JP2804288B2 - High temperature operating element - Google Patents

High temperature operating element

Info

Publication number
JP2804288B2
JP2804288B2 JP7262289A JP7262289A JP2804288B2 JP 2804288 B2 JP2804288 B2 JP 2804288B2 JP 7262289 A JP7262289 A JP 7262289A JP 7262289 A JP7262289 A JP 7262289A JP 2804288 B2 JP2804288 B2 JP 2804288B2
Authority
JP
Japan
Prior art keywords
film
temperature operating
operating element
resistor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7262289A
Other languages
Japanese (ja)
Other versions
JPH02250231A (en
Inventor
訓子 森田
進 星之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7262289A priority Critical patent/JP2804288B2/en
Priority to EP90302938A priority patent/EP0389228B1/en
Priority to DE69016235T priority patent/DE69016235T2/en
Priority to US07/495,127 priority patent/US5118983A/en
Publication of JPH02250231A publication Critical patent/JPH02250231A/en
Application granted granted Critical
Publication of JP2804288B2 publication Critical patent/JP2804288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はヒータによって1000℃程度の高温に加熱さ
れて動作する高温動作素子、例えば熱電子放出を利用し
た陰極線管、熱陰極X線管や電子顕微鏡、ブラウン管用
の電子銃等の高温動作素子の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-temperature operating element that is operated by being heated to a high temperature of about 1000 ° C. by a heater, for example, a cathode ray tube using hot electron emission, a hot cathode X-ray tube, The present invention relates to the structure of a high-temperature operating element such as an electron microscope and an electron gun for a cathode ray tube.

[従来の技術] 従来、高温動作素子は例えば、特開昭55−24646号公
報に記載されているように、スクリーン印刷等のいわゆ
る厚膜回路形成技術を用いて製造されていた。第3図は
このようにして製造された従来の高温動作素子を示す断
面構成図である。まず、セラミックス基板(10)を構成
する原材料を用意し、ロール間を通す押し出し法、ある
いはキャスティング法の印刷技術によってシート上に所
定のパターン形状の発熱体層(11)を形成する。この発
熱体層(11)を形成した基板(10)上に絶縁体(12)を
形成し、さらに、この絶縁体(12)上に、同様な印刷手
法によって、カソード材層(13)、カソードリード層
(14)、ベースメタル層(15)を形成し、高温動作素子
を形成する。発熱体層(11)はヒータ材に焼成助剤を添
加したペーストを、動作素子は同様に、所望の材料に焼
成助剤を添加したペーストを基板(10)上にスクリーン
印刷して形成される。スクリーン印刷後、高温(1000〜
2000℃)で焼成処理され、高温動作素子が形成される。
[Prior Art] Conventionally, a high-temperature operating element has been manufactured by using a so-called thick film circuit forming technique such as screen printing, as described in Japanese Patent Application Laid-Open No. 55-24646. FIG. 3 is a sectional view showing a conventional high-temperature operating device manufactured in this manner. First, a raw material constituting a ceramic substrate (10) is prepared, and a heating element layer (11) having a predetermined pattern is formed on a sheet by a printing technique such as an extrusion method passing between rolls or a casting method. An insulator (12) is formed on the substrate (10) on which the heating element layer (11) is formed, and a cathode material layer (13) and a cathode are formed on the insulator (12) by a similar printing method. A lead layer (14) and a base metal layer (15) are formed to form a high-temperature operating element. The heating element layer (11) is formed by screen-printing a paste obtained by adding a firing aid to a heater material, and the operating element is similarly formed by screen-printing a paste obtained by adding a firing aid to a desired material on a substrate (10). . After screen printing, high temperature (1000 ~
(2000 ° C.) to form a high-temperature operating element.

