, it has been attempted to further improve the high temperature strength of the structural material by forming an alloy crystal structure consisting only of columnar crystals or an alloy structure consisting of only a single crystal by the unidirectional solidification method. .
【0004】しかしながら、上記従来の超合金のみから
成る耐熱構造部材では、融点が十分に高いものが得られ
ず、高温度域において軟化や再結晶による強度低下が発
生し易いことから、1000℃以上の高温度領域では使
用できないといった制約があった。However, in the above-mentioned conventional heat-resistant structural member composed only of a superalloy, it is not possible to obtain a member having a sufficiently high melting point, and it is easy for softening or strength reduction due to recrystallization in a high temperature range. There was a restriction that it could not be used in the high temperature region.
【0005】そこで、上記制約の改善策として、遮熱コ
ーティング(TBC:Thermal Barrier Coating)を用
いた技術が開発され、一部で実用化されている。この遮
熱コーティングは、熱伝導率が低い酸化物系セラミック
ス層を金属基材表面に形成することにより、熱を遮断し
金属基材の温度上昇を防止する機能を有する。Therefore, as a measure for improving the above-mentioned restrictions, a technique using a thermal barrier coating (TBC) has been developed and partially put into practical use. This thermal barrier coating has a function of blocking heat and preventing a temperature rise of the metal base material by forming an oxide ceramic layer having a low thermal conductivity on the surface of the metal base material.
【0006】図3は上記遮熱コーティング(TBC)を
形成した従来の耐熱構造部材の構造例を示す断面図であ
る。図3に示す耐熱構造部材は、一般的にNi,Coま
たはFeを主成分とする超合金等からなる金属基材1
と、この金属基材1表面上に一体に形成され、耐食性お
よび耐酸化性に優れたMCrAlY(但しMはNi、C
o、Feの少なくとも1種)合金等から成る金属結合層
2と、安定化ジルコニア(ZrO2)等のセラミックス
を主成分とする遮熱コーティング層3とを備えて三層構
造に構成される。FIG. 3 is a sectional view showing a structural example of a conventional heat resistant structural member having the above-mentioned thermal barrier coating (TBC) formed thereon. The heat-resistant structural member shown in FIG. 3 is a metal substrate 1 which is generally made of a superalloy containing Ni, Co or Fe as a main component.
And MCrAlY which is integrally formed on the surface of the metal substrate 1 and has excellent corrosion resistance and oxidation resistance (where M is Ni, C
A metal bonding layer 2 made of an alloy of at least one of o and Fe) and a thermal barrier coating layer 3 containing a ceramic such as stabilized zirconia (ZrO 2 ) as a main component are provided to form a three-layer structure.
【0007】そして上記遮熱コーティング層3の遮熱効
果により金属基材1の温度上昇が抑制されるという作用
効果が得られる。また、上記金属結合層2は、金属基材
1と遮熱コーティング層3との密着性(接合強度)を高
め、金属基材1の腐食を防止し酸化を抑制する効果をも
発揮する。Due to the heat shield effect of the heat shield coating layer 3, the effect of suppressing the temperature rise of the metal base material 1 can be obtained. Further, the metal bonding layer 2 enhances the adhesion (bonding strength) between the metal base material 1 and the thermal barrier coating layer 3, and also exhibits the effect of preventing the metal base material 1 from corrosion and suppressing the oxidation.
【0008】しかしながら、従来の遮熱コーティング層
を形成した耐熱構造部材では、セラミックスから成る遮
熱コーティング層の割れや剥離が発生し易く耐熱構造部
材の耐久性や信頼性が低い問題点があった。この遮熱コ
ーティング層の割れや剥離は、セラミックス成分と金属
結合層との熱膨張差や、遮熱コーティング層のセラミッ
クス成分の焼結収縮や遮熱コーティング層直下の金属表
面の酸化による体積膨張などの現象によって発生するも
のと考えられている。However, the conventional heat-resistant structural member having the thermal barrier coating layer has a problem that the thermal barrier coating layer made of ceramics is easily cracked or peeled off, and the durability or reliability of the heat-resistant structural member is low. . This cracking or peeling of the thermal barrier coating layer may cause a difference in thermal expansion between the ceramic component and the metal bonding layer, sintering shrinkage of the ceramic component of the thermal barrier coating layer, or volume expansion due to oxidation of the metal surface immediately below the thermal barrier coating layer. It is thought to be caused by the phenomenon of.
【0009】一旦、遮熱コーティング層に割れや剥離が
生じると遮熱特性が急激に低下するために、金属基材の
温度上昇を招き、その結果、最悪の場合には金属基材が
溶融したり、破壊したりする可能性が高まる危険性があ
った。このような危険性は、機器運転上、回避すべき問
題である。Once the thermal barrier coating layer is cracked or peeled off, the thermal barrier property is sharply deteriorated, which causes a rise in temperature of the metal base material. As a result, in the worst case, the metal base material is melted. There was a risk of increasing the possibility of damage or destruction. Such a danger is a problem that should be avoided when operating the equipment.
【0010】このような事態を防止するため、遮熱コー
ティング層の割れや剥離の発生要因である金属基材と遮
熱コーティング層との間の熱膨張差の解消や、金属結合
層の酸化・腐食の解消などに着目した改善策が提案され
ている。In order to prevent such a situation, the difference in thermal expansion between the metal base material and the thermal barrier coating layer, which is the cause of cracking and peeling of the thermal barrier coating layer, is eliminated, and the metal bonding layer is oxidized and oxidized. Improvement measures that focus on eliminating corrosion have been proposed.
【0011】例えば、熱膨張差の解消対策としては、金
属結合層の組成が厚さ方向に順次変化するように傾斜組
成化して熱応力を緩和する方法、または電子ビーム物理
的蒸着法(EB-PVD法)によって遮熱コーティング
層表面に溝状の縦割れを意図的に形成し、その縦割れ部
の変形によって熱応力を緩和する方法等が提案されてお
り、一定の成果を挙げている。For example, as a measure for eliminating the difference in thermal expansion, a method of grading the composition of the metal bonding layer so as to sequentially change in the thickness direction to relax thermal stress, or an electron beam physical vapor deposition method (EB-). A method of intentionally forming groove-shaped vertical cracks on the surface of the thermal barrier coating layer by the PVD method) and relaxing the thermal stress by the deformation of the vertical cracks has been proposed, and has achieved certain results.
【0012】また金属結合層の酸化・腐食対策として
は、酸素やアルカリ金属などの腐食物質の拡散による侵
入を防止するバリア層を遮熱コーティング層と金属結合
層との間に中間層として介装することが提案されてい
る。As a measure against oxidation / corrosion of the metal bonding layer, a barrier layer for preventing penetration of corrosive substances such as oxygen and alkali metals due to diffusion is interposed as an intermediate layer between the thermal barrier coating layer and the metal bonding layer. It is suggested to do so.
【0013】[0013]
【発明が解決しようとする課題】しかしながら、上記従
来の遮熱コーティング層を形成した耐熱構造部材では、
遮熱コーティング層におけるセラミックス成分の焼結収
縮がコーティング層の剥離をもたらすことがあり、この
対策に付いては現在までほとんど有効な手段が確立され
ていなかった。上記遮熱コーティング層は一般に安定化
ジルコニアを主成分とし、熱伝導率を低下させるために
気孔を多く含むように調製されるが、この遮熱コーティ
ング層(皮膜)が高温度の燃焼ガスに接触してそのセラミ
ックス成分が焼結されると、緻密化して気孔が減少し熱
伝導率やヤング率が増加し、遮熱コーティング層による
遮熱特性が低下し耐熱構造部材の耐熱性が劣化するとい
った問題が生じてくる。However, in the conventional heat-resistant structural member having the above-mentioned thermal barrier coating layer,
Sintering shrinkage of the ceramic component in the thermal barrier coating layer may lead to peeling of the coating layer, and as a countermeasure against this, almost no effective means has been established until now. The thermal barrier coating layer generally contains stabilized zirconia as a main component and is prepared to have many pores in order to reduce the thermal conductivity, but the thermal barrier coating layer (coating) is contacted with high temperature combustion gas. Then, when the ceramic component is sintered, it is densified and the number of pores is reduced, the thermal conductivity and Young's modulus are increased, the thermal barrier property of the thermal barrier coating layer is deteriorated, and the heat resistance of the heat resistant structural member is deteriorated. Problems arise.
【0014】特に上記耐熱構造部材をガスタービンの動
翼、静翼、燃焼器、ジェットエンジンなどの高温機器部
品の構成材として適用した場合において、遮熱コーティ
ング層の収縮による割れや剥離が短期間の運転で発生
し、遮熱特性が急激に低下して金属基材の温度上昇を招
き、高温機器部品が溶融したり、破壊したりするため、
機器運転上の重要な障害となる問題点があった。In particular, when the above heat-resistant structural member is applied as a constituent material of high-temperature equipment parts such as moving blades, stationary blades, combustors, and jet engines of gas turbines, cracking or peeling due to shrinkage of the thermal barrier coating layer is short-term. Occurs in the operation of, the thermal barrier property is drastically reduced and the temperature of the metal base material rises, and high temperature equipment parts are melted or destroyed,
There was a problem that became an important obstacle in operating the equipment.
【0015】本発明は上記従来の問題点を解決するため
になされたものであり、特にガスタービンの動翼、静
翼、燃焼器、ジェットエンジンなどの高温機器部品の構
成材として適用された場合においても、遮熱コーティン
グ層の収縮による割れや剥離が少なく遮熱性能の低下を
効果的に抑制でき、長期間にわたって優れた耐熱性およ
び耐久性を発揮する耐熱構造部材およびその製造方法を
提供することを目的とする。The present invention has been made to solve the above-mentioned conventional problems, and in particular, when it is applied as a constituent material of high temperature equipment parts such as moving blades, stationary blades, combustors, and jet engines of gas turbines. Also in the above, there is provided a heat-resistant structural member that is less likely to be cracked or peeled off due to shrinkage of the heat-insulating coating layer, can effectively suppress deterioration of heat-insulating performance, and exhibits excellent heat resistance and durability over a long period of time, and a manufacturing method thereof. The purpose is to
【0016】[0016]
【課題を解決するための手段】本発明者は上記目的を達
成するために、種々の組成および層構造を有する遮熱コ
ーティング層を金属基材表面に一体に形成して耐熱構造
部材を調製し、上記組成および層構造が遮熱コーティン
グ層の遮熱性能,耐久性,剥離特性等に及ぼす影響を比較
検討した。その結果、遮熱コーティング層を構成するセ
ラミックス遮熱層をジルコニアとパイロクロア型酸化物
との複合組織としたときに、セラミックス遮熱層の焼結
収縮による剥離や遮熱性能の低下が効果的に抑制でき、
耐熱性および耐久性に優れた耐熱構造部材が初めて得ら
れるという知見を得た。本発明は上記知見に基づいて完
成されたものである。In order to achieve the above object, the present inventor prepared a heat resistant structural member by integrally forming a thermal barrier coating layer having various compositions and layer structures on the surface of a metal substrate. The effects of the above composition and layer structure on the thermal barrier performance, durability, peeling property, etc. of the thermal barrier coating layer were compared and examined. As a result, when the ceramics heat-shielding layer constituting the heat-shielding coating layer has a composite structure of zirconia and pyrochlore type oxide, peeling due to the sintering shrinkage of the ceramics heat-shielding layer and deterioration of the heat-shielding performance are effective. Can be suppressed,
We have found that a heat-resistant structural member having excellent heat resistance and durability can be obtained for the first time. The present invention has been completed based on the above findings.
