JPS61174385A - Ceramic-coated fire resistant member and its production - Google Patents

Ceramic-coated fire resistant member and its production

Info

Publication number
JPS61174385A
JPS61174385A JP18794184A JP18794184A JPS61174385A JP S61174385 A JPS61174385 A JP S61174385A JP 18794184 A JP18794184 A JP 18794184A JP 18794184 A JP18794184 A JP 18794184A JP S61174385 A JPS61174385 A JP S61174385A
Authority
JP
Japan
Prior art keywords
tbc
ceramic
layer
temperature
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18794184A
Other languages
Japanese (ja)
Other versions
JPH0563555B2 (en
Inventor
Nobuyuki Iizuka
飯塚 信之
Fumiyuki Hirose
文之 広瀬
Naotatsu Asahi
朝日 直達
Yoshiyuki Kojima
慶享 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18794184A priority Critical patent/JPS61174385A/en
Priority to EP86103159A priority patent/EP0236520A1/en
Publication of JPS61174385A publication Critical patent/JPS61174385A/en
Publication of JPH0563555B2 publication Critical patent/JPH0563555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Abstract

PURPOSE:To maintain stably the bond strength of a ceramic-coated layer for a long period by forming an oxide layer consisting essentially of Al between a bond layer and the coated layer in case of forming the specified bond layer and the ceramic-coated layer on a base material consisting essentially of Ni. CONSTITUTION:A bond layer of an alloy having the high-temp. oxidation resistance and the high-temp. corrosion resistance more excellent than the following base material is formed in 0.03-0.5mm thickness on the base material consisting essentially of at least one kind of Ni, Co and Fe. Then in case of forming a ceramic-coated layer of 0.05-0.8mm thickness consisting of ceramic on the bond layer, an oxide layer consisting essentially of Al is interposed in the boundary of both the layers by forming it in 0.1-20mu thickness. Still more the coated layer consists essentially of ZrO2 and contains one kind or two and more kinds of CaO, MgO and Y2O3 and as the bond layer, Cr and Al are contained in one or kinds of Co or Ni and furthermore one or two and more kinds of Hf, Ta, Y, Si and Zr are contained therein.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高温あるいは高温腐蝕環境下で用いられる耐熱
部材及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat-resistant member used in high-temperature or high-temperature corrosive environments and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

発電用ガスタービンプラントの発′亀効率を向上するこ
とを目的として、ガスタービンの高温化技術が検討され
ている。このような高温化に伴なって、ガスタービン部
材の耐熱温度の向上が望まれている。Ni基あるいはC
o基等の合金材料の開発によシ、これら耐熱合金の耐熱
温度が向上してきているが、現状では850C程度で飽
和している。一方、セラミック材料は耐熱性の点では金
属材料に比べて潰れているが、構造材として用いるには
靭性等の問題がある。従って、このような部材の高は化
に対処するために、部材が高温にならないような方法の
検討が盛んに行なわれている。
Techniques for increasing the temperature of gas turbines are being studied with the aim of improving the power generation efficiency of gas turbine plants for power generation. With such rising temperatures, it is desired to improve the heat resistance temperature of gas turbine members. Ni group or C
With the development of O-based alloy materials, the temperature resistance of these heat-resistant alloys has improved, but currently it is saturated at about 850C. On the other hand, although ceramic materials are more durable than metal materials in terms of heat resistance, they have problems such as toughness when used as structural materials. Therefore, in order to cope with the increase in the height of such members, many studies are being conducted on methods to prevent the members from becoming hot.

このような方法として、部材の冷却方法が各種検討され
ている。父、もう一つの方法として熱伝導率の小さいセ
ラミックを、金属部材の表面にコーティングする方法が
ある。このようなコーティングは熱遮蔽コーティング(
Thermal  BarrierCoating以下
TBCと略す)と呼ばれる。
As such methods, various methods of cooling members have been studied. Father, another method is to coat the surface of the metal member with ceramic, which has low thermal conductivity. Such coatings are called thermal barrier coatings (
Thermal Barrier Coating (hereinafter abbreviated as TBC).

TBCは各種の冷却方法と組み合わせて用いることによ
り、その効果は犬きくなる。−例として、基材である金
属部材の温度をTBCを施さないものに比べて50〜1
00C低減できるという報告もある、このような方法を
用いることによって、高温ガスタービン等の慎成部材の
信頼性を向上させることかでるる。ところで、TBCの
技術的課題としては、TBCは基材を構成する耐熱合金
と物性値が異なるセラミック被覆層を組み合したもので
あるため、基材とセラミック被覆層との密着機構及びそ
の信頼性の問題がある。特に、ガスタービン等では起動
停止等の熱サイクルによシ、セラミック被覆層の剥離、
脱落等の損傷が生じる。
TBC becomes more effective when used in combination with various cooling methods. - As an example, the temperature of the metal member that is the base material is 50 to 1
There are reports that it is possible to reduce 00C, and by using such a method, it is possible to improve the reliability of simply formed parts such as high-temperature gas turbines. By the way, the technical issues with TBCs include the adhesion mechanism between the base material and the ceramic coating layer and its reliability, since TBC is a combination of a heat-resistant alloy that constitutes the base material and a ceramic coating layer with different physical properties. There is a problem. In particular, in gas turbines, etc., thermal cycles such as starting and stopping can cause peeling of the ceramic coating layer,
Damage such as falling off may occur.

そこで、このような点を解決する方法として各種の手段
が用いられている。主な方法としては、例えば、特開昭
55−112804号公報に見られる如くセラミック仮
積層と基材との間に、金属合金材料からなる結合層を設
けるものがある。その結合層は基材とセラミック仮積層
の物性値の相異を緩和すること金目的としている。しか
るに、このノ易合、セラミック被覆層と結合層との密着
機構は機砿的な納会にすぎずその強度は2〜5匂/簡2
である。更に、結合層の他に、結合層とセラミック被覆
層の間に、結合層を構成する合金材とセラミック被覆層
を構成する材料との混合物からなる中1tj層及びその
中間層を合金材とセラミック材の混合比を数種類変えた
ものを多層にして用いるもの、あるいは中間層自体を合
金材からセラミック材へその混合比を連続的に変化した
ものがある。
Therefore, various means have been used to solve this problem. The main method is to provide a bonding layer made of a metal alloy material between the ceramic temporary laminate and the base material, as shown in, for example, Japanese Unexamined Patent Publication No. 55-112804. The purpose of the bonding layer is to alleviate the difference in physical properties between the base material and the ceramic temporary laminate. However, in this case, the adhesion mechanism between the ceramic coating layer and the bonding layer is only a mechanical mechanism, and its strength is 2 to 5 degrees/2.
It is. Furthermore, in addition to the bonding layer, between the bonding layer and the ceramic coating layer, an intermediate layer made of a mixture of an alloy material constituting the bonding layer and a material constituting the ceramic coating layer, and an intermediate layer therebetween, which is made of a mixture of an alloy material constituting the bonding layer and a material constituting the ceramic coating layer. There are those that use multiple layers with different mixing ratios of materials, and those that use the intermediate layer itself in which the mixing ratio is changed continuously from an alloy material to a ceramic material.

これらの方法はセラミック被覆層と結合f―との物性値
の相異を緩和することを目的としたものであるが、いず
れの場合も、セラミックと合金材料との結合状態は機械
的な結合にすぎない。従って、熱サイクル等によ!D、
TBCに大きな熱応力が生じた場合、結合力の弱い部分
から剥離、脱落等の損傷が生じることになる。
These methods are aimed at alleviating the difference in physical properties between the ceramic coating layer and the bond f-, but in either case, the bond state between the ceramic and the alloy material depends on the mechanical bond. Only. Therefore, due to heat cycle etc. D.
If a large thermal stress is generated in the TBC, damage such as peeling or falling off will occur from a portion with weak bonding strength.