この方法では、製造時に高温処理過程が入るので、ヒ
ータをこの処理温度以下で使用する場合、抵抗の経時変
化が小さい等のヒータとしての高温長期安定性が得られ
る。しかし、スクリーン印刷によって得られるパターン
精度は低く、しかも発熱体層(11)の厚さ制御(薄型
化)が困難なため、消費電力が大きく、しかも複数のヒ
ータ間では抵抗のばらつきが大きかった。そのため、精
度良くパターンの形成ができる手法としてPVDやCVDによ
る成膜法の開発が進められていた。
In this method, since a high-temperature processing step is performed at the time of manufacturing, when the heater is used at a temperature lower than this processing temperature, high-temperature long-term stability as a heater such as a small change in resistance over time can be obtained. However, the pattern accuracy obtained by screen printing is low, and the thickness control (thinning) of the heating element layer (11) is difficult, so that the power consumption is large and the resistance variation among a plurality of heaters is large. Therefore, the development of a film forming method by PVD or CVD has been promoted as a method capable of forming a pattern with high accuracy.

第4図に薄膜形成法による従来の高温動作素子の製造
方法を示す。まず、平滑なセラミックス基板(1)上に
ヒータ用の抵抗体(発熱体)膜(2)を、そして反対側
に高温動作素子膜(4)を一様に形成し、次にエッチン
グにより所定のヒータパターン、及び素子パターンを形
成し、これにヒータ側にはリード線(5)を接合すると
いう手法で高温動作素子を実現していた。
FIG. 4 shows a conventional method for manufacturing a high-temperature operating device by a thin film forming method. First, a resistor (heating element) film (2) for a heater is uniformly formed on a smooth ceramic substrate (1), and a high-temperature operating element film (4) is uniformly formed on the opposite side. A high-temperature operating element has been realized by forming a heater pattern and an element pattern, and bonding a lead wire (5) to the heater side.

[発明が解決しようとする課題] 以上のような成膜法による従来の高温動作素子は、リ
ード線(5)に電圧を印加し、ヒータとして使用してい
る間に抵抗の変化が生じる。これは主として抵抗体(発
熱体)膜(2)が薄膜であることに起因する。第5図に
抵抗値の経時変化を示す。初期に抵抗が低下するのは、
薄膜の再結晶化が進み、膜中の結晶粒が粗大化するため
である。例えば抵抗体(発熱体)膜(2)がW(タング
ステン)であり、これを1000℃で使用すると、1000℃は
Wの再結晶温度に相当するため、再結晶化が進む。次に
時間経過に従って抵抗が増加するのは使用中の雰囲気に
より膜中に不純物が混入する、あるいは酸化することに
起因する。そのためヒータとしては不安定で、しかも長
期信頼性に欠けるものであった。しかも、使用中に膜の
内部応力により基板と膜が剥離し、ヒータ、素子ともに
性能が不十分なものとなる問題点があった。
[Problem to be Solved by the Invention] In the conventional high-temperature operating element using the above-described film forming method, a voltage is applied to the lead wire (5), and the resistance changes while the element is used as a heater. This is mainly due to the fact that the resistor (heating element) film (2) is a thin film. FIG. 5 shows the change over time in the resistance value. The initial drop in resistance is
This is because recrystallization of the thin film proceeds and crystal grains in the film become coarse. For example, when the resistor (heating element) film (2) is W (tungsten) and is used at 1000 ° C., recrystallization proceeds because 1000 ° C. corresponds to the recrystallization temperature of W. Next, the reason why the resistance increases with time is that impurities are mixed into the film or oxidized depending on the atmosphere during use. Therefore, the heater is unstable and lacks long-term reliability. In addition, there has been a problem that the film is separated from the substrate due to the internal stress of the film during use, and the performance of both the heater and the element becomes insufficient.