【0017】すなわち、本発明に係る耐熱構造部材は、
金属基材表面に金属結合層を介して、遮熱コーティング
層を一体に形成した耐熱構造部材において、上記遮熱コ
ーティング層が、安定化剤を含有する安定化ジルコニア
もしくは部分安定化ジルコニアとパイロクロア型酸化物
とから成る複合組織を有することを特徴とする。That is, the heat resistant structural member according to the present invention is
In a heat-resistant structural member integrally formed with a thermal barrier coating layer on the surface of a metal substrate through a metal bonding layer, the thermal barrier coating layer is a stabilized zirconia containing a stabilizer or a partially stabilized zirconia and pyrochlore type. It is characterized by having a composite structure composed of an oxide.
【0018】また上記耐熱構造部材において、前記金属
結合層が、Ni基合金,Co基合金およびNi−Co合
金のいずれかから成ることが好ましい。さらに、前記安
定化剤が、Y2O3、Er2O3、CeO2から選択さ
れる少なくとも1種であることことが好ましい。In the heat resistant structural member, it is preferable that the metal bonding layer is made of any one of a Ni-base alloy, a Co-base alloy and a Ni-Co alloy. Furthermore, it is preferable that the stabilizer is at least one selected from Y 2 O 3 , Er 2 O 3 , and CeO 2 .
【0019】また上記耐熱構造部材において、前記パイ
ロクロア型酸化物が、Ln2Zr2O7、Ln2Hf2
O7、Ln2Ti2O7(但しLnはLa,Ce,P
r,Nd,Pm,Sm,Eu,Gdから選択される少な
くとも1種の元素である)の少なくとも1種の酸化物で
構成することが好ましい。さらに、前記遮熱コーティン
グ層におけるパイロクロア型酸化物の体積率が0.1〜
50%の範囲であることが好ましい。In the heat resistant structural member, the pyrochlore type oxide may be Ln 2 Zr 2 O 7 , Ln 2 Hf 2
O 7 , Ln 2 Ti 2 O 7 (where Ln is La, Ce, P
It is preferably composed of at least one oxide of at least one element selected from r, Nd, Pm, Sm, Eu and Gd). Furthermore, the volume ratio of the pyrochlore type oxide in the thermal barrier coating layer is 0.1 to 0.1%.
It is preferably in the range of 50%.
【0020】さらに上記耐熱構造部材において、前記遮
熱コーティング層が、Y2O3、Er2O3、CeO2
等の少なくとも1種を安定化剤とする安定化ジルコニア
もしくは部分安定化ジルコニアを主成分とするととも
に、さらに一般式Ln2O3(但しLnはLa,Ce,
Pr,Nd,Pm,Sm,Eu,Gdから選択される少
なくとも1種の元素である)を0.1〜30mol%を
含有することが好ましい。Further, in the heat resistant structural member, the thermal barrier coating layer is Y 2 O 3 , Er 2 O 3 , CeO 2
In addition to having stabilized zirconia or partially stabilized zirconia as a main component with at least one stabilizer as a main component, a compound of the general formula Ln 2 O 3 (where Ln is La, Ce,
0.1 to 30 mol% of at least one element selected from Pr, Nd, Pm, Sm, Eu, and Gd) is preferably contained.
【0021】また上記耐熱構造部材において、前記遮熱
コーティング層の表層側が、安定化ジルコニアもしくは
部分安定化ジルコニアで構成される一方、金属結合層側
がパイロクロア型酸化物で構成され、その表層側と金属
結合層側との間におけるジルコニアおよびパイロクロア
型酸化物の組成比が厚さ方向に連続的あるいは非連続的
に変化する傾斜組成を有するように構成することもでき
る。In the heat resistant structural member, the surface layer side of the thermal barrier coating layer is made of stabilized zirconia or partially stabilized zirconia, while the metal bonding layer side is made of pyrochlore type oxide, and the surface layer side and the metal are The composition ratio of the zirconia and the pyrochlore type oxide between the bonding layer side and the bonding layer side may be configured to have a graded composition that continuously or discontinuously changes in the thickness direction.
【0022】さらに本発明に係る耐熱構造部材の製造方
法は、金属基材表面に金属結合層を介して遮熱コーティ
ング層を一体に形成する耐熱構造部材の製造方法におい
て、金属基材表面に金属結合層を形成した後に、電子ビ
ーム物理蒸着法によって安定化ジルコニア蒸着材とパイ
ロクロア型酸化物蒸着材の2種類の原料を加熱蒸発せし
め、この混合蒸気を金属結合層表面に蒸着させることに
より遮熱コーティング層を一体に形成することを特徴と
する。Furthermore, the method for producing a heat-resistant structural member according to the present invention is the method for producing a heat-resistant structural member, wherein a heat-shielding coating layer is integrally formed on the surface of a metal substrate through a metal bonding layer. After forming the bonding layer, two kinds of raw materials, stabilized zirconia vapor deposition material and pyrochlore type oxide vapor deposition material, are heated and evaporated by electron beam physical vapor deposition method, and the mixed vapor is vapor-deposited on the surface of the metal bonding layer to shield the heat. The coating layer is integrally formed.
【0023】また本発明に係る耐熱構造部材の他の製造
方法は、金属基材表面に金属結合層を介して遮熱コーテ
ィング層を一体に形成する耐熱構造部材の製造方法にお
いて、金属基材表面に金属結合層を形成し、安定化ジル
コニアもしくは部分安定化ジルコニアとパイロクロア型
酸化物との複合酸化物からなる蒸着材を電子ビーム物理
蒸着法によって加熱蒸発せしめ、この蒸気を金属結合層
表面に蒸着させることにより安定化ジルコニアとパイロ
クロア型酸化物との複合組織からなる遮熱コーティング
層を一体に形成することを特徴とする。Another method for producing a heat-resistant structural member according to the present invention is the method for producing a heat-resistant structural member, wherein a thermal barrier coating layer is integrally formed on the surface of a metal substrate through a metal bonding layer. A metal bonding layer is formed on the surface, and a vapor deposition material consisting of stabilized zirconia or a composite oxide of partially stabilized zirconia and pyrochlore type oxide is heated and evaporated by the electron beam physical vapor deposition method, and this vapor is evaporated on the surface of the metal bonding layer. By doing so, a thermal barrier coating layer having a composite structure of stabilized zirconia and pyrochlore type oxide is integrally formed.
【0024】さらに本発明に係る耐熱構造部材のその他
の製造方法は、金属基材表面に金属結合層を介して遮熱
コーティング層を一体に形成する耐熱構造部材の製造方
法において、金属基材表面に金属結合層を形成し、安定
化ジルコニアもしくは部分安定化ジルコニア蒸着材と一
般式Ln2O3(但しLnはLa,Ce,Pr,Nd,
Pm,Sm,EuおよびGdの少なくとも1種)で表さ
れる希土類酸化物蒸着材とを電子ビーム物理蒸着法によ
って加熱蒸発せしめ、この混合蒸気を金属結合層表面に
蒸着させることにより安定化ジルコニアとパイロクロア
型酸化物との複合組織からなる遮熱コーティング層を一
体に形成することを特徴とする。Further, another method for producing a heat-resistant structural member according to the present invention is the method for producing a heat-resistant structural member in which a thermal barrier coating layer is integrally formed on the surface of a metal substrate through a metal bonding layer. A metal bonding layer is formed on the zirconia, the stabilized zirconia or partially stabilized zirconia vapor deposition material and the general formula Ln 2 O 3 (where Ln is La, Ce, Pr, Nd,
A rare earth oxide vapor deposition material represented by at least one of Pm, Sm, Eu, and Gd) is heated and evaporated by an electron beam physical vapor deposition method, and the mixed vapor is vapor-deposited on the surface of the metal bonding layer to form stabilized zirconia. It is characterized by integrally forming a thermal barrier coating layer having a composite structure with a pyrochlore type oxide.
【0025】また本発明に係る耐熱構造部材の他の製造
方法は、金属基材表面に金属結合層を介して遮熱コーテ
ィング層を一体に形成する耐熱構造部材の製造方法にお
いて、金属基材表面に金属結合層を形成する一方、安定
化ジルコニア粉末もしくは部分安定化ジルコニア粉末と
パイロクロア型酸化物粉末とをスプレードライ法または
メカニカルアロイング法等により混合し、得られた複合
粉末をプラズマ溶射法によって金属結合層表面に堆積さ
せることにより安定化ジルコニアもしくは部分安定化ジ
ルコニアとパイロクロア型酸化物との複合組織からなる
遮熱コーティング層を一体に形成することを特徴とす
る。Another method for producing a heat-resistant structural member according to the present invention is the method for producing a heat-resistant structural member in which a thermal barrier coating layer is integrally formed on the surface of a metal substrate through a metal bonding layer. While forming a metal bonding layer on the, the stabilized zirconia powder or partially stabilized zirconia powder and pyrochlore type oxide powder are mixed by a spray drying method or a mechanical alloying method, and the resulting composite powder is formed by a plasma spraying method. It is characterized in that a thermal barrier coating layer having a composite structure of stabilized zirconia or partially stabilized zirconia and a pyrochlore type oxide is integrally formed by depositing on the surface of the metal bonding layer.