更に、このようなTBCに用いるセラミック被覆層結合
層及び中間層は、主にプラズマ溶射法で形成される。そ
の理由は破jノー形成速度が速く経済性に優れているこ
との他に、セラミック被覆層に通用した場合6射被膜の
多孔質は構造を利用することにある。すなわち、空孔や
微細なりラックを形成することによシ、空孔やクラック
を、熱応力の緩和作用に利用している。このような点で
、プラズマ溶射で形成したセラミック溶射被膜は、スパ
ッタリング等の方法で形成した緻密なセラミック被覆層
に比べ熱サイクル等の作用による熱衝撃性に優れている
反面、TBCは高温度で、燃料中の不純物等による高温
腐蝕条件下で用いられるため、このような多孔質構造の
セラミック被覆層を形成したTBCでは、結合層あるい
は中間層を形成する合金材料の高温酸化、高温腐食の問
題がある。合雀材料は高温耐酸化、耐食性に優れた成分
であるが、それらの合金被覆層の形成方法により、必ず
しも、本来の合金材料で予想される高温耐酸化性、耐食
性を発揮するものではないと考えられる。本発明者らの
検討によればTBCを高温酸化或いは高温腐食環境下に
さらした後、熱サイクル試験を行なった結果、その耐久
性は著しく低下することが判明した。この場合、セラミ
ック材料と合金材料との結合が本来機械的な結合でその
強度が弱いことに加え、更に、その境界部分の合金材料
の表面が酸化あるいは腐蝕されその密着力が更に低下し
たためと考えられる。このように、従来のTBCでは、
セラミックと合金材料の結合力が低いということ、更に
、高温酸化、高温腐蝕等により合金材の表面が変化しセ
ラミック合金材料の結合力が更に低下すると考えられる
。このような問題点はTBCの信頼性を大巾に低下させ
るものである。一方、プラズマ溶射法においても、大気
中で溶射を行なう方法の池に、プラズマアークの周囲の
雰囲気を制御し更にその雰囲気圧労金も制御する減圧雰
囲気中溶射が行なわれている。
Furthermore, the ceramic coating layer bonding layer and intermediate layer used in such TBCs are mainly formed by plasma spraying. The reason for this is that, in addition to the fast fracture formation rate and excellent economic efficiency, the porous structure of the six-shot coating is utilized when it is applied to a ceramic coating layer. That is, by forming pores and fine racks, the pores and cracks are used to alleviate thermal stress. In this respect, ceramic sprayed coatings formed by plasma spraying have better thermal shock resistance due to effects such as thermal cycles than dense ceramic coating layers formed by methods such as sputtering. Because TBCs are used under high-temperature corrosive conditions due to impurities in the fuel, etc., TBCs with such porous ceramic coating layers have problems such as high-temperature oxidation and high-temperature corrosion of the alloy material forming the bonding layer or intermediate layer. There is. Although Ajaku materials have excellent high-temperature oxidation and corrosion resistance, due to the method of forming their alloy coating layers, they do not necessarily exhibit the high-temperature oxidation and corrosion resistance expected from original alloy materials. Conceivable. According to studies conducted by the present inventors, when TBC was subjected to a thermal cycle test after being exposed to a high-temperature oxidation or high-temperature corrosive environment, it was found that its durability was significantly reduced. In this case, it is thought that in addition to the fact that the bond between the ceramic material and the alloy material is originally a mechanical bond and its strength is weak, the surface of the alloy material at the boundary was oxidized or corroded, further reducing the adhesion. It will be done. In this way, in conventional TBC,
It is thought that the bonding strength between the ceramic and the alloy material is low, and that the surface of the alloy material changes due to high-temperature oxidation, high-temperature corrosion, etc., which further reduces the bonding strength of the ceramic alloy material. These problems greatly reduce the reliability of the TBC. On the other hand, in the plasma spraying method, instead of the method of spraying in the atmosphere, spraying is carried out in a reduced pressure atmosphere, which controls the atmosphere around the plasma arc and also controls the atmosphere pressure.

このような減圧雰囲気中溶射によれば、溶射中の溶射粒
子が酸素等によって汚染されないので、非常に良好な金
属合金結合層が形成できる。このような金属合金結合層
は高温ガスタービン部材の高温酸化、高温、;λ賞を防
止する被1層として利用されている。そこで、本発明者
らは以上の点にかんがみて、TBCのは預性を向上させ
ることを目的として、セラミックと合金材料の結合機構
の強化という点に注目し各種の検討分行なった。
According to such thermal spraying in a reduced pressure atmosphere, the sprayed particles during thermal spraying are not contaminated by oxygen or the like, so that a very good metal alloy bonding layer can be formed. Such a metal alloy bonding layer is used as a coating layer to prevent high temperature oxidation, high temperature, and lambda damage of high temperature gas turbine components. Therefore, in view of the above points, the present inventors conducted various studies focusing on strengthening the bonding mechanism between the ceramic and the alloy material, with the aim of improving the durability of TBC.

本発明者らは、従来用いられている各種の材料によるT
BCについて検討した。例えば、ZrCh系セラミック
被J層と金属合金材料から成る結合層とから成るTBC
を用い、TBcの高温酸化試験を実施した。この試験は
高温条件下でのガスタービン部品へのTBCあるいは局
部的に高温になるガスタービン部品へのTBCの施工を
考慮したものであ3o  その結果、従来のTBCはz
 r o。
The present inventors have discovered that T
We considered BC. For example, a TBC consisting of a ZrCh ceramic J layer and a bonding layer made of a metal alloy material.
A high temperature oxidation test of TBc was carried out using the following. This test took into account the installation of TBCs on gas turbine parts under high temperature conditions or the construction of TBCs on gas turbine parts that become locally hot.3o As a result, conventional TBCs
ro.

系被覆層と結合層の界面の酸化が著しく進行することが
判った。そして、試験前後のTBCの密着力を判定した
留果、1000tl:’500時間の酸化試験で、Zr
0z系被覆層と結合層との界面の密着力は1/2〜1/
4に低下することがわかった。
It was found that oxidation at the interface between the system coating layer and the bonding layer progressed significantly. The results of determining the adhesion of TBC before and after the test were 1000 tl: '500 hours of oxidation test.
The adhesion strength at the interface between the 0z coating layer and the bonding layer is 1/2 to 1/2.
It was found that the number decreased to 4.

このような密着力の低下は、ZrO2系被覆層の厚さ、
気孔率、更にZrO,への添加剤の檻類及び量によって
若干の相異が認められるが、いずれもその低下は著しい
。又、結合層の合金材料の成分に関しても若干の相異が
あるが、いずれも低下していた。このような界面の密着
力の低下は酸化試験の温度が高くなる、或いは試験時間
の増加とともに著しくなる。そして、l100C,10
0時間の試験では一部、界面からの剥離損傷が認められ
るものがあった。一方、金属合金材料z r o。
This decrease in adhesion is caused by the thickness of the ZrO2-based coating layer,
Although some differences are observed depending on the porosity and the type and amount of additives added to ZrO, the decrease is remarkable in all cases. There were also some differences in the composition of the alloy material in the bonding layer, but all of them were reduced. Such a decrease in interfacial adhesion becomes more significant as the temperature of the oxidation test increases or as the test time increases. And l100C,10
In the 0 hour test, peeling damage from the interface was observed in some cases. On the other hand, metal alloy material z r o.

系材料との混合したものを中間層として用いた’l’ 
B Cでは、酸化試験による密着力の低下は更に著しい
ものであった。このような結果は、本発明者らが実施し
た高温熱サイクル試験の結果とも対応している。すなわ
ち、97011:’、1020c。
'l' using a mixture with other materials as the intermediate layer
In B C, the decrease in adhesion in the oxidation test was even more remarkable. These results also correspond to the results of high-temperature thermal cycle tests conducted by the present inventors. That is, 97011:', 1020c.

1070C,1120Cのそれぞれの温度で30分間保
持、空冷により150cまでの冷却を繰り返す試験にお
いても試験温度が高くなるに従って、TBCの損傷が生
じるまでの繰り返し数は著しく低下していた。このよう
な従来のTBCの問題は、ガスタービンの高温化に対処
した信頼性の優れたTBCを得る上で重大な障害となる
。すなわち、ガスタービン部品の基材@度が高くなるの
を防止し、その温度を低減化することを目的としてTB
Cを実施するに際して、従来のTBCを施した部品では
TBCの高温耐久性が低いので、部品の基材温度の低減
を十分発揮することは困難である。
Even in a test in which the test piece was held at each temperature of 1070C and 1120C for 30 minutes and cooled down to 150C by air cooling, the number of repetitions until TBC damage occurred decreased significantly as the test temperature increased. Such problems with conventional TBCs become a serious obstacle in obtaining a highly reliable TBC that can cope with the high temperatures of gas turbines. In other words, TB is used for the purpose of preventing the base material temperature of gas turbine parts from increasing and reducing the temperature.
When performing C, it is difficult to sufficiently reduce the base material temperature of parts with conventional TBC because the TBC has low high-temperature durability.

そこで、本発明者らは従来のTBCを施工したガスター
ビン部品に代シ、高温稼動条件下でもガスタービン部品
の基材温度の低減化を十分発揮しうる高温耐久性に優れ
たTBCを施工したガスタービン部材について検討した
Therefore, the present inventors constructed a TBC with excellent high-temperature durability that can sufficiently reduce the base material temperature of gas turbine components even under high-temperature operating conditions, instead of gas turbine components constructed with conventional TBCs. Gas turbine components were studied.

すなわち、本発明者らは以上のような点を考慮シテ、ガ
スタービンの高温化を達成しうるに十分なTBCを得る
ことを目的として各種の検討を行ない、討入性に優れた
TBCを有したガスタービン部品を発明するに至った。
That is, the inventors of the present invention took the above points into consideration, conducted various studies with the aim of obtaining a TBC sufficient to achieve high temperatures in a gas turbine, and created a TBC with excellent ease of penetration. This led to the invention of gas turbine parts.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、TBCの信頼性を向上させることにあ
る。すなわち、セラミック材料と基材との結曾力が長期
間にわたって安定しており、クラックや剥離の起りにく
いTBCを提供することにある。
An object of the present invention is to improve the reliability of TBC. That is, the object is to provide a TBC in which the cohesive force between the ceramic material and the base material is stable over a long period of time, and is less likely to crack or peel.

〔発明の概要〕[Summary of the invention]

本発明は、金属材料よ構成る基材上に、この基材よりも
^温1lIIt酸化、高温耐蝕性に優れた合金の結廿層
を形成し、前記合金結合層上にセラミック被覆層を形成
した耐熱部材において、前記合金結合層とセラミック破
損ノーとの境界にAlを主成分とする酸化物層を形成し
たことを特徴とする。
The present invention forms a bonding layer of an alloy that has better resistance to 11IIt oxidation and high-temperature corrosion than this substrate on a base material made of a metal material, and forms a ceramic coating layer on the alloy bonding layer. The heat-resistant member is characterized in that an oxide layer containing Al as a main component is formed at the boundary between the alloy bonding layer and the ceramic failure layer.