このように、高温動作素子は厚膜回路形成技術で両面
に膜密度の低いポーラス(多孔質)な膜を設けるか、薄
膜形成法により付着力の小さな、膜密度の高い緻密な膜
を設けるか、の二者択一の方法で形成され、ヒータ、素
子ともに性能が十分発揮されていなかった。
As described above, for a high-temperature operating element, a porous film having a low film density is provided on both sides by a thick film circuit forming technique, or a dense film having a small adhesive force and a high film density is provided by a thin film forming method. , And both the heater and the element did not exhibit sufficient performance.

この発明は、上記のような従来の高温動作素子の問題
点を解決するためになされたもので、長期信頼性の高い
高温動作素子を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the conventional high-temperature operating device, and has as its object to provide a high-temperature operating device with high long-term reliability.

[課題を解決するための手段] この発明に係わる高温動作素子は、絶縁性部材の一面
に所定形状に、膜密度の低い多孔質の高温動作素子膜を
形成し、一方、上記絶縁性部材の他面であって研磨され
た面に所定形状に、上記高温動作素子膜より膜密度の高
い抵抗体膜を形成して、上記抵抗体膜にリード線を接合
し、さらに上記抵抗体膜を覆って、上記絶縁性部材上に
絶縁性保護膜を形成したものである。
[Means for Solving the Problems] A high-temperature operating element according to the present invention is formed by forming a porous high-temperature operating element film having a low film density in a predetermined shape on one surface of an insulating member. A resistor film having a higher film density than the high-temperature operating element film is formed in a predetermined shape on the other surface and the polished surface, a lead wire is joined to the resistor film, and the resistor film is further covered. Further, an insulating protective film is formed on the insulating member.

[作用] この発明における高温動作素子における抵抗体膜は研
磨された面に薄膜形成法により形成された緻密な膜であ
るので、精度良くパターンの形成ができ、また、抵抗体
膜に融着した絶縁性保護膜は使用雰囲気による抵抗体膜
の酸化を防止し、使用中の抵抗の変化を押さえるように
作用する。同時に使用時に基板と膜が剥離しないように
押さえつけるようにも作用する。一方、素子側はポーラ
スなので、その目的に応じて素子上に保護層、電子放出
助剤塗布層、絶縁層等を設けやすいようになじみやすく
なっている。
[Operation] Since the resistor film in the high-temperature operating element according to the present invention is a dense film formed on a polished surface by a thin film forming method, a pattern can be formed with high accuracy, and the resistor film is fused to the resistor film. The insulating protective film functions to prevent oxidation of the resistor film due to the use atmosphere and to suppress a change in resistance during use. At the same time, it acts to hold down the substrate and the film so as not to peel off during use. On the other hand, since the element side is porous, it is easy to fit in such that a protective layer, an electron emission aid coating layer, an insulating layer and the like are easily provided on the element according to the purpose.