【0026】さらに本発明に係る耐熱構造部材の他の製
造方法は、金属基材表面に金属結合層を介して遮熱コー
ティング層を一体に形成する耐熱構造部材の製造方法に
おいて、金属基材表面に金属結合層を形成する一方、安
定化ジルコニア粉末もしくは部分安定化ジルコニア粉末
と一般式Ln2O3(但しLnはLa,Ce,Pr,N
d,Pm,Sm,EuおよびGdの少なくとも1種)で
表される希土類酸化物とをスプレードライ法またはメカ
ニカルアロイング法等により混合し、得られた複合粉末
をプラズマ溶射法によって金属結合層表面に堆積させる
ことにより安定化ジルコニアもしくは部分安定化ジルコ
ニアとパイロクロア型酸化物との複合組織からなる遮熱
コーティング層を一体に形成することを特徴とする。Further, another method for producing a heat-resistant structural member according to the present invention is the method for producing a heat-resistant structural member, wherein a thermal barrier coating layer is integrally formed on the surface of a metal substrate through a metal bonding layer. On the other hand, while forming a metal bonding layer, the stabilized zirconia powder or the partially stabilized zirconia powder and the general formula Ln 2 O 3 (where Ln is La, Ce, Pr, N
d, Pm, Sm, Eu and at least one of Gd) is mixed with a rare earth oxide represented by a spray dry method or a mechanical alloying method, and the obtained composite powder is subjected to plasma spraying to form a metal bonding layer surface. It is characterized in that a thermal barrier coating layer having a composite structure of stabilized zirconia or partially stabilized zirconia and a pyrochlore type oxide is integrally formed by depositing it on.
【0027】本発明に係る耐熱構造部材は、例えば図1
に示すような三層構造を有するように構成される。ま
ず、第1層としての金属基材1を被覆するように、第2
層としての金属結合層2が形成される。この金属結合層
2はNi基合金、Co基合金、Ni−Co合金のいずれ
かから成る。この金属結合層2の表面上に遮熱コーティ
ング層3が一体に形成され、この遮熱コーティング層3
は安定化ジルコニアもしくは部分安定化ジルコニア4と
パイロクロア型酸化物5とからなる複合酸化物で形成さ
れる。The heat resistant structural member according to the present invention is shown in FIG.
It has a three-layer structure as shown in FIG. First, the second layer is formed so as to cover the metal substrate 1 as the first layer.
The metal bonding layer 2 as a layer is formed. The metal bonding layer 2 is made of any one of a Ni-based alloy, a Co-based alloy and a Ni-Co alloy. A thermal barrier coating layer 3 is integrally formed on the surface of the metal bonding layer 2, and the thermal barrier coating layer 3 is formed.
Is formed of a stabilized zirconia or a composite oxide of partially stabilized zirconia 4 and pyrochlore type oxide 5.
【0028】上記金属基材1は、特に限定されるもので
はないが、一般にガスタービン翼や燃焼器の構成材とし
て使用されるHS−188等の超合金やステンレス鋼な
どの耐熱合金が広く適用できる。The metal substrate 1 is not particularly limited, but a superalloy such as HS-188 generally used as a constituent material of a gas turbine blade or a combustor, or a heat resistant alloy such as stainless steel is widely applied. it can.
【0029】また金属結合層2は金属基材1と遮熱コー
ティング層3とを強固に接合する一方、金属基材1と遮
熱コーティング層3との熱膨張差を吸収して両者間に発
生する熱応力を緩和させる作用を発揮する。この金属結
合層2を構成する材料としては、特に金属基材1および
遮熱コーティング層3に対するなじみ性および耐熱性が
良好な観点からNi基合金、Co基合金、Ni−Co合
金のいずれかを使用することが好ましい。特に耐食性,
耐酸化性,なじみ性および耐熱性が優れている観点か
ら、MCrAlY合金(但しMはNi、Co、Feの少
なくとも1種の金属)からなる金属結合層2が好まし
い。The metal bonding layer 2 firmly joins the metal base material 1 and the thermal barrier coating layer 3 to each other, while absorbing the difference in thermal expansion between the metal base material 1 and the thermal barrier coating layer 3 to generate between them. It exerts the effect of relieving the thermal stress. As a material for forming the metal bonding layer 2, any one of a Ni-based alloy, a Co-based alloy, and a Ni-Co alloy is particularly preferable from the viewpoint of good compatibility with the metal base material 1 and the thermal barrier coating layer 3 and heat resistance. Preference is given to using. Especially corrosion resistance,
From the viewpoint of excellent oxidation resistance, conformability and heat resistance, the metal bonding layer 2 made of MCrAlY alloy (where M is at least one metal of Ni, Co and Fe) is preferable.
【0030】この金属結合層2は、減圧プラズマ溶射法
などの溶射技術または物理蒸着法(PVD)等によって
上記合金成分を金属基材1表面上に成膜施工して形成さ
れる。この金属結合層2の成膜厚さは50〜150μm
の範囲が好適である。この金属結合層2の厚さが50μ
m未満の場合には、遮熱コーティング層3の十分な接合
強度が得られず、また熱応力の緩和作用が不十分とな
る。一方、上記成膜厚さが150μmを超えるように過
大にしても、上記効果は飽和し成膜時間が延びることに
なる。そのため、上記金属結合層2の成膜厚さは50〜
150μmの範囲に設定されるが、70〜120μmの
範囲がより好ましい。The metal bonding layer 2 is formed by depositing the above alloy components on the surface of the metal substrate 1 by a thermal spraying technique such as a low pressure plasma spraying technique or a physical vapor deposition (PVD) technique. The film thickness of the metal bonding layer 2 is 50 to 150 μm.
Is preferred. The thickness of this metal bonding layer 2 is 50 μm
If it is less than m, sufficient bonding strength of the thermal barrier coating layer 3 cannot be obtained, and the effect of relaxing thermal stress becomes insufficient. On the other hand, even if the film-forming thickness is too large to exceed 150 μm, the above effect is saturated and the film-forming time is extended. Therefore, the film thickness of the metal bonding layer 2 is 50 to
The thickness is set in the range of 150 μm, but the range of 70 to 120 μm is more preferable.
【0031】上記金属結合層2の表面上に、セラミック
ス材から成る遮熱コーティング層3が一体に形成され
る。この遮熱コーティング層3は、安定化剤を含有する
安定化ジルコニアもしくは部分安定化ジルコニアとパイ
ロクロア型酸化物とから成る複合組織を有する。A thermal barrier coating layer 3 made of a ceramic material is integrally formed on the surface of the metal bonding layer 2. The thermal barrier coating layer 3 has a composite structure composed of stabilized zirconia containing a stabilizer or partially stabilized zirconia and a pyrochlore type oxide.
【0032】純粋のジルコニア(ZrO2)は温度によ
って結晶転移を生じ体積変化が大きくなる。一方、Ca
OやY2O3などの安定化剤を所定量固溶させ、正方晶
を室温まで安定化させた安定化ジルコニアは、耐熱性お
よび物理化学的安定性に優れており、体積変化に起因す
る剥離の発生が少ないので遮熱コーティング層3の構成
材として好適である。Pure zirconia (ZrO 2 ) undergoes a crystal transition depending on the temperature, resulting in a large volume change. On the other hand, Ca
Stabilized zirconia obtained by stabilizing a tetragonal crystal to room temperature by solid-solubilizing a predetermined amount of a stabilizer such as O or Y 2 O 3 has excellent heat resistance and physicochemical stability, and is caused by a change in volume. Since the occurrence of peeling is small, it is suitable as a constituent material of the thermal barrier coating layer 3.
【0033】特に、安定化材として、Y2O3、Sc2
O3、Er2O3、MgO、CaO、CeO2のいずれ
かもしくはこれらを組み合わせたものを用いることが好
ましいが、より好ましくはY2O3,Er2O3であ
る。In particular, Y 2 O 3 and Sc 2 are used as stabilizing materials.
It is preferable to use any one of O 3 , Er 2 O 3 , MgO, CaO, and CeO 2 , or a combination thereof, and more preferable are Y 2 O 3 and Er 2 O 3 .
【0034】パイロクロアはイオン半径が異なる2種類
の陽イオンA,Bと陰イオンXとからなり、A2B2X
7の一般式で表され蛍石(CaF2)型の基本結晶構造
を有する化合物(陰イオン欠損蛍石結晶化合物)であ
り、ジルコニア成分と複合化することにより、ピン止め
効果によってセラミックス相の緻密化や粒成長を効果的
に抑制でき、焼結収縮によるセラミックス層の剥離や機
械的特性の劣化を防止し、熱伝導率の上昇を効果的に抑
制することを可能とし、遮熱コーティング層の遮熱性能
を飛躍的に高めることができる。Pyrochlore consists of two types of cations A and B and anions X having different ionic radii, and A 2 B 2 X
A compound having a basic crystal structure of fluorite (CaF 2 ) type represented by the general formula ( 7 ) (anion-deficient fluorite crystal compound), which is compounded with a zirconia component to form a dense ceramic phase by a pinning effect. It is possible to effectively suppress the formation and grain growth, prevent the peeling of the ceramics layer due to sintering shrinkage and the deterioration of mechanical properties, and effectively suppress the increase in thermal conductivity. The heat shield performance can be dramatically improved.
【0035】本発明に係る耐熱構造部材の遮熱コーティ
ング層を構成するパイロクロアとしては、特に陰イオン
としての酸素と化合したパイロクロア型酸化物が好まし
い。具体的には、上記のパイロクロア型酸化物として
は、Ln2Zr2O7、Ln2Hf2O7、Ln2Ti
2O7(但し、LnはLa,Ce,Pr,Nd,Pm,
Sm,Eu,Gdから選択される少なくとも1種の元
素)の少なくとも1種の酸化物を使用することが好まし
い。As the pyrochlore forming the thermal barrier coating layer of the heat resistant structural member according to the present invention, a pyrochlore type oxide compounded with oxygen as an anion is particularly preferable. Specifically, as the above-mentioned pyrochlore type oxide, Ln 2 Zr 2 O 7 , Ln 2 Hf 2 O 7 , and Ln 2 Ti are used.
2 O 7 (however, Ln is La, Ce, Pr, Nd, Pm,
It is preferable to use at least one oxide of at least one element selected from Sm, Eu and Gd.
【0036】上記のパイロクロア型酸化物の中でも、特
に安定性が優れる観点からLn元素としてLa,Pr,
Ndを含有するパイロクロア型酸化物が好ましい。特に
好ましくは、Laである。Among the pyrochlore type oxides mentioned above, La, Pr, and
Pyrochlore type oxides containing Nd are preferred. Particularly preferably, it is La.