本発明によれば、Alを主成分とする酸化物層が、高温
雰囲気中でも安定であり、これにより合金結合層の酸化
の進行を防止し、しかもセラミック被覆層との結合強度
も強いため、長期間の使用に対してもセラミック被覆層
のクラックの発生、剥離を防止できる。
According to the present invention, the oxide layer containing Al as a main component is stable even in high-temperature atmospheres, prevents the progress of oxidation of the alloy bonding layer, and has strong bonding strength with the ceramic coating layer, so it can last for a long time. Even when used for a period of time, cracking and peeling of the ceramic coating layer can be prevented.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細について説明する。先ず、従来のT
HCの問題点について詳細に検討し、その原因について
調べた。各種の酸化試験を実施したTBCについて、そ
の断面組織の観察を行なった。その結果の一例を第6図
及び第7図に示す。
The details of the present invention will be explained below. First, the conventional T
We examined the problems of HC in detail and investigated their causes. The cross-sectional structures of TBCs subjected to various oxidation tests were observed. An example of the results is shown in FIGS. 6 and 7.

これら、組織写真は、結合層部分の断面を100倍の倍
率で示すものであり、第6図ではZ r 02系被覆層
と結合層との界面部分に欠陥が生じている。第7図は結
合層とZrCh系被覆層との間に合金材料とZr01系
材料との混合層を形成したTBCの結果である。この場
合、中間層の合金材料は著しく酸化している。これら現
象は高温熱サイクル試験でも認められる。すなわち、T
BCでは、熱応力を緩和する多孔質あるいは微細クラッ
クを有した構造のZ r Ch系被被覆層通じて結合層
或いは中間層の酸化という問題が生じる。このような酸
化は、界面の密着力を著しく低下させ、熱応力等によっ
てその界面部からTBCの剥離損傷が生じることになる
。このような界面の酸化の原因としては、高温状態でZ
 r OR系材料が半導体となり、酸素の移動を容易に
し、境界面部の酸素分圧の増加を生じることも一つの重
要な要因でめると考えられる。このような酸化は例えば
中間層を形成した場合、界面の面積の増加を招くのでよ
シ促進すると考えられる。従来のTBCについて界面の
状態を分析した結果、界面にはCrを主成分とする酸化
物が形成されていた。このようなCr系酸化物は高温で
不安定であるため、その酸化物を生じた部分から損傷が
生じていた。従って、高温ガスタービン用TBCにおい
ては、界面での酸化というものを十分考慮することが必
要である。
These microstructure photographs show the cross section of the bonding layer portion at a magnification of 100 times, and in FIG. 6, defects have occurred at the interface between the Z r 02-based coating layer and the bonding layer. FIG. 7 shows the results of a TBC in which a mixed layer of an alloy material and a Zr01-based material was formed between the bonding layer and the ZrCh-based coating layer. In this case, the alloy material of the intermediate layer is significantly oxidized. These phenomena are also observed in high-temperature thermal cycle tests. That is, T
In BC, the problem of oxidation of the bonding layer or intermediate layer occurs through the Z r Ch-based coating layer having a porous or micro-cracked structure to alleviate thermal stress. Such oxidation significantly reduces the adhesion of the interface, and the TBC may be peeled off from the interface due to thermal stress or the like. The cause of such interface oxidation is that Z
It is believed that one important factor is that the rOR-based material becomes a semiconductor, facilitates the movement of oxygen, and causes an increase in the oxygen partial pressure at the interface. Such oxidation is considered to be promoted when an intermediate layer is formed, for example, because it causes an increase in the area of the interface. As a result of analyzing the state of the interface of a conventional TBC, it was found that an oxide containing Cr as a main component was formed at the interface. Since such Cr-based oxides are unstable at high temperatures, damage occurs from the portion where the oxides are formed. Therefore, in TBCs for high-temperature gas turbines, it is necessary to fully consider oxidation at the interface.

本発明者らは、このような観点から、各種の方法につい
て検討した結果、界面部にAlを主成分とする緻密な構
造の酸化物薄膜を形成することが有望であることを見い
出した。Al系酸化吻は高温で安定であり、かつ、Zr
O,系材料のように高温で半導体にもならない。従って
、Al系酸化物の薄膜は内部酸化を防止す名バリヤーと
して有効なものである。一方、このようなAl系酸化物
層の厚さは、厚い場合Al系酸化物の物性値を反映した
新たな中間層となる。その結果、熱応力等によ!1lA
l系酸化物層から損傷を生じることになる。
From this viewpoint, the present inventors investigated various methods and found that it is promising to form a densely structured oxide thin film containing Al as a main component at the interface. Al-based oxidized proboscis is stable at high temperatures, and Zr
It does not become a semiconductor at high temperatures like O, type materials. Therefore, a thin film of Al-based oxide is effective as a barrier to prevent internal oxidation. On the other hand, when such an Al-based oxide layer is thick, it becomes a new intermediate layer that reflects the physical properties of the Al-based oxide. As a result, thermal stress etc. 1lA
This will cause damage to the l-based oxide layer.

一方、薄すざる場合は、内部酸化防止作用を十分満足す
るバリヤーとなシ得ない。従って、その厚さは0.1μ
m以上、20μm以下であることが望ましい。このよう
な範囲のAl系酸化物層は1渚合層の内部酸化を防止す
るバリヤ一層として十分なものになる。一方、このよう
なAl系酸化物の薄膜の他の重要な作用として、ZrC
h系セラミックと結合層との密着力を向上させることを
晃い出した。すなわち、従来のTBCがz r Ox系
セラミックと結合1−を構成する金属合金とが機械的に
結合していたのに比べ、本発明者らが見い出したAl系
敏化物の薄膜を介してのZrO!系セラミーンクと結合
層との密着は、Al系酸化物とZrO!系セラミックと
いう酸化物どうしの界面と、結合層を構成する金属合金
中のAl成分から生じるAl系酸化物というものになり
、その密着機構は非常に強固なものになる。−例として
、このようなAl系酸化物の薄膜を有したTBCの10
00c、soo時間の酸化試験において、結合層とZ 
r Ch系セラミック被覆層の密着力はほとんど低下せ
ず7f/m”以上である。第1図は高温酸化試験後のT
BCの断面組織の一例であり、倍率は100倍である。
On the other hand, if it is thin, it cannot serve as a barrier that satisfies the internal antioxidant effect. Therefore, its thickness is 0.1μ
The thickness is desirably greater than or equal to m and less than or equal to 20 μm. The Al-based oxide layer in such a range becomes sufficient as a barrier layer for preventing internal oxidation of the single layer. On the other hand, another important effect of such an Al-based oxide thin film is that ZrC
We have succeeded in improving the adhesion between the h-based ceramic and the bonding layer. In other words, compared to the conventional TBC in which the z r Ox-based ceramic and the metal alloy constituting the bond 1- are mechanically bonded, the ZrO! The adhesion between the ceramic ink and the bonding layer is due to the Al-based oxide and ZrO! The bonding mechanism is extremely strong due to the Al-based oxide generated from the interface between the oxides called ceramic and the Al component in the metal alloy constituting the bonding layer. - As an example, 10 of TBC with such a thin film of Al-based oxide
In the 00c, soo time oxidation test, the bonding layer and Z
The adhesion strength of the Ch-based ceramic coating layer is 7 f/m" or more with almost no decrease. Figure 1 shows the T after the high temperature oxidation test.
This is an example of a cross-sectional structure of BC, and the magnification is 100x.

第1図ではZ r Ox系セラミック被覆層と結合−と
の界面部には何ら欠陥が生じていない。又、1100C
,100時間の酸化試験でも同様で密着力の低下、ある
いは、界面部での欠陥の発生は全く認められない。更に
、1030C,1070C,11201:l’、117
0Cのそれぞれの温度で30分間保持、空冷による15
0C’!での冷却を操り返す試験の結果は表1のようで
ある。
In FIG. 1, there are no defects at the interface between the ZrOx ceramic coating layer and the bond. Also, 1100C
, 100 hours of oxidation tests showed no decrease in adhesion or occurrence of defects at the interface. Furthermore, 1030C, 1070C, 11201: l', 117
Hold at each temperature of 0C for 30 minutes, air cooling for 15 minutes.
0C'! Table 1 shows the results of the test in which the cooling was manipulated.

表   1 表1中試料ム201〜204は従来のTBC。Table 1 Samples 201 to 204 in Table 1 are conventional TBCs.

A205〜208はAL系酸化物の薄膜を有するTBC
の結果である。その結果、Al系酸化物の薄膜を有する
TBCは従来のTBCに比べTBCが損傷にいたるまで
の繰シ返し数は約3〜7倍であった。又、試験温度が高
くなるに従って、その効果は顕著になる。このように、
本発明者らが見い出した、Al系酸化物の薄膜を有した
TBCは、高温条件下で特に効果が顕著なものである。
A205-208 are TBCs with a thin film of AL-based oxide
This is the result. As a result, the TBC having a thin film of Al-based oxide required about 3 to 7 times more repetitions to damage the TBC than the conventional TBC. Moreover, as the test temperature becomes higher, the effect becomes more pronounced. in this way,
The TBC having a thin film of Al-based oxide, which was discovered by the present inventors, is particularly effective under high-temperature conditions.