[実施例] 以下、この発明の一実施例について図に基づいて説明
する。第1図はこの発明の一実施例による高温動作素子
を示す断面構成図である。図において、(1)はセラミ
ックス基板(絶縁基板)、(2)はヒータ用の膜密度の
高い緻密な抵抗体膜、(3)はガラス質の保護コーティ
ング層(絶縁性保護膜)、(4)は高温動作素子膜用の
膜密度の低いポーラスな膜、(5)はリード線である。
それぞれの材料に対しては、例えば、次のような要求を
満たすことが望ましい。基板(1)に対しては、熱伝導
性が良く、熱膨張率が抵抗体膜(2)のそれに近いこ
と、良絶縁体であること、高温で絶縁破壊しないこと、
平滑なこと。そのため、入手性から考えて、AlN,Al2O3
等が考えられる。抵抗体膜(2)に対しては、高温域で
の蒸気圧が低いこと、高温域での電気特性が安定なこ
と。そのため、Mo,W,Pt,Ta,TiN,TiC等が考えられる。保
護コーティング層(3)に対しては、高温での拡散が小
さいこと、使用温度以上の軟化点、あるいは融点である
こと。そのため、SiO2,Al2O3等の高軟化点、高融点で安
定なガラス質が考えられる。例えば、SiO2であれば、軟
化点1710℃(水晶)、融点1470℃(結晶)、Al2O3であ
れば融点2030℃である。また、CaO,V2O3等のように焼成
時に外部へ飛散するものを含んだものでもよい。リード
線(5)に対しては、抵抗体膜(2)の特性と同等なこ
と、抵抗体膜(2)の拡散係数と同等なこと、抵抗体膜
(2)と同材料が最も望ましい。素子用の膜(4)とし
ては、例えばその性能を向上させるために設ける、保護
層、電子放出助剤塗布層、絶縁層等とのなじみの良いポ
ーラスな膜であること。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a high-temperature operating device according to an embodiment of the present invention. In the figure, (1) is a ceramic substrate (insulating substrate), (2) is a dense resistor film having a high film density for a heater, (3) is a vitreous protective coating layer (insulating protective film), (4) ) Is a porous film having a low film density for a high-temperature operation element film, and (5) is a lead wire.
For each material, for example, it is desirable to satisfy the following requirements. The substrate (1) has good thermal conductivity and a coefficient of thermal expansion close to that of the resistor film (2), is a good insulator, does not break down at high temperature,
Be smooth. Therefore, considering availability, AlN, Al 2 O 3
And so on. For the resistor film (2), the vapor pressure at a high temperature range is low, and the electrical characteristics at a high temperature range are stable. Therefore, Mo, W, Pt, Ta, TiN, TiC and the like are considered. For the protective coating layer (3), diffusion at high temperatures should be small, and the softening point or melting point should be higher than the operating temperature. Therefore, a stable soft glass having a high softening point and a high melting point such as SiO 2 and Al 2 O 3 can be considered. For example, in the case of SiO 2 , the softening point is 1710 ° C. (crystal) and the melting point is 1470 ° C. (crystal). In the case of Al 2 O 3 , the melting point is 2030 ° C. Further, a material that scatters outside during firing, such as CaO or V 2 O 3 , may be included. For the lead wire (5), it is most desirable to have the same characteristics as the resistor film (2), the same diffusion coefficient as the resistor film (2), and the same material as the resistor film (2). The element film (4) should be a porous film that is provided to improve its performance and is well compatible with a protective layer, an electron emission aid coating layer, an insulating layer, and the like.

上記のような材料で、第1図に示すような構造であれ
ば、リード線(5)に電圧を印加してヒータ、即ち抵抗
体膜(2)を加熱し、素子膜(4)を裏から温めて動作
させる高温動作素子の高性能化に適している。例えば素
子膜(4)から高電流密度を得ようとするものならば、
素子膜(4)上に電子放出助剤を塗布しておけば、長時
間の使用に対しても抵抗の変化は小さく、ヒータとして
安定で、またガラス質の保護膜で覆われているので剥離
することもなく、さらに素子膜がポーラスなので電子放
出助剤がよくなじみ高電流密度が得られる。
With the above-mentioned material and the structure as shown in FIG. 1, a voltage is applied to the lead wire (5) to heat the heater, that is, the resistor film (2), and to back the element film (4). It is suitable for improving the performance of a high-temperature operating element that is operated after being warmed up. For example, if a high current density is to be obtained from the element film (4),
If an electron emission aid is applied on the element film (4), the resistance change is small even when used for a long time, it is stable as a heater, and is peeled off because it is covered with a glassy protective film. Further, since the element film is porous, the electron emission aid is well adapted and a high current density can be obtained.