【0037】上記遮熱コーティング層における安定化ジ
ルコニアないし部分安定化ジルコニアおよびパイロクロ
ア型酸化物の分散状態としては、図1に示すように、一
方のパイロクロア型酸化物5が他方の安定化ジルコニア
ないし部分安定化ジルコニア相4内に均一に粒子状に分
散した状態、または図2に示すように、一方のパイロク
ロア型酸化物5が他方の安定化ジルコニアないし部分安
定化ジルコニア相4内に均一に層状に分散した状態とな
るように形成される。As the dispersed state of the stabilized zirconia or partially stabilized zirconia and the pyrochlore type oxide in the thermal barrier coating layer, as shown in FIG. 1, one pyrochlore type oxide 5 is dispersed in the other stabilized zirconia or partial zirconia. A state in which the particles are uniformly dispersed in the stabilized zirconia phase 4, or, as shown in FIG. 2, one pyrochlore type oxide 5 is uniformly layered in the other stabilized zirconia or partially stabilized zirconia phase 4. It is formed so as to be in a dispersed state.
【0038】前記のように、上記パイロクロア型酸化物
は安定化ジルコニアないし部分安定化ジルコニアと複合
化することにより、ピン止め効果によって遮熱コーティ
ング層の緻密化や粒成長を抑制でき、焼結収縮による遮
熱コーティング層の剥離や機械的特性の劣化、熱伝導率
の上昇を効果的に抑制する作用効果を発揮する。As described above, when the pyrochlore type oxide is compounded with the stabilized zirconia or the partially stabilized zirconia, the pinning effect can suppress the densification and grain growth of the thermal barrier coating layer and the sintering shrinkage. Exhibits the effect of effectively suppressing peeling of the thermal barrier coating layer, deterioration of mechanical properties, and increase in thermal conductivity due to.
【0039】また、遮熱コーティング層におけるパイロ
クロア型酸化物の体積分率は、上記作用効果に大きく影
響を及ぼすため、0.1〜50%の範囲とされる。この
パイロクロア型酸化物の体積分率が、0.1%未満の場
合には上記焼結収縮による遮熱コーティング層の剥離や
機械的特性の劣化、熱伝導率の上昇を抑制する効果が不
十分に成る。一方、体積分率が50%を超えるように過
大になる場合には、遮熱コーティング層の機械的強度が
低下してしまう。そのため、パイロクロア型酸化物の体
積分率は、0.1〜50%の範囲とすることが好ましい
が、より好ましくは10〜20%の範囲である。Further, the volume fraction of the pyrochlore type oxide in the thermal barrier coating layer is in the range of 0.1 to 50% because it has a great influence on the above-mentioned effects. When the volume fraction of the pyrochlore type oxide is less than 0.1%, the effect of suppressing peeling of the thermal barrier coating layer due to the sintering shrinkage, deterioration of mechanical properties, and increase in thermal conductivity is insufficient. Becomes On the other hand, if the volume fraction becomes too large, exceeding 50%, the mechanical strength of the thermal barrier coating layer will decrease. Therefore, the volume fraction of the pyrochlore type oxide is preferably in the range of 0.1 to 50%, more preferably 10 to 20%.
【0040】上記遮熱コーティング層(セラミック遮熱
層)3は、安定化ジルコニアないし部分安定化ジルコニ
アの蒸着材や粉末と、パイロクロア型酸化物の蒸着材や
粉末とを所定の配合比率で配置した原料を用い、電子ビ
ーム物理蒸着法(EB−PVD)または大気プラズマ溶
射法(APS)等によって成膜施工して形成される。The thermal barrier coating layer (ceramic thermal barrier layer) 3 comprises a vapor deposition material or powder of stabilized zirconia or partially stabilized zirconia and a vapor deposition material or powder of pyrochlore type oxide in a predetermined mixing ratio. It is formed by using a raw material and performing film formation by an electron beam physical vapor deposition method (EB-PVD) or an atmospheric plasma spraying method (APS).
【0041】上記遮熱コーティング層3の厚さは100
〜500μmの範囲と成るように施工される。この遮熱
コーティング層の厚さが100μm未満である場合に
は、遮熱性能が十分に得られない一方、厚さが500μ
mを超えるように過大に形成しても、遮熱性能のさらな
る改善は望めず成膜時間の増大とともに製造効率が低下
してしまう。そのため遮熱コーティング層3の厚さは1
00〜500μmの範囲とされるが、150〜300μ
mの範囲がより好ましい。The thickness of the thermal barrier coating layer 3 is 100.
It is constructed so as to have a range of up to 500 μm. When the thickness of this thermal barrier coating layer is less than 100 μm, the thermal barrier performance is not sufficiently obtained, while the thickness is 500 μm.
Even if the film is excessively formed so as to exceed m, further improvement of the heat shield performance cannot be expected, and the production efficiency will decrease as the film formation time increases. Therefore, the thickness of the thermal barrier coating layer 3 is 1
The range is from 00 to 500 μm, but 150 to 300 μm
The range of m is more preferable.
【0042】また遮熱コーティング層に一般式Ln2O
3(但しLnはLa,Ce,Pr,Nd,Pm,Sm,
EuおよびGdの少なくとも1種)で表される希土類酸
化物を他の添加物として0.1〜30mol%含有させ
ることにより、高温度条件下においてパイロクロア相を
析出させ、遮熱コーティング層の緻密化による熱伝導率
の上昇を効果的に防止でき、長期間にわたって良好な遮
熱性能を確保することができる。The thermal barrier coating layer has the general formula Ln 2 O
3 (However, Ln is La, Ce, Pr, Nd, Pm, Sm,
A rare earth oxide represented by at least one of Eu and Gd) is contained as another additive in an amount of 0.1 to 30 mol%, whereby a pyrochlore phase is precipitated under high temperature conditions and the thermal barrier coating layer is densified. It is possible to effectively prevent an increase in the thermal conductivity due to, and it is possible to secure good heat shielding performance for a long period of time.
【0043】上記希土類酸化物の添加量が0.1mol
%未満の場合には、上記遮熱コーティング層における緻
密化の抑制効果が不十分である一方、添加量が30mo
l%を超えるように過大にした場合には、立方晶相が安
定化し剥離が生じやすくなる。そのため上記希土類酸化
物の添加量は0.1〜30mol%の範囲とされるが、
1〜20mol%の範囲がより好ましい。The amount of the rare earth oxide added is 0.1 mol.
%, The effect of suppressing the densification in the thermal barrier coating layer is insufficient, while the addition amount is 30 mo.
If it is too large to exceed 1%, the cubic phase is stabilized and peeling easily occurs. Therefore, although the amount of the rare earth oxide added is in the range of 0.1 to 30 mol%,
The range of 1 to 20 mol% is more preferable.
【0044】さらに、遮熱コーティング層の表層側が、
Y2O3、Er2O3、CeO2等を安定化材とする安
定化ジルコニアもしくは部分安定化ジルコニアが主とな
る組成とする一方、金属結合層側ではパイロクロア型酸
化物が主となる組成であり、その表層側から金属結合層
側に至る厚さ方向の組成比が連続的あるいは非連続的に
変化するように傾斜組成を形成することも可能である。
この場合、金属結合層側は熱伝導率が低いパイロクロア
型酸化物で構成される一方、表面側は機械的特性に優れ
る安定化ジルコニアで構成されるため、耐熱性および耐
エロージョン性をより効果的に向上させることができ
る。Furthermore, the surface side of the thermal barrier coating layer is
The composition is mainly stabilized zirconia or partially stabilized zirconia using Y 2 O 3 , Er 2 O 3 , CeO 2 or the like as a stabilizing material, while the metal bonding layer side is mainly composed of pyrochlore type oxide. It is also possible to form the graded composition so that the composition ratio in the thickness direction from the surface layer side to the metal bonding layer side changes continuously or discontinuously.
In this case, the metal bonding layer side is composed of a pyrochlore type oxide having low thermal conductivity, while the surface side is composed of stabilized zirconia having excellent mechanical properties, so that heat resistance and erosion resistance are more effective. Can be improved.
【0045】上記傾斜組成を有する遮熱コーティング層
を、電子ビーム物理蒸着法(EB−PVD法)を用いて
形成する場合は、安定化ジルコニアもしくは部分安定化
ジルコニア蒸着材とパイロクロア型酸化物蒸着材との二
つの蒸着材に照射する電子ビームの照射時間や出力を順
次変化させることにより形成できる。また、大気プラズ
マ溶射法(APS)を用いる場合は、例えば酸化物の混
合比率を変化させた複数の原料混合体を調製し、原料粉
末として用いることによって形成できる。When the thermal barrier coating layer having the above gradient composition is formed by the electron beam physical vapor deposition method (EB-PVD method), stabilized zirconia or partially stabilized zirconia vapor deposition material and pyrochlore type oxide vapor deposition material are used. It can be formed by sequentially changing the irradiation time and output of the electron beam for irradiating the two vapor deposition materials. When the atmospheric plasma spraying method (APS) is used, it can be formed, for example, by preparing a plurality of raw material mixtures with different oxide mixing ratios and using them as raw material powders.
【0046】本発明に係る耐熱構造部材およびその製造
方法によれば、パイロクロア型酸化物とジルコニア成分
とが複合化した遮熱コーティング層を形成しているた
め、複合化によるピン止め効果によってセラミックス相
の緻密化や粒成長を効果的に抑制でき、焼結収縮による
遮熱コーティング層の剥離や熱伝導率の上昇を効果的に
抑制することを可能とし、遮熱コーティング層の遮熱性
能を飛躍的に高めることができる。According to the heat-resistant structural member and the method for producing the same according to the present invention, since the thermal barrier coating layer in which the pyrochlore type oxide and the zirconia component are compounded is formed, the ceramic phase is produced by the pinning effect of the compounding. It is possible to effectively suppress densification and grain growth of the thermal barrier coating, effectively prevent peeling of the thermal barrier coating layer due to sintering shrinkage and increase in thermal conductivity, and leap the thermal barrier performance of the thermal barrier coating layer. Can be increased.
【0047】したがって、本発明の耐熱構造部材をガス
タービン部品やジェットエンジン部品などの高温用部材
に適用した場合には、これらの高温用部材の長寿命化に
よる性能向上が図れるとともに、高温用部材を使用した
機器の信頼性および耐久性を飛躍的に改善することが可
能になる。Therefore, when the heat-resistant structural member of the present invention is applied to a high temperature member such as a gas turbine component or a jet engine component, the high temperature member can have a long life and the performance can be improved. It is possible to dramatically improve the reliability and durability of equipment that uses the.
【0048】[0048]
【発明の実施の形態】以下、本発明の実施形態について
添付図面を参照してより具体的に説明する。なお本発明
は以下に示す実施形態に何ら限定されるものではなく、
適宜変更して実施することが可能である。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described more specifically with reference to the accompanying drawings. The present invention is not limited to the embodiments described below,
It is possible to implement it by appropriately changing it.