このようなTB−Cを施したガスタービン部品は高温条
件下でも安定なものとなりうる。更に、Al系酸化物の
薄膜を介して接合したZ r Q z系被覆層を有した
TBCでは、zr01系被覆層の密着力が7匂/■2以
上である。この密着力は従来のTBCのZr01系被覆
層の密着力が3〜5匂/iat”程度であったのに比べ
非常に大きい。従って、燃焼器部品等で生じる燃焼振動
によるTBCの損傷或いは動翼等の高速度で回転する部
品でのTBCの損傷等を防止することも可能である。そ
こで、このようなTBCを施したことによる効果につい
て検討した。ガスタービン部品において低NOx燃焼器
部品等のように基材温度が高くなる部品においては、高
温の燃焼ガスにさらされる部分に上記のような高温耐久
性に優れたTBCを施工することによシ、基材の温度低
減を安定して得ることが可能になる。−例として、円筒
形状の低NOx燃焼器部品に対して、高温ガスにさらさ
れる円筒の内面に上記のようなAl系酸化物の薄膜を有
したTBCを施した燃焼器部品は、従来のTBCを施し
た部品に比べ、TBCが損傷に至るまでの稼動時間は約
3倍になっていた。これは、Al系酸化物の薄膜を有し
たTBCが耐久性特に高温条件下での耐久性に優れてい
るためである。
Gas turbine components treated with such TB-C can be stable even under high temperature conditions. Furthermore, in a TBC having a Z r Q z based coating layer bonded via a thin film of an Al based oxide, the adhesion of the zr01 based coating layer is 7 odors/■2 or more. This adhesion is much greater than the adhesion of the Zr01 coating layer of conventional TBCs, which was about 3 to 5 odor/iat. It is also possible to prevent damage to TBCs in parts that rotate at high speeds such as blades.Therefore, we investigated the effects of applying such TBCs.In gas turbine parts, low NOx combustor parts, etc. In parts where the base material temperature becomes high, such as those shown in Figure 1, by applying TBC with excellent high temperature durability to the parts exposed to high temperature combustion gas, it is possible to stably reduce the temperature of the base material. - For example, for a cylindrical low NOx combustor part, combustion is performed by applying TBC with a thin film of Al-based oxide as described above on the inner surface of the cylinder exposed to high-temperature gas. The operating time for the TBC before it was damaged was approximately three times longer than that for parts coated with conventional TBC. This is because it has excellent durability under various conditions.

従って、TBCを施すことによって得られる燃焼器部品
の基材温度の低減効果は安定して維持される。一方、従
来のTBCを施した燃焼器部品では、短時間でTBCが
損傷し、特に基材温度の高い部分のTBCの損傷が著し
くなってしまう。その結果、TBCによる基材の温度低
減の効果は消失し、基材の温度が高くなシ、部品の損傷
に至ってしまう。更に、燃焼器部品において、部品の強
度、あるいは燃焼器部品の固定等の構造上から圧縮空気
等による冷却が十分に行なえない部分は、特に基材の温
度上昇が生じ易くなっている。このような部分ではTB
Cの役割は特に重要で、TBCの熱遮蔽効果による基材
の温度低減の他に、熱伝導率の小さいセラミック被覆層
を有したTBCは、局部的な基材の温度上昇を防止し、
基材の温度を均一化させる作用も有している。その結果
、TBCは、構造上或いは燃焼条件等のため部品の局部
的な温度上昇を防止し、基材の局部的な温度上昇による
部品の変形成いは損傷を防止する上で非常に重要なもの
になる。しかるに、使来のTBCは、特に高温での耐久
性に問題があり、このような基材の温度が局部的に高く
なる部品においては、その部分のTBCは短時間で損傷
し易い。燃焼器部品では燃焼振動によシ基材が振動する
ので高温条件下でセラミック被覆層の密着力の低下した
TBCは更に損傷を生じ易くなる。そのため、最も’1
’ B Cの効果が必要でちる部分に対して、十分な効
果を発揮することができなくなる。そして、THCの損
傷した部分では他のTBCが4全である部分に比べ基材
の温度はむしろ高くなる可能性もありうる。例えば燃焼
器部品のように火炎に接している部品ではTBCはセラ
ミック被覆層のふく射の効果による火炎から基材への入
熱量を低減する作用もある。従って、TBCの損4した
部分の基材温度は、TBCを施工しない場せに比べて扁
くなってしまうこともありうる。その結果、従来のTB
Cを施工し′fc燃焼器部品等のガスタービン部品では
、TBCの効果は十分に発揮しうることは困扇でめす、
むしろ、基材の温度が高い部分に対しては、便来のTB
Cの施工した部品では、部品の信頼性を損なうこともあ
りうる。一方、A/、系酸化物の薄膜を有したTBCを
施工した本発明のガスタービン部品では、ylJえば低
NOX燃焼器部品では、構造上或いは燃焼条件等によシ
、基材の温度が局部的に高くなる部品で6っても、Ti
3Cは耐久性、時に調温での耐久性に−れたものである
ため、基材の温度が^くなる部分でのTBCの損傷は生
じ4い。従って、Al系酸化物の薄膜を有した本発明の
ガスタービン部品は、基材の温度が局部的に高くなって
も、TBCによる熱遮蔽効果が十分維持され、かつ、T
BCによる局部的な隠匿上昇を緩和する作用も発揮され
る。
Therefore, the effect of reducing the base material temperature of the combustor component obtained by applying TBC is stably maintained. On the other hand, in combustor parts to which conventional TBC has been applied, the TBC is damaged in a short period of time, and the damage to the TBC is particularly severe in areas where the base material temperature is high. As a result, the effect of reducing the temperature of the base material by TBC disappears, and the temperature of the base material becomes high, resulting in damage to the parts. Further, in combustor parts, the temperature of the base material is particularly likely to rise in parts where cooling with compressed air or the like cannot be performed sufficiently due to the strength of the parts or the structure such as fixation of the combustor parts. In such parts, TB
The role of C is particularly important. In addition to reducing the temperature of the base material due to the heat shielding effect of TBC, TBC with a ceramic coating layer with low thermal conductivity prevents local temperature rise of the base material,
It also has the effect of making the temperature of the base material uniform. As a result, TBC is extremely important in preventing local temperature increases in parts due to structural or combustion conditions, and in preventing deformation or damage to parts due to local temperature increases in the base material. Become something. However, conventional TBCs have a problem in durability, especially at high temperatures, and in such parts where the temperature of the base material locally increases, the TBCs in those areas are likely to be damaged in a short period of time. In combustor parts, the base material vibrates due to combustion vibrations, so TBCs with reduced adhesion of the ceramic coating layer become more susceptible to damage under high-temperature conditions. Therefore, the most '1
'B It becomes impossible to exert sufficient effect on the areas where the effect of C is necessary. In addition, there is a possibility that the temperature of the base material in the damaged part of THC becomes higher than that in other parts where TBC is 4-all. For example, in parts that are in contact with flame, such as combustor parts, TBC also has the effect of reducing the amount of heat input from the flame to the base material due to the radiation effect of the ceramic coating layer. Therefore, the temperature of the base material in the damaged portion of the TBC may become lower than that without the TBC. As a result, the conventional TB
It is difficult to say that the effect of TBC can be fully demonstrated in gas turbine parts such as FC combustor parts by applying C.
Rather, for areas where the temperature of the base material is high, conventional TB
For parts constructed in C, the reliability of the parts may be impaired. On the other hand, in the gas turbine parts of the present invention in which a TBC having a thin film of A/, type oxide is constructed, for example, in low NOx combustor parts, the temperature of the base material may be localized due to the structure or combustion conditions. Ti
Since 3C is durable, and sometimes even durable at temperature control, damage to the TBC occurs in areas where the temperature of the base material increases. Therefore, in the gas turbine component of the present invention having a thin film of Al-based oxide, even if the temperature of the base material becomes locally high, the heat shielding effect of the TBC is sufficiently maintained, and the TBC
It also has the effect of mitigating the local increase in concealment caused by BC.

その結果、本発明のガスタービン部品は信頼性の高いも
のになる。ここで、基材の温度が局部的に高くなる部品
においては、その部分に、Al系酸化物を有したTBC
を施工することも有効である。
As a result, the gas turbine component of the present invention is highly reliable. Here, in parts where the temperature of the base material becomes locally high, TBC containing Al-based oxide is used in that part.
It is also effective to construct

すなわち、TBCの熱遮蔽効果により、局部的な温度上
昇を防止することができるからである。更に、他の部分
にTBCが無い場合、TBCのセラミック被覆層のふく
射の効果により、TBCを施工した部分の基材への入熱
量を低くすることができ、他のTBCの無い部分との入
熱量のバランスをとり、基材の局部的な温度上昇を防止
することも期待できうる。このように、Al系酸化物の
薄膜を有したTBCはガスタービン部品の高温にさらさ
れる部分の全面あるいは一部分に施工することによって
、いずれの場合もその効果を十分発揮しうるものである
。このような基材の温度の局部的な温度上昇の一例とし
て、燃焼器部品で説明したが、他のガスタービン部品に
おいても同じようなことがある。例えば、静翼、動翼等
においては、翼の冷却構造上の制約のため、翼を構成す
る基材の温度を均一化することは困難である。更に、ガ
スタービンが高温化するに伴なって、そのような温度分
布の相異は大きくなる傾向がある。従って、Al系酸化
物の薄膜を有した耐久性に浸れたTBCを有したガスタ
ービン部品は信頼性の高いものとなり、ガスタービンの
高温化を可能にするものになりうる。以下、本発明につ
いて実施例によシ詳細に説明する。
That is, the heat shielding effect of the TBC can prevent a local temperature rise. Furthermore, if there is no TBC in other areas, the radiation effect of the ceramic coating layer of the TBC can reduce the amount of heat input to the base material in the area where the TBC is applied, reducing the heat input to other areas without TBC. It can also be expected to balance the amount of heat and prevent local temperature increases in the base material. In this way, the TBC having a thin film of Al-based oxide can be applied to the entire surface or a portion of the part of the gas turbine component that is exposed to high temperatures, so that its effects can be fully exhibited in either case. As an example of such a local temperature increase in the temperature of the base material, the combustor component has been described, but a similar phenomenon may occur in other gas turbine components. For example, in stationary blades, rotor blades, etc., it is difficult to equalize the temperature of the base material that constitutes the blades due to constraints on the cooling structure of the blades. Further, as gas turbines become hotter, such differences in temperature distribution tend to increase. Therefore, a gas turbine component having a durable TBC with a thin film of Al-based oxide can be highly reliable and enable high temperature gas turbines. Hereinafter, the present invention will be explained in detail using examples.