ここでは、上記条件を鑑み、基板上にWが塗布され、
これらを同時に焼成したW同時焼成セラミックス基板と
してW/AlNを用い、抵抗体膜(2)としてWをスパッタ
法で形成し、ガラス質の保護コーティング層(3)とし
てSiO2を主成分とするガラス質の“うわぐすり”を塗布
した、高温動作素子の製造方法について述べる。なお、
参考写真1に実施例に用いたポーラスなW焼成基板の表
面写真を、参考写真2に緻密なWスパッタ膜の表面写真
(参考写真1と同倍)を示す。
Here, in consideration of the above conditions, W is applied on the substrate,
W / AlN is used as a W co-fired ceramic substrate obtained by simultaneously firing these, W is formed as a resistor film (2) by a sputtering method, and glass containing SiO 2 as a main component is used as a vitreous protective coating layer (3). A method for manufacturing a high-temperature operating element coated with high quality "glaze" will be described. In addition,
Reference Photo 1 shows a surface photograph of the porous W fired substrate used in the example, and Reference Photo 2 shows a surface photograph of the dense W sputtered film (same magnification as Reference Photo 1).

W同時焼成セラミックス基板(W/AlN基板)のW側を
所定形状のパターンにエッチングした後、W/AlN基板のA
lN側を機械的に研磨し鏡面仕上げする。この基板(1)
上に所望のヒータパターンのマスクを設定し、スパッタ
法により所望の厚さ(数μm〜10μm)のW抵抗体膜
(2)を形成する。次にリード線(5)を所望の場所に
抵抗溶接等の手法で接合する。次にヒータ用抵抗体膜
(2)を覆うようにガラス質の“うわぐすり”をスプレ
イし、乾燥させ、コーティング層(3)を形成する。次
に真空中あるいは水素またはアルゴン中で5〜10分間焼
成し、W抵抗体膜に融着させる。この時の処理温度は
“うわぐすり”の組成によって異なるが、800〜1400℃
程度である。ここで“うわぐすり”というのは酸化物の
いわゆるガラス質を含んだ溶液のことを示す。例えば、
表1にA,B,C3種類のうわぐすりの組成を示すが、これは
グラスタイプ・セラミックスコーティング材として市販
されているものの1例である。表1中フリットと呼ばれ
るものは、表2にその組成を示すが、これが酸化物のい
わゆるガラス質である。このガラス質はヒータとしての
使用中抵抗体膜(2)に僅かに生じた金属酸化物を溶解
し、金属と金属の間隙を埋めてシールコートとして働く
ので、抵抗体膜(2)との密着性も優れている。また、
ガラス質であるので電気絶縁性が高く、高温用ヒータと
しての機能に支障をきたすことはない。
After etching the W side of the W co-fired ceramic substrate (W / AlN substrate) into a pattern of a predetermined shape, the A side of the W / AlN substrate is etched.
lN side is mechanically polished and mirror-finished. This substrate (1)
A mask of a desired heater pattern is set thereon, and a W resistor film (2) having a desired thickness (several μm to 10 μm) is formed by a sputtering method. Next, the lead wire (5) is joined to a desired place by a method such as resistance welding. Next, a vitreous "glaze" is sprayed so as to cover the heater resistor film (2) and dried to form a coating layer (3). Next, it is baked for 5 to 10 minutes in a vacuum or in hydrogen or argon, and is fused to the W resistor film. The processing temperature at this time depends on the composition of the "glaze", but 800-1400 ℃
It is about. Here, "glaze" refers to a so-called vitreous solution of an oxide. For example,
Table 1 shows the compositions of three types of glazes, A, B, and C. This is one example of a commercially available glass type ceramic coating material. Table 2 shows the composition of what is called a frit in Table 1, which is a so-called glassy oxide. This vitreous material dissolves the metal oxide slightly generated in the resistor film (2) during use as a heater and fills the gap between the metals to act as a seal coat, so that the glass material adheres to the resistor film (2). The nature is also excellent. Also,
Since it is glassy, it has high electrical insulation and does not hinder its function as a high-temperature heater.

またこの次のプロセスで素子膜表面に保護層、電子放
出助剤塗布層、絶縁層等を設ける場合、W粒子を原料と
した焼結基板であるため、ポーラスで上記のような層が
なじみやすい。
When a protective layer, an electron emission aid coating layer, an insulating layer, and the like are provided on the surface of the element film in the next process, since the sintered substrate is made of W particles, the above-described layer is easily absorbed by the porous material. .