【0049】[0049]
【実施例1】ガスタービン翼に用いられる超合金(HS
−188)から成る平板状の金属基材1の表面上に、減
圧プラズマ溶射法にてNiCoCrAlY合金から成る
第一層としての金属結合層2を厚さが100μmとなる
ように施工した後、さらに、金属結合層2の表面上に遮
熱コーティング層(セラミック遮熱層)3として、La
2Zr2O7を15体積%含有するZrO2−4mol
%Y2O3蒸発材を原料とし、電子ビーム物理蒸着法
(EB−PVD法)によってY2O3で安定化したジル
コニア中にLa2Zr2O7が粒子状に分散した厚さ約
300μmの遮熱コーティング層(セラミックス遮熱
層)3を形成することにより実施例1に係る耐熱構造部
材を製造した。Example 1 Superalloy (HS) used for gas turbine blades
-188) on the surface of a flat metal substrate 1 made of NiCoCrAlY alloy by a low pressure plasma spraying method so as to have a thickness of 100 μm. , La as a thermal barrier coating layer (ceramic thermal barrier layer) 3 on the surface of the metal bonding layer 2.
ZrO 2 -4 mol containing 15% by volume of 2 Zr 2 O 7.
% Y 2 O 3 Evaporating Material as Raw Material, La 2 Zr 2 O 7 Particle-Dispersed in Zirconia Stabilized by Y 2 O 3 by Electron Beam Physical Vapor Deposition (EB-PVD Method) About 300 μm The heat-resistant structural member according to Example 1 was manufactured by forming the heat-shielding coating layer (ceramics heat-shielding layer) 3 of.
【0050】図1は、上記実施例1を含む本発明に係る
耐熱構造部材の一実施例の構造を示す断面図である。図
1に示す耐熱構造部材では、パイロクロア型酸化物5を
ジルコニア相4に粒子分散して複合化した熱的安定性に
優れる遮熱コーティング層3を有する。すなわち本発明
に係る耐熱構造部材の一実施例では、金属基材1を被覆
する第二層がMCrAlY合金(M:Ni、Co、Fe
またはそれらを組み合わせた合金)からなる金属結合層
2であり、この金属結合層2の表面に、パイロクロア型
酸化物5を分散粒子として含む安定化ジルコニア4から
成る遮熱コーティング層6を被覆形成して遮熱コーティ
ングシステムが形成される。FIG. 1 is a sectional view showing the structure of one embodiment of the heat-resistant structural member according to the present invention including the above-mentioned first embodiment. The heat-resistant structural member shown in FIG. 1 has a thermal barrier coating layer 3 having excellent thermal stability, which is formed by dispersing particles of a pyrochlore type oxide 5 in a zirconia phase 4 to form a composite. That is, in one embodiment of the heat-resistant structural member according to the present invention, the second layer covering the metal substrate 1 is the MCrAlY alloy (M: Ni, Co, Fe).
Or a combination thereof), and a thermal barrier coating layer 6 made of stabilized zirconia 4 containing pyrochlore type oxide 5 as dispersed particles is formed on the surface of the metallic bond layer 2. A thermal barrier coating system is formed.
【0051】[0051]
【実施例2】実施例2として、HS−188から成る金
属基材表面に減圧プラズマ溶射法にてNiCoCrAl
Y合金から成る第一層としての金属結合層2を厚さが1
00μmとなるように施工した後、さらに、金属結合層
2の表面上に遮熱コーティング層(セラミック遮熱層)
3として、La2Zr2O7を15体積%含むZrO 2
−6mol%Er2O3蒸着材を原料とし電子ビーム物
理蒸着法(EB−PVD法)によってEr2O3で安定
化したジルコニア中にLa2Zr2O7が粒子状に分散
した厚さ約300μmの遮熱コーティング層(セラミッ
クス遮熱層)3を形成することにより実施例2に係る耐
熱構造部材を製造した。Example 2 As Example 2, gold composed of HS-188
NiCoCrAl on the surface of metal base material by low pressure plasma spraying
The metal bonding layer 2 as the first layer made of Y alloy has a thickness of 1
After applying so as to have a thickness of 00 μm, further metal bonding layer
Thermal barrier coating layer (ceramic thermal barrier layer) on the surface of 2
As 3, LaTwoZrTwoO7Containing 15% by volume of ZrO Two
-6 mol% ErTwoOThreeElectron beam material made from vapor deposition material
Er by a physical vapor deposition method (EB-PVD method)TwoOThreeStable at
La in converted zirconiaTwoZrTwoO7Dispersed in particles
Thermal barrier coating layer (ceramic
The heat-resistant layer according to the second embodiment
A thermal structural member was manufactured.
【0052】[0052]
【実施例3】実施例3として、HS−188から成る金
属基材表面に減圧プラズマ溶射法にてNiCoCrAl
Y合金から成る第一層としての金属結合層2を厚さが1
00μmとなるように施工した後、さらに、金属結合層
2の表面上に遮熱コーティング層(セラミック遮熱層)
3として、La2Zr2O7蒸着材とZrO2−4mo
l%Y2O3蒸着材の2種類の蒸発材を原料とし、電子
ビーム物理蒸着法(EB−PVD法)によってY2O3
で安定化したジルコニア中にLa2Zr2O7が層状に
分散した厚さ約300μmの遮熱コーティング層(セラ
ミックス遮熱層)3を形成することにより実施例3に係
る耐熱構造部材を製造した。Example 3 As Example 3, NiCoCrAl was formed on the surface of a metal substrate made of HS-188 by a low pressure plasma spraying method.
The metal bonding layer 2 as the first layer made of Y alloy has a thickness of 1
After applying so as to have a thickness of 00 μm, a thermal barrier coating layer (ceramic thermal barrier layer) is further formed on the surface of the metal bonding layer 2.
3, La 2 Zr 2 O 7 vapor deposition material and ZrO 2 -4mo
l% Y 2 O 3 two kinds of evaporation materials of vapor deposition material as a raw material, an electron-beam physical vapor deposition (EB-PVD method) by Y 2 O 3
A heat-resistant structural member according to Example 3 was manufactured by forming a thermal barrier coating layer (ceramics thermal barrier layer) 3 having a thickness of about 300 μm in which La 2 Zr 2 O 7 was dispersed in layers in zirconia stabilized with .
【0053】[0053]
【実施例4】実施例4として、HS−188から成る金
属基材表面に減圧プラズマ溶射法にてNiCoCrAl
Y合金から成る第一層としての金属結合層2を厚さが1
00μmとなるように施工した後、さらに、金属結合層
2の表面上に遮熱コーティング層(セラミック遮熱層)
3として、La2Zr2O7蒸着材とZrO2−6mo
l%Er2O3蒸着材の2種類の蒸発材を原料とし、電
子ビーム物理蒸着法(EB−PVD法)によってEr2
O3で安定化したジルコニアと層状に分散したLa2Z
r2O7とから成る厚さ約300μmの遮熱コーティン
グ層(セラミックス遮熱層)3を形成することにより実
施例4に係る耐熱構造部材を製造した。Example 4 As Example 4, NiCoCrAl was formed on the surface of a metal substrate made of HS-188 by a low pressure plasma spraying method.
The metal bonding layer 2 as the first layer made of Y alloy has a thickness of 1
After applying so as to have a thickness of 00 μm, a thermal barrier coating layer (ceramic thermal barrier layer) is further formed on the surface of the metal bonding layer 2.
As 3, La 2 Zr 2 O 7 deposited material and ZrO 2 -6mo
Er 2 is used as a raw material by using two kinds of evaporation materials, i% Er 2 O 3 vapor deposition material, and is subjected to Er 2 vapor deposition (EB-PVD method).
Zirconia stabilized with O 3 and La 2 Z dispersed in layers
The heat-resistant structural member according to Example 4 was manufactured by forming a thermal barrier coating layer (ceramics thermal barrier layer) 3 having a thickness of about 300 μm and made of r 2 O 7 .
【0054】[0054]
【実施例5】実施例5として、HS−188から成る金
属基材表面に減圧プラズマ溶射法にてNiCoCrAl
Y合金から成る第一層としての金属結合層2を厚さが1
00μmとなるように施工した後、さらに、金属結合層
2の表面上に遮熱コーティング層(セラミック遮熱層)
3として、La2Zr2O7を15体積%含むZrO 2
−4mol%Y2O3粉末を原料とし、大気プラズマ溶
射法(APS)によってY2O3で安定化したジルコニ
アとLa2Zr2O7とから成る厚さ約300μmの遮
熱コーティング層(セラミックス遮熱層)3を形成する
ことにより実施例5に係る耐熱構造部材を製造した。Example 5 As Example 5, gold composed of HS-188
NiCoCrAl on the surface of metal base material by low pressure plasma spraying
The metal bonding layer 2 as the first layer made of Y alloy has a thickness of 1
After applying so as to have a thickness of 00 μm, further metal bonding layer
Thermal barrier coating layer (ceramic thermal barrier layer) on the surface of 2
As 3, LaTwoZrTwoO7Containing 15% by volume of ZrO Two
-4 mol% YTwoOThreeAtmospheric plasma melting from powder
Y by shooting method (APS)TwoOThreeZirconi stabilized with
A and LaTwoZrTwoO7With a thickness of about 300 μm
Form the thermal coating layer (ceramics heat shield layer) 3
Thus, the heat resistant structural member according to Example 5 was manufactured.
【0055】[0055]
【実施例6】実施例6として、HS−188から成る金
属基材表面に減圧プラズマ溶射法にてNiCoCrAl
Y合金から成る第一層としての金属結合層2を厚さが1
00μmとなるように施工した後、さらに、金属結合層
2の表面上に遮熱コーティング層(セラミック遮熱層)
3として、La2O3を5mol%含むZrO2−4m
ol%Y2O3粉末を原料とし、大気プラズマ溶射法
(APS)によってY2O3で安定化したジルコニアと
La2Zr2O7とから成る厚さ約300μmの遮熱コ
ーティング層(セラミックス遮熱層)3を形成すること
により実施例6に係る耐熱構造部材を製造した。Sixth Embodiment As a sixth embodiment, NiCoCrAl is formed on the surface of a metal substrate made of HS-188 by a low pressure plasma spraying method.
The metal bonding layer 2 as the first layer made of Y alloy has a thickness of 1
After applying so as to have a thickness of 00 μm, a thermal barrier coating layer (ceramic thermal barrier layer) is further formed on the surface of the metal bonding layer 2.