実施例1 基材としてNi基合金であるハステロイ−X(22wt
%Cr−1,5wi%Co−9wt%M O−19W 
t%Fe−0,1wt%C−残部Ni)を用い、その表
面を脱脂洗浄後、スチール製のグリッドを用いてブ2ス
チングレ、しかる後、プラズマ溶射を行い、19wt%
Ni−25wt%Cr−7wt%Al−0,6wt%Y
−5wt%Ta−残部Coからなる合金材料の被覆層を
形成した。プラズマ溶射はzoo’rorrの圧力のA
r中で行なった。この場合プラズマ溶射を行う雰囲気中
の酸素分圧は酸素センサーで測定した結果19−s気圧
以下であった。プラズマの出力は40kWである。この
ような条件で厚さ0.01mのCo。
Example 1 Hastelloy-X (22 wt.
%Cr-1,5wi%Co-9wt%MO-19W
After degreasing and cleaning the surface, the surface was sprayed using a steel grid, and then plasma sprayed to give 19 wt%
Ni-25wt%Cr-7wt%Al-0,6wt%Y
A coating layer of an alloy material consisting of -5 wt% Ta and the balance Co was formed. Plasma spraying uses zoo'rorr pressure A
This was done in r. In this case, the oxygen partial pressure in the atmosphere in which plasma spraying was performed was measured with an oxygen sensor and was found to be 19-satm or less. The plasma output is 40kW. Co with a thickness of 0.01 m under these conditions.

Ni、 Cr、Al、Y合金被覆層を形成し、TBCの
結合層とした。しかる後、直ちに前述の結合層の上にZ
r02−8%Y2O3被覆層を形成した。溶射条件はプ
ラズマ出力50kWで、大気中溶射である。Zr0z 
 8%Y2O3被覆ノーの厚さは0.3■である。その
後、1060C10時間の真空中加熱処理を行い結合層
と基材との拡散処理を行った。なお、比較のため、従来
法によって本発明のTBCと同じ材料を用いて、同じ厚
さの被覆層からなるTBCを作成した。従来法として前
述の合金材料を大気中でArガスを使用して溶射し、次
いで前述と同様にZr0z  8%Y2O3を被覆した
。次に、本発明のTBCの効果を確認するため、以下に
述べる各種の試験を実施しだ。先ず、各種の温度で酸化
試験を行ない、試験後の外観観察及び断面組織観察更に
密着力試験を実施した。表2は外観観察及び密着力試験
の結果である。
A Ni, Cr, Al, and Y alloy coating layer was formed to serve as a bonding layer for the TBC. Immediately after that, Z
A r02-8% Y2O3 coating layer was formed. The thermal spraying conditions were a plasma output of 50 kW and thermal spraying in the atmosphere. Zr0z
The thickness of the 8% Y2O3 coating is 0.3 mm. Thereafter, a heat treatment was performed in vacuum at 1060C for 10 hours to perform a diffusion treatment between the bonding layer and the base material. For comparison, a TBC made of the same material as the TBC of the present invention and having a coating layer of the same thickness was prepared by a conventional method. As a conventional method, the aforementioned alloy material was thermally sprayed using Ar gas in the atmosphere, and then coated with Zr0z 8% Y2O3 in the same manner as described above. Next, in order to confirm the effects of the TBC of the present invention, various tests described below were conducted. First, an oxidation test was conducted at various temperatures, and after the test, the appearance and cross-sectional structure were observed, and an adhesion test was conducted. Table 2 shows the results of appearance observation and adhesion test.

表2中&1〜A6は従来のTBCの結果、&7〜A11
は本実施例で作成した本発明のTBCの結果である。す
なわち、従来のTBCでは1070C以上の温度(10
0時間保持)で、ZrO冨−8%Y2os被覆層が剥離
しTBCは損傷した。一方、本発明の扁7〜&11のT
BCは外観的に何ら損傷は認められない。一方、酸化試
験後のTBCの密着力試験の結果も、TBCが損傷して
いない厘1〜&6の従来のTBCは、その密着力は2〜
5 Kg / tag 2で、酸化試験温度の増加とと
もに密着力は低下している。又、密着力試験での破断部
分は結合層とZrO,−8%Y2O3被覆層との境界部
である。一方、47〜墓11に示した本発明のTBCで
はいずれの酸化試験条件下でもTBCの密着力の低下は
認められず、接着剤(接着剤の密着強度7h/m” )
を用いた密着力試験法の限界値である7 Kg /le
x ”以上の値であった。
&1 to A6 in Table 2 are the results of conventional TBC, &7 to A11
is the result of the TBC of the present invention created in this example. In other words, with conventional TBCs, temperatures of 1070C or higher (10
After holding for 0 hours), the ZrO-rich 8% Y2os coating layer peeled off and the TBC was damaged. On the other hand, T of flats 7 to &11 of the present invention
BC has no external damage. On the other hand, the results of the adhesion test of the TBC after the oxidation test also show that the adhesion of the conventional TBCs of 1 to 6 with no damage to the TBC was 2 to 2.
5 Kg/tag 2, the adhesion strength decreases as the oxidation test temperature increases. Furthermore, the fractured portion in the adhesion test was the boundary between the bonding layer and the ZrO, -8% Y2O3 coating layer. On the other hand, in the TBCs of the present invention shown in Nos. 47 to 11, no decrease in the adhesion of the TBC was observed under any of the oxidation test conditions, and the adhesion strength of the adhesive (adhesive strength: 7 h/m")
7 Kg/le, which is the limit value of the adhesion test method using
The value was greater than x”.

従って、試験後の破断部はいずれも接着剤の部分である
。次に、上記酸化試験後の試験片を用いて熱サイクル試
験を実施しだ。試験条件は750C。
Therefore, the broken parts after the test were all adhesive parts. Next, a thermal cycle test was conducted using the test piece after the above oxidation test. Test conditions were 750C.

15分間保持、20〜25C水中、15秒間保持を操り
返しである。表3はその結果である。
Hold for 15 minutes, hold in 20-25C water for 15 seconds, and repeat. Table 3 shows the results.

表    3 熱サイクル試験結果 表3中の試料はそれぞれの酸化試験を実施した後の試料
である。表3中屋1〜&3の従来の・TBCは200〜
500回の熱サイクル試験で’lrO*   8%M2
O3被覆層が剥離しTBCが損傷した。一方、表3中屋
7〜&11の本発明のTBCは、1400〜1700回
の熱サイクルの繰り返し後も損傷が無く、最高1700
回の熱サイクル試験でTBCの損傷が認められた。この
ように本発明のTBCは従来のTBCに比べ高温耐酸化
性、あるいは耐熱衝撃性に優れた耐久性に富むTBCで
ある。
Table 3 Thermal Cycle Test Results The samples in Table 3 are samples after each oxidation test was conducted. Conventional TBC of Table 3 Nakaya 1~&3 is 200~
'lrO* 8% M2 after 500 thermal cycle tests
The O3 coating layer peeled off and the TBC was damaged. On the other hand, the TBCs of the present invention shown in Table 3 Nakaya 7 to &11 showed no damage even after repeated thermal cycles of 1400 to 1700 times, and
Damage to the TBC was observed during the second thermal cycle test. As described above, the TBC of the present invention is a highly durable TBC with excellent high-temperature oxidation resistance or thermal shock resistance compared to conventional TBCs.

実施例2 実施例1と同様の材料を用い、実施例1と同様の溶射条
件でTBCを作成した。しかる後、1060C,3時間
の真空中加熱を行ない、C09Ni、Cr、Al、Y被
覆層から成る結合層と基材との拡散処理を行なった。更
に、その後、1000C,15時間の大気中加熱処理を
行なった。このようにして作製した本発明のTBCはZ
rO!−8%Y!03  被覆層とCo、Nt。
Example 2 A TBC was created using the same materials as in Example 1 and under the same thermal spraying conditions as in Example 1. Thereafter, heating was performed in vacuum at 1060C for 3 hours to perform a diffusion treatment between the base material and the bonding layer consisting of the C09Ni, Cr, Al, and Y coating layers. Furthermore, after that, heat treatment was performed in the air at 1000C for 15 hours. The TBC of the present invention produced in this way has Z
rO! -8% Y! 03 Coating layer and Co, Nt.

Cr、入t、Y被覆層との界面部に約5μmの厚さの境
界層がほぼ均一に形成されていた。この境界層はEPM
A分析或いはX線回折結果、Al系酸化物を生成分とす
るものであることが判った。なお、比較のため、本発明
のTBCと同じ材料を用いて、従来方法でTBCを作成
し、更に、そのTBCを本発明のTBCと同じ真空中波
数処理及び大気中加熱処理を行なった。表3中4101
及び憲102はこのようにして作成した本発明のTBC
及び比較のための従来のTBCを用いて、実施例1と同
様の熱サイクル試験を行なった結果である。表3中、’
lt 101の従来のTBCは約500回の繰シ返しで
ZrCh−8%M z Os被覆層が剥離した。一方、
表3中4102の本発明のTBCは約1500回の繰り
返しで損傷が生じた。このように、本発明のTBCは、
従来のTBCに比べ約3倍の耐久性がある。
A boundary layer with a thickness of about 5 μm was formed almost uniformly at the interface with the Cr, T, and Y coating layers. This boundary layer is EPM
As a result of A analysis or X-ray diffraction, it was found that the product was an Al-based oxide. For comparison, a TBC was prepared by a conventional method using the same material as the TBC of the present invention, and further, the TBC was subjected to the same wave number treatment in vacuum and heat treatment in air as the TBC of the present invention. 4101 in Table 3
and Ken 102 are the TBCs of the present invention created in this manner.
These are the results of a heat cycle test similar to that in Example 1 using a conventional TBC for comparison. In Table 3, '
In the conventional TBC of lt 101, the ZrCh-8%M z Os coating layer peeled off after about 500 cycles. on the other hand,
TBC 4102 of the present invention in Table 3 was damaged after about 1500 repetitions. Thus, the TBC of the present invention
It has approximately three times the durability compared to conventional TBC.

