KR100214840B1 - Method for forming polysilicon layer of semiconductor device - Google Patents

Method for forming polysilicon layer of semiconductor device Download PDF

Info

Publication number
KR100214840B1
KR100214840B1 KR1019950054384A KR19950054384A KR100214840B1 KR 100214840 B1 KR100214840 B1 KR 100214840B1 KR 1019950054384 A KR1019950054384 A KR 1019950054384A KR 19950054384 A KR19950054384 A KR 19950054384A KR 100214840 B1 KR100214840 B1 KR 100214840B1
Authority
KR
South Korea
Prior art keywords
polysilicon
grain size
semiconductor device
temperature
polysilicon film
Prior art date
Application number
KR1019950054384A
Other languages
Korean (ko)
Other versions
KR970051990A (en
Inventor
백정권
Original Assignee
김주용
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김주용, 현대전자산업주식회사 filed Critical 김주용
Priority to KR1019950054384A priority Critical patent/KR100214840B1/en
Publication of KR970051990A publication Critical patent/KR970051990A/en
Application granted granted Critical
Publication of KR100214840B1 publication Critical patent/KR100214840B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32055Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

1. 청구 범위에 기재된 발명이 속한 기술분야1. TECHNICAL FIELD OF THE INVENTION

고집적 반도체 소자 제조 방법.Highly integrated semiconductor device manufacturing method.

2. 발명이 해결하려고 하는 기술적 과제2. The technical problem to be solved by the invention

반도체 소자 제조 공정에 필수적으로 폴리실리콘막 형성 공정시, 종래에는 예를 들어 약 625℃ 부근의 온도에서 LPCVD 방식을 이용하여 0.3um 정도의 거의 균일한 그레인 사이즈를 갖는 폴리실리콘을 증착하는 공정을 이용해 왔는데, 이와 같이 약 625℃ 이상의 온도에서는 증착 속도가 비교적 빠르므로 파티클 발생 가능성이 높고, 또한 거의 균일한 그레인 사이즈를 가지므로 후속 공정인 옥시염화인(POC13) 도핑 공정시 하부 산화막과의 접촉면에서 인 이온이 포화상태로 되는 현상이 발생할 가능성이 많다는 등의 문제점이 있었음.In the process of forming a polysilicon film, which is essentially a semiconductor device manufacturing process, conventionally, a process of depositing polysilicon having a nearly uniform grain size of about 0.3 μm using an LPCVD method at a temperature around 625 ° C. Since the deposition rate is relatively fast at a temperature of about 625 ° C. or more, the particles are more likely to be generated and have a nearly uniform grain size. Therefore, the phosphorus oxychloride (POC1 3 ) doping process is performed at the contact surface with the lower oxide film. There were problems such as the possibility of occurrence of phosphorus ion becoming saturated.

3. 발명의 해결방법의 요지3. Summary of Solution to Invention

비교적 낮은 온도에서 비교적 느린 증착 속도로 비교적 작은 그레인 사이즈를 가진 폴리실리콘을 증착한 다음, 고온의 질소 가스 분위기에서 표면을 열처리 하므로써, 파티클 발생을 억제하고 저항 조절이 용이한 폴리실리콘막을 형성하는 방법을 제공하고자 함.By depositing polysilicon having a relatively small grain size at a relatively low deposition rate at a relatively low temperature, and then heat-treating the surface in a high temperature nitrogen gas atmosphere, it is possible to form a polysilicon film that suppresses particle generation and easily adjusts resistance. To provide.

4. 발명의 중요한 용도4. Important uses of the invention

고집적 반도체 소자, 특히 DRAM 제조에 이용됨.Used in manufacturing highly integrated semiconductor devices, especially DRAM.

Description

반도체 소자의 폴리실리콘막 형성 방법Polysilicon Film Formation Method of Semiconductor Device

제1a도 내지 1b도는 본 발명의 폴리실리콘막 형성 방법에 따른 제조 공정도.1a to 1b is a manufacturing process chart according to the polysilicon film forming method of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반도체 기판 2 : 산화막1 semiconductor substrate 2 oxide film

3 : 폴리실리콘막3: polysilicon film

본 발명은 일반적으로 반도체 소자 제조 방법에 관한 것으로서, 특히 파티클 발생을 억제하고 저항 조절이 용이한 폴리실리콘막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming a polysilicon film that suppresses particle generation and easily adjusts resistance.