3, ZrO 2 -4m containing 5 mol% La 2 O 3
sol% Y 2 O 3 powder as a raw material, and a thermal barrier coating layer (ceramic barrier layer) made of zirconia and La 2 Zr 2 O 7 stabilized with Y 2 O 3 by atmospheric plasma spraying (APS) and having a thickness of about 300 μm. The heat resistant structural member according to Example 6 was manufactured by forming the thermal layer 3.
【0056】[0056]
【実施例7】セラミックス遮熱層におけるパイロクロア
型酸化物の厚さ方向の体積率が表面から順次増加し、金
属結合層表面では100%となるように、電子ビーム物理
蒸着法(EB−PVD法)を用いて、ZrO2−4mo
l%Y2O3蒸着材とLa2Zr2O7蒸着材の二つの
蒸着材に照射する電子ビームの照射時間や出力を順次変
化させることにより、遮熱層を傾斜組成化した実施例7
に係る耐熱構造部材を製造した。Example 7 An electron beam physical vapor deposition method (EB-PVD method) was used so that the volume ratio of the pyrochlore type oxide in the ceramics heat shield layer in the thickness direction was gradually increased from the surface to 100% on the surface of the metal bonding layer. ) Is used for ZrO 2 -4mo
Example 7 in which the heat shield layer was made to have a graded composition by sequentially changing the irradiation time and output of the electron beam for irradiating the two vapor deposition materials of the 1% Y 2 O 3 vapor deposition material and the La 2 Zr 2 O 7 vapor deposition material.
The heat-resistant structural member according to 1. was manufactured.
【0057】[0057]
【比較例1】実施例1において使用したものと同一のガ
スタービン翼に用いられる超合金からなる平板状の金属
基材1を用意し、この金属基材1の表面上に第二層とし
て減圧プラズマ溶射法によりNiCoCrAlY合金か
らなる厚さ100μmの金属結合層2を形成施工した
後、その金属結合層2の表面上に第三層としてY2O3
で安定化したジルコニアのみからなる遮熱コーティング
層(セラミックス遮熱層)3を電子ビーム物理蒸着法
(EB−PVD法)にて厚さ300μmとなるように形
成施工することにより、図3に示すような比較例1に係
る耐熱構造部材を製造した。COMPARATIVE EXAMPLE 1 A flat metal base material 1 made of a superalloy used for the same gas turbine blade as that used in Embodiment 1 was prepared, and a pressure reduction was performed as a second layer on the surface of the metal base material 1. After the metal bonding layer 2 of NiCoCrAlY alloy having a thickness of 100 μm is formed and applied by the plasma spraying method, Y 2 O 3 is formed as a third layer on the surface of the metal bonding layer 2.
As shown in FIG. 3, a thermal barrier coating layer (ceramic thermal barrier layer) 3 made of only zirconia stabilized by means of electron beam physical vapor deposition (EB-PVD method) is formed to a thickness of 300 μm. A heat resistant structural member according to Comparative Example 1 was manufactured.
【0058】[0058]
【比較例2】実施例1において使用したものと同一のガ
スタービン翼に用いられる超合金からなる平板状の金属
基材1を用意し、この金属基材1の表面上に第二層とし
て減圧プラズマ溶射法によりNiCoCrAlY合金か
らなる厚さ100μmの金属結合層2を形成施工した
後、その金属結合層2の表面上に第三層としてY2O3
で安定化したジルコニアのみからなる遮熱コーティング
層(セラミックス遮熱層)3を大気プラズマ溶射法(A
PS法)にて厚さ300μmとなるように形成施工する
ことにより、図3に示すような比較例2に係る耐熱構造
部材を製造した。[Comparative Example 2] A flat metal base material 1 made of a superalloy used for the same gas turbine blade as that used in Embodiment 1 was prepared, and decompressed as a second layer on the surface of the metal base material 1. After the metal bonding layer 2 of NiCoCrAlY alloy having a thickness of 100 μm is formed and applied by the plasma spraying method, Y 2 O 3 is formed as a third layer on the surface of the metal bonding layer 2.
The thermal barrier coating layer (ceramics thermal barrier layer) 3 made of only zirconia stabilized by the atmospheric plasma spraying method (A
A heat-resistant structural member according to Comparative Example 2 as shown in FIG. 3 was manufactured by forming and performing a PS method) so as to have a thickness of 300 μm.
【0059】評価試験
このように製造した各実施例および比較例に係る耐熱構
造部材のサンプルについて、バーナーリグ試験を実施す
ることにより、各耐熱構造部材の熱衝撃特性を評価し
た。上記バーナーリグ試験は、各耐熱構造部材の金属基
材底面を水で冷却しつつ、遮熱コーティング層側を、そ
の表面温度が1100℃となるように1時間加熱する操
作と、10分間冷却する操作とを1サイクルとする加熱
―冷却サイクルを繰り返して作用させ、遮熱コーティン
グ層が剥離するまでの繰り返しサイクル数を熱サイクル
寿命として測定して各耐熱構造部材の耐久性および信頼
性を評価した。上記バーナーリグ試験の結果を下記表1
に示す。Evaluation Test The thermal shock characteristics of each heat-resistant structural member were evaluated by performing a burner rig test on the samples of the heat-resistant structural member according to each of the examples and comparative examples thus manufactured. In the burner rig test, while cooling the bottom surface of the metal base material of each heat-resistant structural member with water, the operation of heating the thermal barrier coating layer side for 1 hour so that the surface temperature becomes 1100 ° C. and the operation of cooling for 10 minutes The heating-cooling cycle with 1 and 2 as one cycle was made to act, and the number of repeated cycles until the thermal barrier coating layer was peeled off was measured as the thermal cycle life to evaluate the durability and reliability of each heat-resistant structural member. The results of the above burner rig test are shown in Table 1 below.
Shown in.
【0060】[0060]
【表1】 [Table 1]
【0061】上記表1に示す結果から明らかなように、
安定化ジルコニア中にパイロクロア型酸化物を分散させ
た遮熱コーティング層を形成した各実施例に係る耐熱構
造部材によれば、熱サイクル寿命が大幅に改善されるこ
とが判明した。As is clear from the results shown in Table 1 above,
It has been found that the heat-resistant structural member according to each example in which the thermal barrier coating layer in which the pyrochlore type oxide is dispersed in the stabilized zirconia is formed has a significantly improved thermal cycle life.
【0062】一方、パイロクロア型酸化物とジルコニア
とを複合化せず、図3に示すように安定化ジルコニアま
たは部分安定化ジルコニアのみから成る遮熱コーティン
グ層3を形成した各比較例1,2に係る耐熱構造部材に
よれば、熱サイクル寿命特性が相対的に低下することが
判明した。On the other hand, in each of Comparative Examples 1 and 2, in which the pyrochlore type oxide and the zirconia were not compounded and the thermal barrier coating layer 3 made of only the stabilized zirconia or the partially stabilized zirconia was formed as shown in FIG. It has been found that the heat-resistant structural member has a relatively low thermal cycle life characteristic.
【0063】さらに図4は、実施例1及び比較例1に係
る耐熱構造部材について温度1200℃で100hの時
効熱処理を実施した時のコーティング皮膜の体積収縮率
を比較して示す特性図あり、体積収縮率については実施
例1の方が比較例1よりも小さく、コーティング皮膜の
耐焼結特性が向上していることが明らかである。本実施
例によれば、高温における遮熱コーティング層の焼結収
縮を効果的に抑制でき、熱伝導率の上昇を抑制して皮膜
剥離寿命を長期化することが可能になる。Further, FIG. 4 is a characteristic diagram showing a comparison of the volumetric shrinkage rates of the coating films when the heat resistant structural members according to Example 1 and Comparative Example 1 were subjected to an aging heat treatment at a temperature of 1200 ° C. for 100 hours. The shrinkage rate of Example 1 is smaller than that of Comparative Example 1, and it is clear that the sintering resistance of the coating film is improved. According to this example, it is possible to effectively suppress the sintering shrinkage of the thermal barrier coating layer at high temperature, suppress the increase in thermal conductivity, and prolong the film peeling life.
【0064】[0064]
【発明の効果】以上説明の通り、本発明に係る耐熱構造
部材およびその製造方法によれば、安定化もしくは部分
安定化ジルコニアとパイロクロア型酸化物の複合組織を
有する遮熱コーティング層を形成しているため、パイロ
クロア型酸化物のピン止め効果によってジルコニアの緻
密化や粒成長を効果的に抑制でき、焼結収縮による遮熱
コーティング層の剥離や熱伝導率の上昇を効果的に抑制
することを可能とし、遮熱コーティング層の遮熱性能を
飛躍的に高めることができる。As described above, according to the heat-resistant structural member and the method for producing the same according to the present invention, a thermal barrier coating layer having a composite structure of stabilized or partially stabilized zirconia and a pyrochlore type oxide is formed. Therefore, it is possible to effectively suppress the densification and grain growth of zirconia by the pinning effect of the pyrochlore type oxide, and effectively suppress the peeling of the thermal barrier coating layer and the increase in thermal conductivity due to sintering shrinkage. It is possible and the thermal barrier performance of the thermal barrier coating layer can be dramatically improved.
【0065】したがって、本発明の耐熱構造部材をガス
タービン部品やジェットエンジン部品などの高温用部材
に適用した場合には、これらの高温用部材の長寿命化に
よる性能向上が図れるとともに、高温用部材を使用した
機器の信頼性および耐久性を飛躍的に改善することが可
能になる。Therefore, when the heat resistant structural member of the present invention is applied to a high temperature member such as a gas turbine component or a jet engine component, the high temperature member can have a long life and the performance can be improved. It is possible to dramatically improve the reliability and durability of equipment that uses the.
【図1】パイロクロア型酸化物を安定化もしくは部分安
定化ジルコニア中に粒子分散させた遮熱コーティング層
を有する本発明に係る耐熱構造部材の一実施例を示す断
面図。FIG. 1 is a cross-sectional view showing an embodiment of a heat-resistant structural member according to the present invention having a thermal barrier coating layer in which particles of pyrochlore type oxide are dispersed in stabilized or partially stabilized zirconia.
【図2】パイロクロア型酸化物とジルコニア成分とを層
状に配置して複合化した遮熱コーティング層を有する本
発明に係る耐熱構造部材の一実施例を示す断面図。FIG. 2 is a cross-sectional view showing an embodiment of a heat-resistant structural member according to the present invention, which has a thermal barrier coating layer in which a pyrochlore type oxide and a zirconia component are arranged in a layered structure to form a composite.
【図3】ジルコニア成分のみから成る遮熱コーティング
層を有する従来の耐熱構造部材の構成例を示す断面図。FIG. 3 is a cross-sectional view showing a configuration example of a conventional heat-resistant structural member having a thermal barrier coating layer composed only of a zirconia component.