次に、本発明のTBCガスタービン燃焼器ライうイ適用
した例を第2図に示した。
Next, FIG. 2 shows an example in which the present invention is applied to a TBC gas turbine combustor.

TBCの施工部分は第2図の燃焼器ライナ1の円筒状の
部品の内面である。この燃焼器ライナ1の下流部1aは
、冷却空気開孔部(以下ルーバ2と称す)があるがメタ
ル温度が非常に高くなるため第2図人で示した部分にT
BCを施工するようにした。燃滉器ライナ1の基材の材
質はノ1ステロイーX(22%Cr −1,5%C0−
9%M o −19%F e −0,1%C−残Ni)
である。Al系酸化物を有したTBCの形成はプラズマ
溶射を用いて行なった。その詳細は以下のようである。
The construction part of the TBC is the inner surface of the cylindrical part of the combustor liner 1 shown in FIG. The downstream part 1a of the combustor liner 1 has a cooling air opening (hereinafter referred to as louver 2), but since the metal temperature becomes very high, a T
BC was constructed. The material of the base material of the fuel liner 1 is No. 1 STEROY
9%Mo-19%Fe-0,1%C-Remaining Ni)
It is. The TBC containing Al-based oxide was formed using plasma spraying. The details are as follows.

先ず、ライナを脱脂洗浄し、その後、Al雪03製グリ
ッドを用いてプラスチングした。このような基材表面に
新表面を形成した後直ちに10%Ni −25%Cr−
7%A t −0,6%Y−5%Ta−残部Coから成
る合金材料をプラズマ溶射し結合層を形成した。このよ
うな結合層の形成条件としてはプラズマ出力は高出力で
あることが望ましく、かつ、溶射中のプラズマジェット
周辺の雰囲気を制御することが望ましい。特に、雰囲気
制御の要素としては酸素分圧を少くする、望ましくは1
0−1気圧以下にすることが好ましい。又、雰囲気制御
の他の要素として減圧雰囲気で実施するのが望ましい。
First, the liner was degreased and cleaned, and then plasted using a grid made of Al Snow 03. Immediately after forming a new surface on such a base material surface, 10%Ni-25%Cr-
A bonding layer was formed by plasma spraying an alloy material consisting of 7%At-0.6%Y-5%Ta-balance Co. As conditions for forming such a bonding layer, it is desirable that the plasma output be high and that the atmosphere around the plasma jet during thermal spraying be controlled. In particular, as an element of atmosphere control, the oxygen partial pressure should be reduced, preferably 1
It is preferable to set the pressure to 0-1 atm or less. Further, as another element of atmosphere control, it is desirable to carry out the process in a reduced pressure atmosphere.

このような雰囲気制御を行うことによって本発明を得る
上で好ましい結合層を形成す ゛ることか可能になる。
By controlling the atmosphere in this manner, it becomes possible to form a bonding layer that is preferable for obtaining the present invention.

本実施例では、酸素分圧を10′″3気圧以下にしたA
r雰囲気中で、かつ、その雰囲気圧力を200Torr
に制御した′4囲気中で行なった。又、溶射中の基材温
度は500〜1000Cに維持して行うのが、本発明を
得る上で好ましい。本実施例では600〜700Cの範
囲内で行なった。このような条件下で、厚さ約0、1■
厚さの結合層を形成した。しかる後、結合層の上にZr
Ch−6%Y103から成るセラミック材の被覆層を形
成した。被覆層はプラズマ溶射て形成した。溶射条件は
、高出力プラズマ溶射法を用い、55kWの出力で実施
した。被4ノーの厚さは約0.3−である。このように
して、TBCを形成     ′した後、部品を真空中
で加熱し、結合層と基材との拡散処理を実施した。この
ような拡散処理は、約10−暴’fortの真空中で1
060C,5時間保持する条件である。しかる後、大気
中で900c。
In this example, A
r atmosphere and the atmospheric pressure is 200 Torr.
The test was carried out in a controlled atmosphere. Further, in order to obtain the present invention, it is preferable to maintain the substrate temperature during thermal spraying at 500 to 1000C. In this example, the temperature was within the range of 600 to 700C. Under these conditions, the thickness of approximately 0,1■
A thick bonding layer was formed. After that, Zr is applied on top of the bonding layer.
A coating layer of a ceramic material made of Ch-6% Y103 was formed. The coating layer was formed by plasma spraying. Thermal spraying was carried out using a high-power plasma spraying method with an output of 55 kW. The thickness of the cover is about 0.3-. After forming the TBC in this way, the part was heated in a vacuum to perform a diffusion treatment between the bonding layer and the substrate. Such a diffusion process is carried out in a vacuum of about 10-400 m
The conditions were to hold the temperature at 060C for 5 hours. After that, 900c in the atmosphere.

20時間の熱処理を実施した。このような拡散処理或い
は熱処理の条件については、特に制限は無いが拡散処理
は基材の溶射体温度以下、800C以上の範囲で、3時
間以上100時間以下の範囲で行うのが望ましく、一方
、熱処理は、600C以上1200C以下の範囲で1時
間以上、200時間以下の範囲で行うのが望ましい。こ
のようにして、kt系薄膜を有したTBC4−被覆した
本発明の燃焼器ライナを作製した。なお、燃焼器ライナ
1は第3図に示したような冷却用のルーパ2を有した構
造である。このようなルーバ2は冷却効果を十分発揮す
るには、その寸法は所定の範凹内に入る必要がある。従
って、ルーバ一部でTBCの厚さが極kに厚くなった場
合、その部分の冷却効果は著しく低下し、基材の温度上
昇を招く。更に、TBCの厚さが局部的に厚くなった場
合、その部分のTBCの耐久性は著しく低下する。そこ
で本実施例では第3図中に示し九Bの角度範囲で内面3
に行うようにした。このような条件下で、結曾層或いは
ZrO*−6%YzOs被覆層を形成することによって
、ルーバ一部のTBCの厚さが厚くないTBCが得られ
た。このようにして形成した燃焼器ライナのTBCは、
その断面、組織は第1図とほぼ同様で、結合層とZr 
02−6%Yx Os被覆層との界面部に約3μm厚さ
のAl系酸化物から成る境界層が形成されていた。この
ようなTBCを有した燃焼器ライナを用いて、1000
C,30分間保持と20〜25C水中5分間保持を繰勺
返す熱サイクル試験を実施した。なお、比較のため、A
l系酸化物の薄膜を有さない従来のTBCを本発明の燃
焼器ライナと同様に形成したものを用いて、同様の熱サ
イクル試験を実施した。
Heat treatment was performed for 20 hours. There are no particular restrictions on the conditions for such diffusion treatment or heat treatment, but it is preferable that the diffusion treatment be carried out at a temperature below the spray body temperature of the base material, at a temperature of 800 C or above, and for a period of 3 hours or more and 100 hours or less; The heat treatment is desirably carried out at a temperature of 600C or more and 1200C or less for 1 hour or more and 200 hours or less. In this way, a TBC4-coated combustor liner of the present invention having a KT-based thin film was produced. The combustor liner 1 has a structure including a cooling looper 2 as shown in FIG. In order for such a louver 2 to exhibit a sufficient cooling effect, its dimensions must fall within a predetermined range. Therefore, if the thickness of the TBC becomes extremely thick in a part of the louver, the cooling effect of that part will be significantly reduced, leading to an increase in the temperature of the base material. Furthermore, when the thickness of the TBC becomes locally thick, the durability of the TBC in that area is significantly reduced. Therefore, in this embodiment, the inner surface 3 is
I decided to do it. By forming a condensation layer or a ZrO*-6% YzOs coating layer under such conditions, a TBC in which the thickness of a portion of the louver was not thick was obtained. The TBC of the combustor liner formed in this way is
Its cross section and structure are almost the same as in Figure 1, with a bonding layer and Zr
A boundary layer made of Al-based oxide and having a thickness of about 3 μm was formed at the interface with the 02-6% Yx Os coating layer. Using a combustor liner with such a TBC, 1000
A heat cycle test was conducted in which the sample was held for 30 minutes and then held in water at 20 to 25C for 5 minutes. For comparison, A
A similar thermal cycle test was conducted using a conventional TBC that did not have a thin film of l-based oxide and was formed in the same manner as the combustor liner of the present invention.

その結果、本発明の燃焼器ライナは50回の繰り返しで
もTBCに何らfA薯は生じなかったが、従来のTBC
を施した燃焼器ライナでは約90回でTBCの損傷が生
じた。
As a result, the combustor liner of the present invention did not cause any fA in the TBC even after 50 repetitions, whereas the conventional TBC
In the case of the combustor liner subjected to this process, TBC damage occurred after approximately 90 cycles.