반도체 소자 제조 공정에는 필수적으로 폴리실리콘막 형성 공정이 수반되게 되는데, 종래에는 예를 들어 약 625℃ 부근의 온도에서 저압 화학 기상 증착법(LPCVD)을 이용하여 약 0.3um 정도의 거의 균일한 그레인 사이즈를 갖는 폴리실리콘을 증착하는 공정을 이용해 왔는데, 이와 같이 약 625℃ 이상의 온도에서는 증착 속도가 비교적 빠르므로 파티클 발생 가능성이 높고, 또한 거의 균일한 그레인 사이즈를 가지므로 후속 공정인 옥시염화인(POCl3) 도핑 공정시 하부 산화막과의 접촉면에서 인 이온이 포화상태로 되는 현상이 발생할 가능성이 많다는 등의 문제점이 있었다.The semiconductor device manufacturing process is essentially accompanied by a polysilicon film forming process, which is conventionally, for example, by using a low pressure chemical vapor deposition (LPCVD) at a temperature of about 625 ℃ almost uniform grain size of about 0.3um Since the deposition process of polysilicon has been used, since the deposition rate is relatively fast at a temperature of about 625 ° C. or higher, there is a high possibility of particle generation, and since it has a nearly uniform grain size, phosphorus oxychloride (POCl 3 ), which is a subsequent process, is used. In the doping process, there was a problem in that a phenomenon in which phosphorus ions become saturated at the contact surface with the lower oxide film is more likely to occur.

따라서 전술한 문제점을 해결하기 위해 안출된 본 발명은 비교적 낮은 온도에서 비교적 느린 증착 속도로 비교적 작은 그레인 사이즈를 가진 폴리실리콘을 증착한 다음, 고온의 질소 가스 분위기에서 표면을 열처리 하므로써, 파티클 발생을 억제하고 저항 조절이 용이한 폴리실리콘막을 형성하는 방법을 제공하는 것을 목적으로 한다.Therefore, the present invention devised to solve the above problems is to deposit polysilicon having a relatively small grain size at a relatively slow deposition rate at a relatively low temperature, and then suppress particle generation by heat-treating the surface in a high temperature nitrogen gas atmosphere. And it is an object to provide a method of forming a polysilicon film easy to control the resistance.

본 발명에 따른 반도체 소자의 폴리실리콘막 형성 방법은, 반도체 기판상에 산화막이 형성된 구조상에 저압 화학 기상 증착법으로 소정의 온도에서 폴리실리콘을 증착하는 단계와, 상기 폴리실리콘 표면 부위에서의 그레인 사이즈와 상기 산화막과의 접촉부위에서의 그레인 사이즈가 다르게 형성되도록 소정의 온도에서 상기 폴리실리막을 열처리한 다음, 도핑을 실시하는 단계를 포함하는 것을 특징으로 한다.The polysilicon film forming method of a semiconductor device according to the present invention comprises the steps of depositing polysilicon at a predetermined temperature by a low pressure chemical vapor deposition method on a structure in which an oxide film is formed on a semiconductor substrate, and the grain size at the surface portion of the polysilicon And heat-treating the polysilicon film at a predetermined temperature such that the grain size at the contact portion with the oxide film is formed differently, and then doping is performed.