【図4】実施例1及び比較例1に係る耐熱構造部材を熱
処理した時の体積変化の大小を比較して示す特性図。FIG. 4 is a characteristic diagram showing the magnitude of volume change when heat-treating the heat-resistant structural members according to Example 1 and Comparative Example 1 in comparison.
1 金属基材 2 金属結合層 3 遮熱コーティング層(セラミックス遮熱層) 4 安定化ジルコニアもしくは部分安定化ジルコニア 5 パイロクロア型酸化物 1 metal base material 2 Metal bonding layer 3 Thermal barrier coating layer (ceramics thermal barrier layer) 4 Stabilized zirconia or partially stabilized zirconia 5 Pyrochlore type oxide
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01D 5/28 F01D 5/28 F02C 7/00 F02C 7/00 C D (72)発明者 松原 秀彰 愛知県名古屋市熱田区六野2丁目4番1号 財団法人 ファインセラミックスセンタ ー内 Fターム(参考) 3G002 EA05 EA08 4K029 AA02 BA50 BC10 BD00 DB05 DB21 4K031 AA04 AB08 CB42 DA04 4K044 AA06 BA02 BA06 BA10 BA12 BB03 BC11 CA11 CA13 CA27─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01D 5/28 F01D 5/28 F02C 7/00 F02C 7/00 CD (72) Inventor Hideaki Matsubara Aichi 2-4-1, Rokuno, Atsuta-ku, Nagoya-shi F-term inside the Fine Ceramics Center (reference) 3G002 EA05 EA08 4K029 AA02 BA50 BC10 BD00 DB05 DB21 4K031 AA04 AB08 CB42 DA04 4K044 AA06 BA02 BA06 BA10 BA12 BB03 BC11 CA11 CA13 CA27
Claims (12)
熱コーティング層を一体に形成した耐熱構造部材におい
て、上記遮熱コーティング層が、安定化剤を含有する安
定化ジルコニアもしくは部分安定化ジルコニアとパイロ
クロア型酸化物とから成る複合組織を有することを特徴
とする耐熱構造部材。1. A heat-resistant structural member, wherein a thermal barrier coating layer is integrally formed on the surface of a metal base material via a metal bonding layer, wherein the thermal barrier coating layer is a stabilized zirconia containing a stabilizer or partially stabilized. A heat-resistant structural member having a composite structure of zirconia oxide and a pyrochlore type oxide.
合金およびNi−Co合金のいずれかから成ることを特
徴とする請求項1記載の耐熱構造部材。2. The heat resistant structural member according to claim 1, wherein the metal bonding layer is made of any one of a Ni-based alloy, a Co-based alloy and a Ni—Co alloy.
2O3、CeO2から選択される少なくとも1種である
ことを特徴とする請求項1記載の耐熱構造部材。3. The stabilizer is Y 2 O 3 , Er.
The heat resistant structural member according to claim 1, wherein the heat resistant structural member is at least one selected from 2 O 3 and CeO 2 .
r2O7、Ln2Hf2O7、Ln2Ti2O7(但し
LnはLa,Ce,Pr,Nd,Pm,Sm,Eu,G
dから選択される少なくとも1種の元素である)の少な
くとも1種の酸化物であることを特徴とする請求項1記
載の耐熱構造部材。4. The pyrochlore type oxide is Ln 2 Z
r 2 O 7 , Ln 2 Hf 2 O 7 , Ln 2 Ti 2 O 7 (where Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, G
The heat resistant structural member according to claim 1, which is at least one oxide of at least one element selected from d).
クロア型酸化物の体積率が0.1〜50%の範囲である
ことを特徴とする請求項1ないし4のいずれかに記載の
耐熱構造部材。5. The heat resistant structural member according to claim 1, wherein the volume ratio of the pyrochlore type oxide in the thermal barrier coating layer is in the range of 0.1 to 50%.
Er2O3、CeO 2等の少なくとも1種を安定化剤と
する安定化ジルコニアもしくは部分安定化ジルコニアを
主成分とするとともに、さらに一般式Ln2O3(但し
LnはLa,Ce,Pr,Nd,Pm,Sm,Eu,G
dから選択される少なくとも1種の元素である)を0.
1〜30mol%を含有することを特徴とする請求項1
ないし5のいずれかに記載の耐熱構造部材。6. The thermal barrier coating layer is YTwoOThree,
ErTwoOThree, CeO TwoAnd at least one of them as a stabilizer
Stabilized zirconia or partially stabilized zirconia
In addition to the main component, the general formula LnTwoOThree(However,
Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, G
is at least one element selected from d.
1 to 30 mol% is contained, It is characterized by the above-mentioned.
6. The heat resistant structural member according to any one of 1 to 5.
定化ジルコニアもしくは部分安定化ジルコニアで構成さ
れる一方、金属結合層側がパイロクロア型酸化物で構成
され、その表層側と金属結合層側との間におけるジルコ
ニアおよびパイロクロア型酸化物の組成比が厚さ方向に
連続的あるいは非連続的に変化する傾斜組成を有するこ
とを特徴とする請求項1ないし6のいずれかに記載の耐
熱構造部材。7. The surface layer side of the thermal barrier coating layer is made of stabilized zirconia or partially stabilized zirconia, while the metal bonding layer side is made of pyrochlore type oxide, and the surface layer side and the metal bonding layer side are 7. The heat resistant structural member according to claim 1, wherein the composition ratio of the zirconia and the pyrochlore type oxide between the two has a graded composition that continuously or discontinuously changes in the thickness direction.
コーティング層を一体に形成する耐熱構造部材の製造方
法において、金属基材表面に金属結合層を形成した後
に、電子ビーム物理蒸着法によって安定化ジルコニア蒸
着材とパイロクロア型酸化物蒸着材の2種類の原料を加
熱蒸発せしめ、この混合蒸気を金属結合層表面に蒸着さ
せることにより遮熱コーティング層を一体に形成するこ
とを特徴とする耐熱構造部材の製造方法。8. A method for manufacturing a heat-resistant structural member, wherein a thermal barrier coating layer is integrally formed on the surface of a metal substrate with a metal bonding layer interposed therebetween, wherein electron beam physical vapor deposition is performed after the metal bonding layer is formed on the surface of the metal substrate. Characterized in that a thermal barrier coating layer is integrally formed by heating and evaporating two kinds of raw materials of a stabilized zirconia vapor deposition material and a pyrochlore type oxide vapor deposition material by the method, and vapor depositing the mixed vapor on the surface of the metal bonding layer. A method of manufacturing a heat resistant structural member.
コーティング層を一体に形成する耐熱構造部材の製造方
法において、金属基材表面に金属結合層を形成し、安定
化ジルコニアもしくは部分安定化ジルコニアとパイロク
ロア型酸化物との複合酸化物蒸着材を電子ビーム物理蒸
着法によって加熱蒸発せしめ、この原料蒸気を金属結合
層表面に蒸着させることにより安定化ジルコニアとパイ
ロクロア型酸化物との複合組織からなる遮熱コーティン
グ層を一体に形成することを特徴とする耐熱構造部材の
製造方法。9. A method for manufacturing a heat-resistant structural member, wherein a thermal barrier coating layer is integrally formed on the surface of a metal base material via a metal bonding layer, wherein a metal bonding layer is formed on the surface of the metal base material, and stabilized zirconia or a part thereof is formed. Composite oxide of stabilized zirconia and pyrochlore type oxide Evaporated by heating electron vapor deposition material by electron beam physical vapor deposition method, and vaporizing this raw material vapor on the surface of metal bonding layer to form complex of stabilized zirconia and pyrochlore type oxide A method for manufacturing a heat-resistant structural member, comprising integrally forming a thermal barrier coating layer made of a tissue.
熱コーティング層を一体に形成する耐熱構造部材の製造
方法において、金属基材表面に金属結合層を形成し、安
定化ジルコニアもしくは部分安定化ジルコニア蒸着材と
一般式Ln2O3(但しLnはLa,Ce,Pr,N
d,Pm,Sm,EuおよびGdの少なくとも1種)で
表される希土類酸化物蒸着材との2種類の原料を電子ビ
ーム物理蒸着法によって加熱蒸発せしめ、この原料蒸気
を金属結合層表面に蒸着させることにより安定化ジルコ
ニアとパイロクロア型酸化物との複合組織からなる遮熱
コーティング層を一体に形成することを特徴とする耐熱
構造部材の製造方法。10. A method for manufacturing a heat-resistant structural member, wherein a thermal barrier coating layer is integrally formed on the surface of a metal base material via a metal bonding layer, wherein a metal bonding layer is formed on the surface of the metal base material, and stabilized zirconia or a part thereof is formed. Stabilized zirconia vapor deposition material and general formula Ln 2 O 3 (where Ln is La, Ce, Pr, N
(2) at least one of d, Pm, Sm, Eu and Gd) and a rare earth oxide vapor deposition material, which are heated by the electron beam physical vapor deposition method, are vaporized by heating, and the vapor of the raw material is vapor-deposited on the surface of the metal bonding layer. A method for producing a heat-resistant structural member, characterized by integrally forming a thermal barrier coating layer having a composite structure of stabilized zirconia and a pyrochlore type oxide by doing so.
熱コーティング層を一体に形成する耐熱構造部材の製造
方法において、金属基材表面に金属結合層を形成する一
方、安定化ジルコニア粉末もしくは部分安定化ジルコニ
ア粉末とパイロクロア型酸化物粉末とをスプレードライ
法またはメカニカルアロイング法により混合し、得られ
た複合粉末をプラズマ溶射法によって金属結合層表面に
堆積させることにより安定化ジルコニアもしくは部分安
定化ジルコニアとパイロクロア型酸化物との複合組織か
らなる遮熱コーティング層を一体に形成することを特徴
とする耐熱構造部材の製造方法。11. A method for manufacturing a heat-resistant structural member, wherein a thermal barrier coating layer is integrally formed on the surface of a metal base material via a metal binding layer, wherein a metal binding layer is formed on the surface of the metal base material while stabilizing zirconia powder. Alternatively, a partially stabilized zirconia powder and a pyrochlore type oxide powder are mixed by a spray dry method or a mechanical alloying method, and the obtained composite powder is deposited on the surface of the metal bonding layer by a plasma spraying method to stabilize the zirconia or a part thereof. A method for producing a heat-resistant structural member, comprising integrally forming a thermal barrier coating layer having a composite structure of stabilized zirconia and a pyrochlore type oxide.
熱コーティング層を一体に形成する耐熱構造部材の製造
方法において、金属基材表面に金属結合層を形成する一
方、安定化ジルコニア粉末もしくは部分安定化ジルコニ
ア粉末と一般式Ln2O3(但しLnはLa,Ce,P
r,Nd,Pm,Sm,EuおよびGdの少なくとも1
種)で表される希土類酸化物とをスプレードライ法また
はメカニカルアロイング法により混合し、得られた複合
粉末をプラズマ溶射法によって金属結合層表面に堆積さ
せることにより安定化ジルコニアもしくは部分安定化ジ
ルコニアとパイロクロア型酸化物との複合組織からなる
遮熱コーティング層を一体に形成することを特徴とする
耐熱構造部材の製造方法。12. A method for manufacturing a heat-resistant structural member, wherein a thermal barrier coating layer is integrally formed on the surface of a metal base material via a metal binding layer, wherein a metal binding layer is formed on the surface of the metal base material while stabilizing zirconia powder. Alternatively, partially stabilized zirconia powder and the general formula Ln 2 O 3 (where Ln is La, Ce, P
at least 1 of r, Nd, Pm, Sm, Eu and Gd
The rare earth oxide represented by the formula (1) is mixed by a spray dry method or a mechanical alloying method, and the resulting composite powder is deposited on the surface of the metal bonding layer by a plasma spraying method to form stabilized zirconia or partially stabilized zirconia. A method for manufacturing a heat-resistant structural member, comprising integrally forming a heat-shielding coating layer having a composite structure of and a pyrochlore type oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002149694A JP2003342751A (en) | 2002-05-23 | 2002-05-23 | Heat resistant structural member and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002149694A JP2003342751A (en) | 2002-05-23 | 2002-05-23 | Heat resistant structural member and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003342751A true JP2003342751A (en) | 2003-12-03 |
Family
ID=29767776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002149694A Pending JP2003342751A (en) | 2002-05-23 | 2002-05-23 | Heat resistant structural member and production method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003342751A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005048283A (en) * | 2003-06-09 | 2005-02-24 | Chubu Electric Power Co Inc | Heat-shielding coating member, and its production method |
JP2005257137A (en) * | 2004-03-10 | 2005-09-22 | Osaka Gas Co Ltd | Member for stove trivet and stove trivet |
EP1734154A1 (en) * | 2005-01-13 | 2006-12-20 | General Electric Company | Multilayered environmental barrier coating and related articles and methods |
EP1734148A1 (en) * | 2005-06-08 | 2006-12-20 | United Technologies Corporation | Reduced thermal conductivity thermal barrier coating by electron beam-physical vapor deposition process |
JP2007270245A (en) * | 2006-03-31 | 2007-10-18 | Mitsubishi Heavy Ind Ltd | Thermal shield coating member and manufacturing method therefor, and thermal shield coating member, gas turbine and sintered body |
JP2009514698A (en) * | 2005-11-04 | 2009-04-09 | シーメンス アクチエンゲゼルシヤフト | Two-layer heat-resistant protective structure with pyrochlore phase |
JP2009522141A (en) * | 2006-01-09 | 2009-06-11 | シーメンス アクチエンゲゼルシヤフト | Layered structure containing two pyrochlore phases |
JP2010241610A (en) * | 2007-05-07 | 2010-10-28 | Siemens Ag | Ceramic powder, ceramic layer and layer system, with gadolinium mixed crystal pyrochlore phase and oxide |
JP2010241611A (en) * | 2007-05-07 | 2010-10-28 | Siemens Ag | Ceramic powder, ceramic layer and layer system, with pyrochlore phase and oxide |
JP2010241609A (en) * | 2007-05-07 | 2010-10-28 | Siemens Ag | Ceramic powder, ceramic layer and layer system, with two pyrochlore phases and oxides |
JP2010255119A (en) * | 2010-07-15 | 2010-11-11 | Mitsubishi Heavy Ind Ltd | Heat shield coating member and process for producing the same, and heat shield coat material, gas turbine and sintered body |
JP2013139565A (en) * | 2012-01-05 | 2013-07-18 | General Electric Co <Ge> | Radiation mitigated articles and methods of making the same |
JP2015189632A (en) * | 2014-03-28 | 2015-11-02 | 出光興産株式会社 | oxide sintered body and sputtering target |
JP2017001235A (en) * | 2015-06-08 | 2017-01-05 | トヨタ自動車株式会社 | Thermal insulation structure |
WO2022039347A1 (en) * | 2020-08-20 | 2022-02-24 | 한국과학기술원 | Composite coating layer applied to solid oxide fuel cell hot-bop |
CN116288113A (en) * | 2023-03-28 | 2023-06-23 | 中钢集团洛阳耐火材料研究院有限公司 | High emissivity thermal protection coating |
-
2002
- 2002-05-23 JP JP2002149694A patent/JP2003342751A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4492855B2 (en) * | 2003-06-09 | 2010-06-30 | 中部電力株式会社 | Thermal barrier coating member and manufacturing method thereof |
JP2005048283A (en) * | 2003-06-09 | 2005-02-24 | Chubu Electric Power Co Inc | Heat-shielding coating member, and its production method |
JP2005257137A (en) * | 2004-03-10 | 2005-09-22 | Osaka Gas Co Ltd | Member for stove trivet and stove trivet |
EP1734154A1 (en) * | 2005-01-13 | 2006-12-20 | General Electric Company | Multilayered environmental barrier coating and related articles and methods |
EP1734148A1 (en) * | 2005-06-08 | 2006-12-20 | United Technologies Corporation | Reduced thermal conductivity thermal barrier coating by electron beam-physical vapor deposition process |
US8147928B2 (en) | 2005-06-08 | 2012-04-03 | United Technologies Coporation | Reduced thermal conductivity thermal barrier coating by electron beam-physical vapor deposition process |
JP2009514698A (en) * | 2005-11-04 | 2009-04-09 | シーメンス アクチエンゲゼルシヤフト | Two-layer heat-resistant protective structure with pyrochlore phase |
US8057924B2 (en) | 2006-01-09 | 2011-11-15 | Siemens Aktiengesellschaft | Layer system comprising two pyrochlore phases |
JP2009522141A (en) * | 2006-01-09 | 2009-06-11 | シーメンス アクチエンゲゼルシヤフト | Layered structure containing two pyrochlore phases |
JP2007270245A (en) * | 2006-03-31 | 2007-10-18 | Mitsubishi Heavy Ind Ltd | Thermal shield coating member and manufacturing method therefor, and thermal shield coating member, gas turbine and sintered body |
WO2007116547A1 (en) * | 2006-03-31 | 2007-10-18 | Mitsubishi Heavy Industries, Ltd. | Heat shield coating member, process for producing the same, heat shield coat material, gas turbine and sintered body |
US8586169B2 (en) | 2006-03-31 | 2013-11-19 | Mitsubishi Heavy Industries, Ltd. | Thermal barrier coating member, method for producing the same, thermal barrier coating material, gas turbine, and sintered body |
JP2010241611A (en) * | 2007-05-07 | 2010-10-28 | Siemens Ag | Ceramic powder, ceramic layer and layer system, with pyrochlore phase and oxide |
JP2010241609A (en) * | 2007-05-07 | 2010-10-28 | Siemens Ag | Ceramic powder, ceramic layer and layer system, with two pyrochlore phases and oxides |
JP2010241610A (en) * | 2007-05-07 | 2010-10-28 | Siemens Ag | Ceramic powder, ceramic layer and layer system, with gadolinium mixed crystal pyrochlore phase and oxide |
JP2010255119A (en) * | 2010-07-15 | 2010-11-11 | Mitsubishi Heavy Ind Ltd | Heat shield coating member and process for producing the same, and heat shield coat material, gas turbine and sintered body |
JP2013139565A (en) * | 2012-01-05 | 2013-07-18 | General Electric Co <Ge> | Radiation mitigated articles and methods of making the same |
JP2015189632A (en) * | 2014-03-28 | 2015-11-02 | 出光興産株式会社 | oxide sintered body and sputtering target |
JP2017001235A (en) * | 2015-06-08 | 2017-01-05 | トヨタ自動車株式会社 | Thermal insulation structure |
WO2022039347A1 (en) * | 2020-08-20 | 2022-02-24 | 한국과학기술원 | Composite coating layer applied to solid oxide fuel cell hot-bop |
CN116288113A (en) * | 2023-03-28 | 2023-06-23 | 中钢集团洛阳耐火材料研究院有限公司 | High emissivity thermal protection coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4481027B2 (en) | Thermal barrier coating member and manufacturing method thereof | |
JP3302589B2 (en) | Ceramic coated gas turbine blade | |
US6677064B1 (en) | In-situ formation of multiphase deposited thermal barrier coatings | |
EP1375701B1 (en) | Thermal barrier coating material | |
EP1321542A1 (en) | Thermal barrier coating systems and materials | |
JP2003160852A (en) | Thermal insulating coating material, manufacturing method therefor, turbine member and gas turbine | |
JP2003342751A (en) | Heat resistant structural member and production method therefor | |
US20100196615A1 (en) | Method for forming an oxidation-resistant film | |
US7537806B2 (en) | Method for producing a thermal barrier coating on a substrate | |
US20050142392A1 (en) | Ceramic compositions useful for thermal barrier coatings having reduced thermal conductivity | |
JP2002522646A (en) | Multi-layer thermal insulation coating system | |
JP2007270245A (en) | Thermal shield coating member and manufacturing method therefor, and thermal shield coating member, gas turbine and sintered body | |
JPH10212108A (en) | Heat barrier coating system, material therefor, gas turbine parts using the material and metallic substrate | |
JP2000119870A (en) | Member made of metal containing substrate made of metal having ceramic coating and method for imparting heat insulating property to substrate made of metal | |
JP2006193828A (en) | Heat-shielding coating material, heat-shielding member, heat-shielding coating member, and method for production of the heat-shielding coating member | |
JP6386740B2 (en) | Ceramic powder and method therefor | |
JP4612955B2 (en) | Thermal insulation | |
JP5610698B2 (en) | Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine | |
JP5008060B2 (en) | Ceramic coating material | |
JP6941634B2 (en) | Thermal barrier coating | |
JP6499271B2 (en) | Thermal barrier coating and power generation system | |
JP5285486B2 (en) | Thermal barrier coating material, thermal barrier coating, turbine component and gas turbine | |
JP2005163185A (en) | Gas turbine, thermal barrier coating material, its production method, and turbine member | |
JP2010242223A (en) | Thermal barrier coating member, production method therefor, thermal barrier coating material, gas turbine, and sintered compact | |
JP5164250B2 (en) | Thermal barrier coating member and manufacturing method thereof |