高温での使用中に熱膨張係数の違いにより基板
(1)、抵抗体膜(2)、保護膜(3)の間で歪みが生
じる可能性があるが、前述したようにガラス質は間隙を
埋めるといったような柔軟な挙動を示し、歪みを緩和す
るように作用するので、全面を被覆しても、歪みに関す
る問題はない。
During use at a high temperature, distortion may occur between the substrate (1), the resistor film (2), and the protective film (3) due to a difference in thermal expansion coefficient. It exhibits a flexible behavior such as filling and acts to alleviate distortion, so that even if the entire surface is covered, there is no problem with distortion.

さらに、リード線(5)も同様なガラス質で被覆処理
されたものを使用すると一層効果が上がる。
Further, when the lead wire (5) is coated with the same vitreous material, the effect is further enhanced.

また、第2図に示すようにセラミックス基板の大面積
に渡って処理することも可能である。
In addition, as shown in FIG. 2, processing can be performed over a large area of the ceramic substrate.

なお、上記実施例では“うわぐすり”を塗布する手法
について説明したが、ガラス質のターゲットを用意して
スパッタ法で成膜する等、PVD,CVDの手法でガラス質の
保護コーティング層(3)を形成することができること
は言うまでもない。
In the above embodiment, the method of applying “glaze” was described. However, a vitreous target is prepared and a vitreous protective coating layer (3 ) Can be formed.

ガラス質の組成に対しては、表2に示したような複合
組成でなくてもSiO2,Al2O3等のような単一組成であって
も良い。例えば基板(1)がAl2O3であれば、Al2O3の保
護層(3)をコーティングすると不純物や拡散の影響を
考慮しなくてもよくなる等のメリットもある。
With respect to the vitreous composition, a single composition such as SiO 2 or Al 2 O 3 may be used instead of the composite composition shown in Table 2. For example, if the substrate (1) is Al 2 O 3 , coating the Al 2 O 3 protective layer (3) also has the advantage that it is not necessary to consider the influence of impurities and diffusion.

また、上記実施例では同時焼成基板W/AlNを用い、W
のエッチングにより所定形状の高温動作素子膜を得た例
について説明したが、素子用パターンをスクリーン印刷
したW/AlN基板を用いてもよい。また、ポーラスな表面
が形成される手法であれば他の方法、例えば溶射やクラ
ディング等の方法で形成された膜を所定形状にエッチン
グして高温動作素子膜を形成するようにしてもよい。
In the above embodiment, a co-fired substrate W / AlN was used, and W
Although an example in which a high-temperature operating element film having a predetermined shape is obtained by the above-described etching has been described, a W / AlN substrate on which an element pattern is screen-printed may be used. Alternatively, a high-temperature operating element film may be formed by etching a film formed by another method, for example, a method such as thermal spraying or cladding into a predetermined shape, as long as a porous surface is formed.

また、上記実施例ではW抵抗体膜(2)をスパッタ法
により形成する方法について説明したが、電子ビーム蒸
着、レーザPVD法、イオンプレーティング等のいわゆるP
VD法やWF6,W(CO)6,WClガス等を用いたCVD法等の方
法で形成することができることは言うまでもない。ま
た、W以外の、例えばMo等の膜を形成する場合も同様で
ある。
In the above embodiment, the method of forming the W resistor film (2) by the sputtering method has been described. However, the so-called P method such as electron beam evaporation, laser PVD, ion plating, etc.
Needless to say, it can be formed by a method such as a VD method or a CVD method using a WF 6 , W (CO) 6 , WCl 6 gas or the like. The same applies to the case where a film other than W, such as Mo, is formed.