이제 본 발명의 한 실시예에 대하여 첨부도면을 참조하여 상세하게 설명되게 된다. 먼저 제1a도에 도시된 바와 같이, 반도체 기판(1)상에 얇은 산화막(2)을 형성하고, 그 위에 LPCVD 방식으로 약 590℃ 내지 약 610℃의 온도 범위에서 약 0.03um 내지 0.3um의 그레인 사이즈를 갖는 폴리실리콘막(3)을 증착한다. 이때, 기존의 약 625℃ 부근의 온도에서의 증착 속도 보다 낮은 반응 속도로 폴리실리콘막이 형성되므로 파티클 발생 가능성이 줄어들게 된다. 다음에는 제1b도에 도시된 바와 같이, 질소(N2) 분위기에서 약 900℃의 고온으로 폴리실리콘막(3)을 열처리 한다. 이때, 산화막(2) 표면과의 접촉 부위(3A)의 그레인 사이즈는 약 0.03um 내지 0.3um 크기로 거의 변화가 발생하지 않게 되지만, 폴리실리콘막(3)의 표면 부위(3B)의 그레인 사이즈는 약 0.3um 내지 1um 정도의 크기로 변하도록 제어할 수 있다. 다음에 POCl3도핑을 실시하게 되면, 도펀트의 확산 속도는 그레인 사이즈에 비례하므로 도핑 공정 동안 전술한 그레인 사이즈의 차이에 의해 초기에는 빠르게 도핑이 진행되고 점차 그레인 사이즈가 작아지므로 도핑속도가 늦어지게되므로 도핑 농도의 제어가 용이하게 되므로 산화막(2)과의 접촉면에서 도펀트가 포화상태가 되는 것을 방지할 수 있다.One embodiment of the present invention will now be described in detail with reference to the accompanying drawings. First, as shown in FIG. 1A, a thin oxide film 2 is formed on the semiconductor substrate 1, and thereon, grains of about 0.03 um to 0.3 um are formed thereon in a temperature range of about 590 deg. C to about 610 deg. A polysilicon film 3 having a size is deposited. At this time, since the polysilicon film is formed at a reaction rate lower than the deposition rate at a temperature of about 625 ° C., the possibility of particle generation is reduced. Next, as illustrated in FIG. 1B, the polysilicon film 3 is heat-treated at a high temperature of about 900 ° C. in a nitrogen (N 2 ) atmosphere. At this time, the grain size of the contact portion 3A with the surface of the oxide film 2 is about 0.03 um to 0.3 um, so that almost no change occurs, but the grain size of the surface portion 3B of the polysilicon film 3 is It can be controlled to change the size of about 0.3um to 1um. The next time the POCl 3 doping is carried out, the dopant diffusion rate is proportional to the grain size, and thus the doping rate is slowed down early due to the difference in grain size during the doping process. Since the doping concentration can be easily controlled, it is possible to prevent the dopant from becoming saturated at the contact surface with the oxide film 2.

고집적 반도체 소자 제조시, 전술한 바와 같은 본 발명에 따라 폴리실리콘막을 형성하므로써, 파티클 발생 가능성을 줄이고, 도핑 농도 조절에 의한 저항의 조절이 용이해지며, 하부층과의 접촉면에서의 도펀트의 포화를 방지할 수 있으므로 후속 공정인 식각 공정에서 과도 식각을 방지할 수 있다는 효과가 있다.When manufacturing a highly integrated semiconductor device, by forming the polysilicon film according to the present invention as described above, it is possible to reduce the possibility of particle generation, to easily control the resistance by adjusting the doping concentration, and to prevent the saturation of the dopant on the contact surface with the underlying layer Since it is possible to prevent the excessive etching in the subsequent etching process.

Claims (3)