上記のようにして作製した本発明の燃焼器ライナと比較
のため作製tた従来の燃焼器ライナとを用いてそれぞれ
同一の条件下で燃焼試験を実施した。その結果、約15
00時間の試験で、従来のTBCでは第2図Aの範囲で
示した冷却用ルーバーの無い部分でTBCの損傷が生じ
ていた。一方、本発明の燃焼器ライナは全ての部分にお
いても、TBCの損傷は認められなかった。又、第2図
の人の範囲の部分について、試験後の燃焼器ライナを切
断しTBCの状態を観察した。その結果、断面組織の観
察で、TBCの各部において何ら損傷は生じていないも
のであった。
Combustion tests were conducted under the same conditions using the combustor liner of the present invention produced as described above and a conventional combustor liner produced for comparison. As a result, about 15
In the 00 hour test, damage to the conventional TBC occurred in the area without the cooling louver shown in the area A in FIG. 2. On the other hand, no damage to the TBC was observed in any part of the combustor liner of the present invention. In addition, the combustor liner after the test was cut in the area covered by the person in Figure 2, and the state of the TBC was observed. As a result, observation of the cross-sectional structure revealed that no damage had occurred in any part of the TBC.

又、このような本発明の燃焼器ライナでは第2図のAの
範囲の部分のライナ径の寸法変化は約3%以下であった
。一方、TBCが損傷した従来の燃焼器ではその寸法変
化はライナ径の約5%と大きくなっていた。以上のよう
に、本発明の燃焼器ライナTBCの効果が長時間にわた
って維持される結果、燃偶器ライナの変形等の問題を防
止する上で十分な効果がある。
Further, in the combustor liner of the present invention, the dimensional change in the liner diameter in the area A in FIG. 2 was about 3% or less. On the other hand, in a conventional combustor with a damaged TBC, the dimensional change was as large as about 5% of the liner diameter. As described above, the effects of the combustor liner TBC of the present invention are maintained over a long period of time, and as a result, there is a sufficient effect in preventing problems such as deformation of the combustor liner.

第4図に示した構造の燃焼器ライナに対して実施した。The test was carried out on a combustor liner having the structure shown in Fig. 4.

この構造の燃焼器ライナでは第4図Cで示した範囲の基
材の温度上昇が著しい。そこで、第2図の場合と同様の
被覆層材料を用いて同様の条件で第4図Cの部分の内面
側の燃焼ガスにさらされる部分にTBCを施し、本発明
の燃焼器ライナを作製した。比較のため、第4図Cの部
分に、Al系酸化物の薄膜を有さない従来の’I’BC
を施した燃焼器ライナを作製した。このような、それぞ
れの燃焼器ライナを用いて、それぞれ同一の燃焼条件下
で試験を実施した。その結果、本発明の燃焼器ライナで
は約2000時間の試験後においてもTBCの損傷は認
められず、ライナ径の変化等の燃焼器ライナの変形も生
していなかった。一方、従来のTBCを施した燃焼器ラ
イナは約2000時間の試験後、TBCは著しく損傷し
ていた。又、その部分のライナ径の変化も大きく、燃焼
器ライナの変形が生じていた。このように、基材の温度
が高くなる部分に対してのみTBCを施した本発明の燃
焼器2イナは耐久性或いは信頼性に十分優れたものであ
る。なお、第4図に示した燃焼器ライナに対して、第2
図の例と同様にライナの内面全面にTBCを施したもの
においても、本実施例と同じ効果が得られる。
In a combustor liner having this structure, the temperature of the base material increases significantly in the range shown in FIG. 4C. Therefore, the combustor liner of the present invention was fabricated by applying TBC to the inner surface of the portion C in FIG. 4 exposed to combustion gas under the same conditions using the same coating layer material as in the case of FIG. 2. . For comparison, the conventional 'I'BC which does not have a thin film of Al-based oxide is shown in the part C of Fig. 4.
A combustor liner was fabricated. Tests were conducted using each of these combustor liners under the same combustion conditions. As a result, in the combustor liner of the present invention, no damage to the TBC was observed even after about 2000 hours of testing, and no deformation of the combustor liner such as a change in liner diameter occurred. On the other hand, in a combustor liner with a conventional TBC, the TBC was significantly damaged after about 2000 hours of testing. In addition, the liner diameter in that area varied greatly, causing deformation of the combustor liner. As described above, the combustor 2 inner according to the present invention, in which TBC is applied only to the portions of the base material where the temperature becomes high, has sufficient durability and reliability. Note that for the combustor liner shown in Fig. 4, the second
Similar to the example shown in the figure, the same effects as in this embodiment can be obtained even when TBC is applied to the entire inner surface of the liner.

第5図に示した構造のガスタービン用の動翼5に対して
、翼面6の全ての部分及びシュラウド7部分について、
Al系酸化物の薄膜を有したTBCを施した本発明の動
翼を作製した。動翼5の材質は(lNC0NEL−73
8)である。又、TBCt−溝底する材料は第2図の場
合と同様で、その作製条件等も前述のものと同様である
。なお、比較のため、従来のTBCを有した動翼をも作
製した。このようなそれぞれの動翼について、前述の場
合と同様の熱サイクル試験を行なった。その結果、本発
明の動翼は従来のTBCを施した動翼に比べ、TBCが
損傷するまでの繰り返し数は約2〜4倍と長くなってい
た。
Regarding the rotor blade 5 for a gas turbine having the structure shown in FIG. 5, all parts of the blade surface 6 and the shroud 7 part,
A rotor blade of the present invention was fabricated using a TBC having a thin film of an Al-based oxide. The material of the rotor blade 5 is (lNC0NEL-73
8). The material for the TBCt-groove bottom is the same as that shown in FIG. 2, and the manufacturing conditions are also the same as described above. For comparison, a rotor blade with a conventional TBC was also fabricated. A thermal cycle test similar to that described above was conducted for each of these rotor blades. As a result, the number of repetitions required for the rotor blade of the present invention until the TBC was damaged was about 2 to 4 times longer than that of the conventional rotor blade with TBC.

以上の各実施例においては、燃焼器ライナ及び動翼につ
いて説明したが、本発明は、高温条件下にさらされる他
のガスタービン部品に対しても有効なものである。更に
、TBCを構成する結合層材料に関しても、従来公知で
あるいずれの成分範囲の合金材料においても、その合金
中にAlが成分として含まれてお夛、特にその量が5%
以上30%以下含んでいるものが望ましく、そのような
合金材料であれば特に制限はない。又、セラミック被覆
層を構成する材料に関しても、Zr(hを主成分とする
ものであれば良く、安定化剤として、Ca Q、 Mg
 O,Y2O5等のいずれか一つもしくはそれらの組み
合わせたものを含むものであれば良い。又、それぞれの
被覆層の厚さに関しても特に制限は無いが、TBCの遮
熱効果と耐久性の点を考慮した場合、結合層は0.03
waw以上0.5鴎以下、”1roz系被覆層は0.0
5m以上0.8簡以下が好ましい。
Although the combustor liner and rotor blades have been described in each of the above embodiments, the present invention is also effective for other gas turbine components exposed to high temperature conditions. Furthermore, regarding the bonding layer material constituting the TBC, in any of the conventionally known alloy materials with any composition range, Al is contained as a component in the alloy, especially when the amount is 5%.
It is desirable that the content is 30% or less, and there is no particular restriction as long as it is such an alloy material. Regarding the material constituting the ceramic coating layer, any material containing Zr(h) as the main component may be used, and stabilizers such as CaQ, Mg
Any one of O, Y2O5, etc. or a combination thereof may be used. There is also no particular limit on the thickness of each coating layer, but when considering the heat shielding effect and durability of TBC, the thickness of the bonding layer is 0.03 mm.
Waw or more and 0.5 or less, 1roz type coating layer is 0.0
The length is preferably 5 m or more and 0.8 m or less.

〔発明の効果〕 以上説明したように本発明によれば、結合層の酸化腐蝕
の進行を防止できるので、セラミック被覆層の結合強度
を長期間にわたり、安定的に維持することができる。
[Effects of the Invention] As explained above, according to the present invention, progress of oxidative corrosion of the bonding layer can be prevented, so that the bonding strength of the ceramic coating layer can be stably maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施したTBCの断面組織写真、第
2図は、TBeを施すガスタービン燃焼器の外硯図、第
3図は第2図X−X線に沿う断面図、第4図は、TBC
を施した別のタイプの燃焼器の外観図、第5図は、ガス
タフビン動翼の外観図、第6図、及び第7図は、従来の
TBCの高温酸化後の断面組織写真である。
Fig. 1 is a photograph of the cross-sectional structure of a TBC according to the present invention, Fig. 2 is an outline drawing of a gas turbine combustor to which TBe is applied, and Fig. 3 is a cross-sectional view taken along the line XX in Fig. 2. Figure 4 shows TBC
FIG. 5 is an external view of a gas turbine rotor blade, and FIGS. 6 and 7 are photographs of the cross-sectional structure of a conventional TBC after high-temperature oxidation.

Claims (1)

【特許請求の範囲】 1、Ni、Co、Feの少くとも1種を主成分とする基
材上に前記基材よりも高温耐酸化、高温耐蝕性に優れた
合金の結合層を形成し、前記結合層上にセラミツクから
成る被覆層を形成した耐熱部材において、前記合金の結
合層とセラミツク被覆層の境界にAlを主成分とする酸
化物層を形成したことを特徴とするセラミツク被覆耐熱
部材。 2、特許請求の範囲第1項において、前記セラミツク被
覆層を構成する材料が、ZrO_2を主成分とし、Ca
O、MgO、Y_2O_3のいずれか1つもしくはそれ
らの組み合せたものを含むものであることを特徴とする
セラミツク被覆耐熱部材。 3、特許請求の範囲第1項において、前記合金の結合層
を構成する材料は、CoあるいはNiのいずれか1つも
しくはそれらの組み合せに、Cr、Alを含み、更にH
f、Ta、Y、Si、Zrのいずれか1つもしくはそれ
らの組み合せからなるものを含むものであることを特徴
とするセラミツク被覆耐熱部材。 4、特許請求の範囲第1項において、前記酸化物層の厚
さが0.1μm〜20μmであることを特徴とするセラ
ミツク被覆耐熱部材。 5、特許請求の範囲第4項において、前記合金の結合層
の厚さが0.03mm〜0.5mm、前記セラミツク被
覆層の厚さが0.05mm〜0.8mmであることを特
徴とするセラミツク被覆耐熱部材。 6、Ni、Co、Feの少くとも1つを主成分として構
成された基材の表面に、Ni、Coのいずれか一方もし
くはそれらの組み合せにCr、Alを含み前記基材より
も高温耐酸化性、高温耐食性に優れた合金の結合層を形
成する工程と前記結合層の表面にセラミツクからなる被
覆層を形成する工程と、前記合金の結合層とセラミツク
被覆層の境界にAlを主成分とする酸化物層を形成する
工程とを含むセラミツク被覆耐熱部材の製造方法。 7、特許請求の範囲第5項において、前記合金の結合層
を形成する工程は、酸素分圧10^−^3気圧以下の雰
囲気中でプラズマ溶射にて形成することを特徴とするセ
ラミツク被覆耐熱部材の製造方法。 8、特許請求の範囲第5項において、前記酸化物層を形
成する工程は、合金の被覆層上にセラミツク結合層を形
成した後、600℃〜1200℃の温度範囲で1時間〜
200時間、大気中で加熱処理する工程を含むことを特
徴とするセラミツク被覆耐熱部材の製造方法。
[Claims] 1. A bonding layer of an alloy having superior high-temperature oxidation resistance and high-temperature corrosion resistance than the base material is formed on a base material containing at least one of Ni, Co, and Fe as a main component, A heat-resistant member comprising a ceramic coating layer formed on the bonding layer, characterized in that an oxide layer containing Al as a main component is formed at the boundary between the alloy bonding layer and the ceramic coating layer. . 2. In claim 1, the material constituting the ceramic coating layer contains ZrO_2 as a main component and Ca
A ceramic-coated heat-resistant member characterized by containing any one of O, MgO, and Y_2O_3 or a combination thereof. 3. In claim 1, the material constituting the alloy bonding layer contains Co or Ni or a combination thereof, Cr and Al, and further contains H.
1. A ceramic-coated heat-resistant member characterized in that it contains any one of f, Ta, Y, Si, and Zr or a combination thereof. 4. A ceramic-coated heat-resistant member according to claim 1, wherein the oxide layer has a thickness of 0.1 μm to 20 μm. 5. Claim 4, characterized in that the alloy bonding layer has a thickness of 0.03 mm to 0.5 mm, and the ceramic coating layer has a thickness of 0.05 mm to 0.8 mm. Ceramic coated heat resistant parts. 6. The surface of the base material mainly composed of at least one of Ni, Co, and Fe contains Cr and Al in one of Ni and Co or a combination thereof, and has higher temperature oxidation resistance than the base material. a step of forming a bonding layer of an alloy with excellent properties and high temperature corrosion resistance; a step of forming a coating layer made of ceramic on the surface of the bonding layer; forming a ceramic-coated heat-resistant member. 7. In claim 5, the step of forming the bonding layer of the alloy is performed by plasma spraying in an atmosphere with an oxygen partial pressure of 10^-^3 atm or less. Method of manufacturing parts. 8. In claim 5, the step of forming the oxide layer is performed at a temperature range of 600°C to 1200°C for 1 hour to 1 hour after forming the ceramic bonding layer on the alloy coating layer.
A method for producing a ceramic-coated heat-resistant member, comprising the step of heat treatment in the atmosphere for 200 hours.
JP18794184A 1984-09-10 1984-09-10 Ceramic-coated fire resistant member and its production Granted JPS61174385A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18794184A JPS61174385A (en) 1984-09-10 1984-09-10 Ceramic-coated fire resistant member and its production
EP86103159A EP0236520A1 (en) 1984-09-10 1986-03-10 Ceramic-coated, heat-resisting member and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18794184A JPS61174385A (en) 1984-09-10 1984-09-10 Ceramic-coated fire resistant member and its production

Publications (2)

Publication Number Publication Date
JPS61174385A true JPS61174385A (en) 1986-08-06
JPH0563555B2 JPH0563555B2 (en) 1993-09-10

Family

ID=16214852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18794184A Granted JPS61174385A (en) 1984-09-10 1984-09-10 Ceramic-coated fire resistant member and its production

Country Status (2)

Country Link
EP (1) EP0236520A1 (en)
JP (1) JPS61174385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126285A (en) * 1987-11-10 1989-05-18 Ngk Insulators Ltd Zirconia coated ceramic tool
US5964091A (en) * 1995-07-11 1999-10-12 Hitachi, Ltd. Gas turbine combustor and gas turbine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3736661C1 (en) * 1987-10-29 1988-07-21 Mtu Muenchen Gmbh Process for the production of layers
AU3323193A (en) * 1991-12-24 1993-07-28 Detroit Diesel Corporation Thermal barrier coating and method of depositing the same on combustion chamber component surfaces
CA2091472A1 (en) * 1992-04-17 1993-10-18 William R. Young Whisker-anchored thermal barrier coating
DE4214515C1 (en) * 1992-05-01 1994-01-27 Ptg Plasma Oberflaechentech Method and device for coating a metallic body of a household or kitchen appliance and use of the atmospheric oxidation of a surface of a metallic body
EP0780484B1 (en) * 1995-12-22 2001-09-26 General Electric Company Thermal barrier coated articles and method for coating
EP1029114B1 (en) * 1997-11-03 2001-12-19 Siemens Aktiengesellschaft Product designed to be subjected to the effects of hot gas and method for producing a coating for this product
US6180262B1 (en) * 1997-12-19 2001-01-30 United Technologies Corporation Thermal coating composition
CN109855939A (en) * 2019-04-03 2019-06-07 黑龙江科技大学 A kind of thermal insulation layer construction simulation equivalent test specimen of debonding defect interface resistance and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333931A (en) * 1976-09-09 1978-03-30 Union Carbide Corp Doubleecoating for protection from heat and corrosion
JPS57500292A (en) * 1980-01-07 1982-02-18
JPS57500291A (en) * 1980-01-07 1982-02-18
JPS5895678A (en) * 1981-12-01 1983-06-07 工業技術院長 Heat resistant ceramic coating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2335190A (en) * 1942-07-29 1943-11-23 Henry D Minich Stretched laminated product and process for making it
IL75304A (en) * 1984-06-08 1989-03-31 United Technologies Corp Coated superalloy articles and method of strengthening same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333931A (en) * 1976-09-09 1978-03-30 Union Carbide Corp Doubleecoating for protection from heat and corrosion
JPS57500292A (en) * 1980-01-07 1982-02-18
JPS57500291A (en) * 1980-01-07 1982-02-18
JPS5895678A (en) * 1981-12-01 1983-06-07 工業技術院長 Heat resistant ceramic coating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126285A (en) * 1987-11-10 1989-05-18 Ngk Insulators Ltd Zirconia coated ceramic tool
JPH0524878B2 (en) * 1987-11-10 1993-04-09 Nippon Gaishi Kk
US5964091A (en) * 1995-07-11 1999-10-12 Hitachi, Ltd. Gas turbine combustor and gas turbine

Also Published As

Publication number Publication date
JPH0563555B2 (en) 1993-09-10
EP0236520A1 (en) 1987-09-16

Similar Documents

Publication Publication Date Title
EP1640477B2 (en) High temperature component with thermal barrier coating and gas turbine using the same
US4916022A (en) Titania doped ceramic thermal barrier coatings
JP4166977B2 (en) High temperature corrosion resistant alloy material, thermal barrier coating material, turbine member, and gas turbine
US4861618A (en) Thermal barrier coating system
US4880614A (en) Ceramic thermal barrier coating with alumina interlayer
KR840001683B1 (en) Columnar grain ceramic themal barrier coatings
KR100688739B1 (en) Ceramic superalloy articles
US7998601B2 (en) Sandwich thermal insulation layer system and method for production
US5015502A (en) Ceramic thermal barrier coating with alumina interlayer
CA1306146C (en) Refractory metal composite coated article
JP2002522646A (en) Multi-layer thermal insulation coating system
JPH0251978B2 (en)
JP2002180270A (en) Method for thermal insulation of metallic base material
KR20030011690A (en) Thermal barrier coating
EP0266299B1 (en) Thermal barrier coating system
US6168875B1 (en) Coatings for turbine components
JPS61174385A (en) Ceramic-coated fire resistant member and its production
GB2159838A (en) Surface strengthening of overlay coatings
JP2019507828A (en) Adhesion promoting layer for bonding a high temperature protective layer on a substrate and method for producing the same
JPS62210329A (en) Ceramic coated heat-resistant material and manufacture thereof
JPS62211387A (en) Production of ceramic coated heat resistant member
JPS62211390A (en) Ceramic coated heat resistant member and its production
RU2065505C1 (en) Turbine blade and method for its manufacture
Vencl et al. Thermal cycling behaviour of plasma sprayed NiCr-Al-Co-Y2O3 bond coat in thermal barrier coating system
JPS62211389A (en) Ceramic coated turbo charger and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term