また、上記実施例での絶縁基板は水やアルカリと反応
するAlNであったため、ヒータパターン形成に湿式プロ
セスは避けたが、Al2O3等の基板であれば湿式プロセス
で行ってもよい。
In addition, since the insulating substrate in the above embodiment was AlN which reacts with water or alkali, a wet process was not used for forming the heater pattern. However, a wet process may be used if the substrate is made of Al 2 O 3 or the like.

[発明の効果] 以上のように、この発明によれば絶縁性部材の一面に
所定形状に、膜密度の低い多孔質の高温動作素子膜を形
成し、一方、上記絶縁性部材の他面であって研磨された
面に所定形状に、上記高温動作素子膜より膜密度の高い
抵抗体膜を形成して、上記抵抗体膜にリード線を接合
し、さらに上記抵抗体膜を覆って、上記絶縁性部材上に
絶縁性保護膜を形成して、高温動作素子を構成したの
で、膜と基板との剥離の問題も解決され、長期信頼性の
高い高温ヒータの搭載した高温作動素子を提供できると
いう効果を有する。また抵抗体膜は研磨された面上に緻
密な膜が形成されるため、高精度に所望のパターン形成
が可能であり、一方素子膜は膜密度の低いポーラスな膜
であるので、素子の性能に応じて素子上に設ける層との
なじみがよく、素子の性能向上が容易に行えるという効
果を有する。
[Effects of the Invention] As described above, according to the present invention, a porous high-temperature operating element film having a low film density is formed in a predetermined shape on one surface of an insulating member. In a predetermined shape on the polished surface, a resistor film having a higher film density than the high-temperature operating element film is formed, a lead wire is bonded to the resistor film, and the resistor film is further covered. Since the high-temperature operating element is formed by forming the insulating protective film on the insulating member, the problem of separation between the film and the substrate is solved, and a high-temperature operating element with a long-term reliable high-temperature heater can be provided. It has the effect of. In addition, since the resistor film is formed on a polished surface with a dense film, a desired pattern can be formed with high accuracy. On the other hand, since the element film is a porous film having a low film density, the performance of the element is reduced. Therefore, there is an effect that conformity with a layer provided on the element is good and the performance of the element can be easily improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による高温作動素子を示す
断面構成図、第2図はこの発明の他の実施例による高温
作動素子を示す断面構成図、第3図は厚膜回路技術を利
用して形成した従来の高温動作素子を示す断面構成図、
第4図は薄膜形成法による従来の高温作動素子の製造方
法を示す説明図、及び第5図は従来の高温動作素子にお
ける抵抗値の経時変化を示す曲線図である。 図において、(1)は絶縁基板(セラミックス基板)、
(2)は抵抗体膜、(3)は保護コーティング層、
(4)は素子膜、(5)はリード線である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view showing a high-temperature operating device according to one embodiment of the present invention, FIG. 2 is a sectional view showing a high-temperature operating device according to another embodiment of the present invention, and FIG. Cross-sectional configuration diagram showing a conventional high-temperature operating element formed by utilizing
FIG. 4 is an explanatory view showing a conventional method for manufacturing a high-temperature operating element by a thin film forming method, and FIG. 5 is a curve diagram showing a change over time in a resistance value of the conventional high-temperature operating element. In the figure, (1) is an insulating substrate (ceramic substrate),
(2) is a resistor film, (3) is a protective coating layer,
(4) is an element film, and (5) is a lead wire. In the drawings, the same reference numerals indicate the same or corresponding parts.

フロントページの続き (51)Int.Cl.6 識別記号 FI H05B 3/20 328 H05B 3/20 328 (58)調査した分野(Int.Cl.6,DB名) H01J 1/20 H01J 1/22 H01J 1/26 H01J 9/04 - 9/10 H05B 3/20 305 - 333Continuation of the front page (51) Int.Cl. 6 identification symbol FI H05B 3/20 328 H05B 3/20 328 (58) Field surveyed (Int.Cl. 6 , DB name) H01J 1/20 H01J 1/22 H01J 1/26 H01J 9/04-9/10 H05B 3/20 305-333

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性部材の一面に所定形状に形成され
た、膜密度の低い多孔質の高温動作素子膜、上記絶縁性
部材の他面であって研磨された面に所定形状に形成さ
れ、上記高温動作素子膜より膜密度の高い抵抗体膜、上
記抵抗体膜に接合されたリード線、及び上記抵抗体膜を
覆って、上記絶縁性部材上に形成された絶縁性保護膜を
備えた高温動作素子。
1. A porous high-temperature operating element film having a low film density formed on one surface of an insulating member and a predetermined shape on a polished surface of the other surface of the insulating member. A resistor film having a higher film density than the high-temperature operating element film, a lead wire bonded to the resistor film, and an insulating protective film formed on the insulating member to cover the resistor film. High temperature operating element.
JP7262289A 1989-03-24 1989-03-24 High temperature operating element Expired - Lifetime JP2804288B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7262289A JP2804288B2 (en) 1989-03-24 1989-03-24 High temperature operating element
EP90302938A EP0389228B1 (en) 1989-03-24 1990-03-19 High temperature operating element
DE69016235T DE69016235T2 (en) 1989-03-24 1990-03-19 High temperature component.
US07/495,127 US5118983A (en) 1989-03-24 1990-03-19 Thermionic electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7262289A JP2804288B2 (en) 1989-03-24 1989-03-24 High temperature operating element

Publications (2)

Publication Number Publication Date
JPH02250231A JPH02250231A (en) 1990-10-08
JP2804288B2 true JP2804288B2 (en) 1998-09-24

Family

ID=13494668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7262289A Expired - Lifetime JP2804288B2 (en) 1989-03-24 1989-03-24 High temperature operating element

Country Status (1)

Country Link
JP (1) JP2804288B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150318A (en) * 1978-04-17 1979-04-17 Gte Sylvania Incorporated Low mass, indirectly heated, fast warm-up heater-cathode assembly
JPS617696A (en) * 1984-06-21 1986-01-14 日立化成工業株式会社 Multilayer printed circuit board
JPH0415475Y2 (en) * 1985-02-26 1992-04-07

Also Published As

Publication number Publication date
JPH02250231A (en) 1990-10-08

Similar Documents

Publication Publication Date Title
JP3493343B2 (en) Platinum temperature sensor and method of manufacturing the same
EP0389228B1 (en) High temperature operating element
EP0408342B1 (en) Thin high temperature heater and method for manufacturing the same
US4758814A (en) Structure and method for wire lead attachment to a high temperature ceramic sensor
JP2804288B2 (en) High temperature operating element
KR20010030871A (en) Heating element and method for producing the same
JPH0870036A (en) Electrostatic chuck
JP2000143349A (en) Aluminum nitride-based sintered compact and electrostatic chuck using the same
JP2630983B2 (en) Electron-emitting device
JP2001077185A (en) Electrostatic chuck and its manufacture
JP3275427B2 (en) Method for manufacturing plasma display panel
JPH0343988A (en) Manufacture of thin-type high-temperature heater
JPH04279831A (en) Platinum temperature sensor
JPH02227984A (en) Manufacture of thin type high-temperature heater
JP2004342622A (en) Ceramic heater
JP2004505411A (en) Glass plate with electrodes made of conductive material
JP3095646B2 (en) Joint structure
JPH02239175A (en) Formation of thin film
JPH10199708A (en) Temperature sensor
JP2002286675A (en) Micro heater and its manufacturing method, and gas sensor
JPS63136485A (en) Ceramic heater
JP2001043960A (en) Silicon nitride ceramic heater
JP2504675B2 (en) Method for manufacturing ionic conductor device
JP2514591B2 (en) Limit current type oxygen sensor
JPH0343932A (en) Electron emitting apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070717

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11