반도체 소자의 폴리실리콘막을 형성하는 방법에 있어서, 반도체 기판상에 산화막이 형성된 구조상에 저압 화학기상 증착법으로 소정의 온도에서 폴리실리콘을 증착하는 단계와, 상기 폴리실리콘 표면 부위에서의 그레인 사이즈와 상기 산화막과의 접촉부위에서의 그레인 사이즈가 다르게 형성되도록 소정의 온도에서 상기 폴리실리막을 열처리한 다음, 도핑을 실시하는 단계를 포함해서 이루어진 반도체 소자의 폴리실리콘막 형성 방법.A method of forming a polysilicon film of a semiconductor device, the method comprising: depositing polysilicon at a predetermined temperature by a low pressure chemical vapor deposition method on a structure where an oxide film is formed on a semiconductor substrate, and having a grain size at the surface portion of the polysilicon and the oxide film And heat-treating the polysilicon film at a predetermined temperature such that the grain size at the contact portion with each other is differently formed, and then doping the polysilicon film. 제1항에 있어서, 상기 폴리실리콘을 증착하는 단계는 약 590℃ 내지 약 610℃의 온도 범위에서 실시되는 것을 특징으로 하는 반도체 소자의 폴리실리콘막 형성 방법.The method of claim 1, wherein depositing the polysilicon is performed at a temperature in a range of about 590 ° C. to about 610 ° C. 7. 제1항 또는 제2항에 있어서, 상기 폴리실리콘의 열처리 단계는 상기 산화막 표면과의 접촉 부위의 그레인 사이즈는 약 0.03um 내지 0.3um 크기로 되고, 상기 폴리실리콘막의 표면 부위의 그레인 사이즈는 약 0.3um내지 1um 정도의 크기로 되도록 질소(N2) 분위기에서 약 900℃의 온도로 실시되는 것을 특징으로 하는 반도체 소자의 폴리실리콘막 형성 방법.According to claim 1 or 2, wherein the heat treatment step of the polysilicon grain size of the contact portion with the surface of the oxide film is about 0.03um to 0.3um size, the grain size of the surface portion of the polysilicon film is about 0.3 A method of forming a polysilicon film of a semiconductor device, characterized in that carried out at a temperature of about 900 ℃ in a nitrogen (N 2 ) atmosphere so as to have a size of about um to about 1um.
KR1019950054384A 1995-12-22 1995-12-22 Method for forming polysilicon layer of semiconductor device KR100214840B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950054384A KR100214840B1 (en) 1995-12-22 1995-12-22 Method for forming polysilicon layer of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950054384A KR100214840B1 (en) 1995-12-22 1995-12-22 Method for forming polysilicon layer of semiconductor device

Publications (2)

Publication Number Publication Date
KR970051990A KR970051990A (en) 1997-07-29
KR100214840B1 true KR100214840B1 (en) 1999-08-02

Family

ID=19443012

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950054384A KR100214840B1 (en) 1995-12-22 1995-12-22 Method for forming polysilicon layer of semiconductor device

Country Status (1)

Country Link
KR (1) KR100214840B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100543655B1 (en) 2003-06-30 2006-01-20 주식회사 하이닉스반도체 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
KR970051990A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
US5366922A (en) Method for producing CMOS transistor
JPS6367730A (en) Method of doping trench formed in semiconductor substrate
JP2947828B2 (en) Method for manufacturing semiconductor device
US3887733A (en) Doped oxide reflow process
KR100214840B1 (en) Method for forming polysilicon layer of semiconductor device
GB2033660A (en) Manufacturing transistors having different characteristics
JPH03173420A (en) Implantation of impurity in semiconductor inner wall
JPS63175418A (en) Doped polycrystalline silicon layer for semiconductor device
US20230053417A1 (en) Film deposition methods in furnace tube, and semiconductor devices
KR100347556B1 (en) Method for manufacturing semiconductor device
US3505107A (en) Vapor deposition of germanium semiconductor material
JPH0697683B2 (en) Method for manufacturing semiconductor device
JP3180122B2 (en) Method of impurity doping
JPH0196923A (en) Epitaxial growth method
JP2558917B2 (en) Method for manufacturing semiconductor device
KR100377171B1 (en) A method for forming capacitor insemiconductor device using hemispherical grained silicon
KR100256246B1 (en) Method of forming gate electrode in semiconductor device
KR910006088B1 (en) Manufacturing method of semiconductor with high resistance film
KR100268124B1 (en) Method for manufacturing charge storage electrode of semiconductor device
JP2876414B2 (en) Manufacturing method of diffusion resistance element
JPS62137823A (en) Annealing method for compound semiconductor substrate
JPH04295099A (en) Method for impurity doping
JPH088205A (en) Manufacture of semiconductor element
JP2973011B2 (en) Method of forming semiconductor element isolation region
JPS62198124A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110429

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee