JPS5894703A - Method of producing transparent electrode and device for producing same - Google Patents
Method of producing transparent electrode and device for producing sameInfo
- Publication number
- JPS5894703A JPS5894703A JP19328981A JP19328981A JPS5894703A JP S5894703 A JPS5894703 A JP S5894703A JP 19328981 A JP19328981 A JP 19328981A JP 19328981 A JP19328981 A JP 19328981A JP S5894703 A JPS5894703 A JP S5894703A
- Authority
- JP
- Japan
- Prior art keywords
- transparent electrode
- gas
- sputtering
- flow rate
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Surface Treatment Of Glass (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、透明電極の製造方法およびその製造装置に関
するもの士、低抵抗で高透過率の透明電極を安定にかつ
迅速に製造することを目的とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a transparent electrode and an apparatus for producing the same, and an object of the present invention is to stably and rapidly produce a transparent electrode with low resistance and high transmittance.
透明電極の製造方法は種々あり、例えば電子ビーム法、
抵抗加熱法、化学スプレー法、スパッタリング法がある
。この中でも、スパッタリング法は、基板温度が室温に
おいても低抵抗で透過率のすぐれた透明電極が得られる
ので、その使用範囲は広い。一般に、スパッタリング法
を用いた透明電極の製造方法は、InあるいはSn お
よびその合金、またInzOsあるいはSnO2および
その混晶をターゲットとし、スパッタ装置内に酸素ガス
を含む不活性ガスを導入してプラズマを発生せしめ、タ
ーゲットをスパッタリングすることにより透明電極を形
成する。その場合の透明電極の抵抗値や透過率は、スパ
ッタリング条件即ちスパッタリング時の電力、基板温度
、ターゲット組成、導入ガス圧力等に依存するが、特に
導入ガスにおける不活性ガス中の酸素ガスはその影響が
大きく、精度のよい制御が必要である。There are various methods of manufacturing transparent electrodes, such as electron beam method,
There are resistance heating methods, chemical spray methods, and sputtering methods. Among these methods, the sputtering method can be used in a wide range of applications because it can provide a transparent electrode with low resistance and excellent transmittance even when the substrate temperature is room temperature. In general, a method for manufacturing transparent electrodes using the sputtering method targets In or Sn and its alloys, or InzOs or SnO2 and its mixed crystals, and generates plasma by introducing an inert gas containing oxygen gas into the sputtering equipment. A transparent electrode is formed by sputtering a target. In that case, the resistance value and transmittance of the transparent electrode depend on the sputtering conditions, that is, the electric power during sputtering, the substrate temperature, the target composition, the introduced gas pressure, etc., but especially the oxygen gas in the inert gas introduced has an influence. is large and requires precise control.
従来、このガスの導入法としてはガスの流量制御計を用
いて一定量のガスをスパッタリング装置内に導入し、プ
ラズマを発生せしめてスパッタリングを行ない透明電極
を形成していたが、このような従来の方法で透明電極を
形成した場合には導入ガス流量および不活性ガスと酸素
ガスの混合比率を一定にしているにもかかわらず、スパ
ッタリング初期と後期において太幅に抵抗値や透過率が
変化したシ、また蒸着ロフト毎のバラツキも極めて大き
かった。これは、導入ガス量を一定にしているにもかか
わらず、スパッタリング装置内のターゲットや基板ある
いは器壁等からH20やCOや02が放出されこれらの
分子がプラズマにょシ分解されて酸素ラジカルや酸素原
子となるため実効的な酸素ガス量の変化なり、スパッタ
リング蒸着における初期と後期のバラツキあるいは蒸着
ロット毎のバラツキとなっていた。このような影響を避
けるため、従来は予備スパッタリング時間を長くしたり
、ペルジャーを加熱したりスパッタリング前の排気時間
を長くしたりする方法がとられていたが、これらの方法
でもその効果は充分でなかった。さらにこれらの方法で
は透明電極の製造時間が長くなるため、再現性がすぐれ
かつ生産性においても良好な製造方法が望まれていた。Conventionally, the method of introducing this gas was to use a gas flow rate controller to introduce a fixed amount of gas into a sputtering device, generate plasma, and perform sputtering to form a transparent electrode. When a transparent electrode was formed using the method described above, the resistance value and transmittance changed widely between the early and late stages of sputtering, even though the introduced gas flow rate and the mixing ratio of inert gas and oxygen gas were kept constant. Moreover, the variation among vapor deposition lofts was also extremely large. This is because even though the amount of introduced gas is kept constant, H20, CO, and 02 are released from the target, substrate, and vessel walls in the sputtering equipment, and these molecules are decomposed by the plasma, creating oxygen radicals and oxygen. Since it becomes atoms, the effective amount of oxygen gas changes, resulting in variations between the initial and late stages of sputtering deposition or variations from deposition lot to deposition lot. In order to avoid such effects, conventional methods have been used such as increasing the pre-sputtering time, heating the Pelger, or increasing the exhaust time before sputtering, but these methods are not sufficiently effective. There wasn't. Furthermore, since these methods require a long time to manufacture transparent electrodes, a manufacturing method with excellent reproducibility and good productivity has been desired.
本発明は上記のような欠点を克服すべく開発された透明
電極の製造方法およびその製造装置を提供するもので、
本発明を用いるなら安定で迅速に、低抵抗で高透過率の
透明電極を形成することが出来る。The present invention provides a method for manufacturing a transparent electrode and an apparatus for manufacturing the same, which have been developed to overcome the above-mentioned drawbacks.
Using the present invention, a transparent electrode with low resistance and high transmittance can be formed stably and quickly.
たものである。同図において1はペルジャー、2は排気
系である。3は基板4とInおよびSnあるいはその合
金とよりなるターゲット6間にプラズマを発生させるだ
めの、例えば発根周波数が13.56MHzの高周波電
源であるが、これは直流高圧電源であっても構わない。It is something that In the figure, 1 is a Pelger and 2 is an exhaust system. 3 is a high frequency power source with a rooting frequency of 13.56 MHz, for example, for generating plasma between the substrate 4 and the target 6 made of In and Sn or alloys thereof, but this may also be a DC high voltage power source. do not have.
6は蒸着速度の測定子で水晶振動子を用いたものが適し
ている。7は測定子6を駆動するだめの電源で、蒸着速
度に比例した信号が出力される。8は不活性ガスボンベ
でAr等の供給源であり、9は酸素ガスボンベである。Reference numeral 6 indicates a measuring element for measuring the deposition rate, and one using a crystal oscillator is suitable. Reference numeral 7 denotes a power source for driving the probe 6, which outputs a signal proportional to the deposition rate. 8 is an inert gas cylinder which is a supply source of Ar, etc., and 9 is an oxygen gas cylinder.
10および10’は酸素ガスあるいは不活性ガスの流量
制御計で、電気的信号により流量制御が可能なマスフロ
ーコントローラーが好ましい。11はフィードバック回
路で、測定子6で得られる出力信号が常に一定値に保た
れるように、流量制御計10および10′をコントロー
ル可能とする設定がなされている。10 and 10' are flow rate controllers for oxygen gas or inert gas, preferably mass flow controllers capable of controlling the flow rate by electrical signals. Reference numeral 11 denotes a feedback circuit, which is set to be able to control the flow rate controllers 10 and 10' so that the output signal obtained from the probe 6 is always kept at a constant value.
以下に、前記構成の製造装置を用いた透明電極の製造方
法を実施例として第1図をもとに説明し、その効果を第
2図、第3図を用いて説明する。まずペルジャー1を排
気系2により排気する。この時、従来はベルジャ内の真
空度を1o ’Torr台まで排気した後、ガス導入を
はかっていたが、本実施例の方法では1O−5Torr
台でガス導入を行なっでも透明電極は充分に低い抵抗値
及びその製造法の再現性を示した。排気時間は装置によ
っても異なるが、通常のスパッタリング装置では1o−
6Torr台に到達するには約30分を要するが、1σ
5“Torr台には10分以内で可目己であり、時間短
縮が可能である。このように排気した懐、例えばムrガ
スおよび酸素ガスを流量制御計10′および1゜により
そnぞれ20 qQ/m 、 6 cc/=wをスノ(
ツタリング装置内に導入する。装置内のガス圧は10−
2〜10”−’ Torr となり放電可能なガス圧と
なる。Below, a method for manufacturing a transparent electrode using the manufacturing apparatus having the above configuration will be described as an example with reference to FIG. 1, and its effects will be described using FIGS. 2 and 3. First, the Pelger 1 is evacuated by the exhaust system 2. At this time, conventionally, gas was introduced after exhausting the vacuum inside the bell jar to 10' Torr level, but in the method of this embodiment, the vacuum level was 10' Torr level.
Even when gas was introduced at the stand, the transparent electrode showed a sufficiently low resistance value and the reproducibility of its manufacturing method. The evacuation time varies depending on the equipment, but for normal sputtering equipment it is 1o-
It takes about 30 minutes to reach 6 Torr level, but 1σ
It takes less than 10 minutes to reach the 5" Torr stand, which saves time. 20 qQ/m, 6 cc/=w to snow (
Introduce it into the tuttering device. The gas pressure inside the device is 10-
The gas pressure becomes 2 to 10'' Torr, which is the gas pressure that allows discharge.
しかる俊、電源3により100〜300Wを投入すると
、基板4とターゲット6間で放電が開始されスパッタリ
ングがはじまる。When 100 to 300 W is applied by the power supply 3, discharge starts between the substrate 4 and the target 6, and sputtering begins.
第2図は、前記方法によって製造される透明電極のシー
ト抵抗と蒸着速度の時間変化をそれぞれ示している。第
2図において従来例を示す特性曲想21.22(21:
シート抵抗、22:蒸着速度)は紅ガス流量を20 Q
C/ m 、 02ガス流量を5 QQ / mと一定
にした時の測定結果を示している。FIG. 2 shows changes over time in the sheet resistance and deposition rate of the transparent electrode manufactured by the method described above. In Fig. 2, a conventional example is shown.
Sheet resistance, 22: deposition rate) is the red gas flow rate at 20 Q
It shows the measurement results when the C/m, 02 gas flow rate was kept constant at 5 QQ/m.
従来例の場合は特性曲線22に示すように時間と −
共に蒸着速度が低下し、それにつれて特性曲線21に示
すようにシート抵抗の上昇もみられる。In the case of the conventional example, as shown in characteristic curve 22, time and −
In both cases, the deposition rate decreases, and as a result, as shown in characteristic curve 21, the sheet resistance increases.
それに対して本発明の実施例の場合は、ムrガス流量は
特性的?23に示すように20cc/jwと一定である
が、これは蒸着速度の変化に対応させて02 ガス流
量を減少させ蒸着速度を一定となるよう制御したことに
よるものであり5この場合、7−ト抵抗は特性曲線24
に示すように時間に関係なく一定値をとっていることが
わかる。透明電極の蒸着速度を一定とする方法は02
ガス流量制御ばかりでなくムrガス流量制御によって
も可能であるが、その範囲は、放電が継続し得ることと
良好な特性値が得られる範囲に限られる。傾向的には、
抵抗値を低く保つために時間と共に02 ガス流量を
減少させること、あるいはムrガス流量を増大させるこ
とおよびそれらを複合させろ方法が有効である。On the other hand, in the case of the embodiment of the present invention, is the gas flow rate characteristic? As shown in Figure 23, it is constant at 20 cc/jw, but this is because the evaporation rate is controlled to be constant by decreasing the 02 gas flow rate in response to changes in the evaporation rate.5 In this case, 7- The resistance is shown in characteristic curve 24.
As shown in , it is clear that it takes a constant value regardless of time. The method of keeping the vapor deposition rate of the transparent electrode constant is 02
This is possible not only by gas flow rate control but also by uneven gas flow rate control, but the range is limited to a range in which discharge can continue and good characteristic values can be obtained. In terms of tendency,
In order to keep the resistance value low, it is effective to reduce the 02 gas flow rate over time, increase the mr gas flow rate, and combine these methods.
第3図は従来および、本発明の実施例の各場合における
蒸着回数毎のシート抵抗のバラツキを示したものである
。従来例に関する特性曲線31はガス流量を一定とした
時のシート抵抗変化を示しており、本発明の実施例に関
する特性曲線32は蒸着速度を一定となるよう制御して
得られた透明電極のシート抵抗変化を示しており、同図
より明らかに本発明による製造方法の方がすぐnでいる
ことがわかる。ガス流量を一定にしているにもかかわら
ず、蒸着回毎にシート抵抗がバラツクのは器壁弄に吸着
するガス量が1回毎に変化するため一定時間の排気にも
かかわらずスパッタリング時の放出ガス量が変化するた
めと考えられる。FIG. 3 shows the variation in sheet resistance for each number of depositions in the conventional case and in the example of the present invention. A characteristic curve 31 related to the conventional example shows the change in sheet resistance when the gas flow rate is constant, and a characteristic curve 32 related to the example of the present invention shows a transparent electrode sheet obtained by controlling the vapor deposition rate to be constant. It is clear from the figure that the manufacturing method according to the present invention is faster than n. Even though the gas flow rate is constant, the sheet resistance varies from deposition to deposition because the amount of gas adsorbed to the vessel wall varies from deposition to deposition. This is thought to be due to changes in the amount of gas.
以上のように本発明の蒸着速度を一定となるよう制御す
る透明電極の製造方法は、蒸着中の透明電極の抵抗変化
や蒸着回数毎の透明電極の抵抗変化が少ない。こnはタ
ーゲットや基板および器壁からの放°出ガス量がスパッ
タリング中に変化したり、あるいは蒸着回毎に変化した
りするのを補償し、実効的に不活性ガス中の酸素ガス混
合比を同一としているためと考えら几る。As described above, the method of manufacturing a transparent electrode in which the vapor deposition rate is controlled to be constant according to the present invention has a small resistance change in the transparent electrode during vapor deposition and a small change in resistance of the transparent electrode depending on the number of vapor depositions. This compensates for changes in the amount of gas emitted from the target, substrate, and vessel wall during sputtering, or for each evaporation cycle, and effectively controls the oxygen gas mixture ratio in the inert gas. I think this is because they are the same.
以上述べてきたように、本発明による透明電極・の製造
方法およびその製造装置によれば、低抵抗で高透過率の
透明電極を迅速にかつ再現性よく得ることが出来るので
、その産業上の利用価値は極めて大きいと言える。As described above, according to the method and apparatus for manufacturing transparent electrodes according to the present invention, transparent electrodes with low resistance and high transmittance can be obtained quickly and with good reproducibility. It can be said that the utility value is extremely large.
第1図は、本発明の一実施例における透明電極の製造装
置、第2図は同装置を用いたスパッタリング中における
シート抵抗と蒸着速度の変化、第3図は同装置を用いた
スパッタリングにおける蒸着回数毎のシート抵抗のバラ
ツキを示したものである。
1・・・・・・ペルジャー、2・・・・・・排気系、3
・・・・・・高周彼電源、4・・・・・・基板、6・・
・・・・ターゲット、6・・・・・・蒸着速度の測定子
、7・・・・・・電源、8,9・・・・・・ガスボンベ
、10,1σ・・・・・・流量制御計、11・・・・・
・フィードバック回路。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図 第3図Figure 1 shows an apparatus for manufacturing a transparent electrode according to an embodiment of the present invention, Figure 2 shows changes in sheet resistance and deposition rate during sputtering using the same apparatus, and Figure 3 shows deposition during sputtering using the same apparatus. It shows the variation in sheet resistance for each number of times. 1...Perger, 2...Exhaust system, 3
...High frequency power supply, 4... Board, 6...
...Target, 6...Measuring element for evaporation rate, 7...Power source, 8,9...Gas cylinder, 10,1σ...Flow rate control Total, 11...
・Feedback circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3
Claims (1)
いて、スパッタリング中の蒸着速度を所定の値に制御す
るため前記スパッタ装置内に導入(2)透明電極がIn
の酸化物よシなることを特徴とする特許請求の範囲第
1項記載の透明電極の製造方法。 (3)透明電極がSnの酸化物よりなることを特徴とす
る特許請求の範囲第1項記載の透明電極の製造方法。 (4)透明電極形成唱のスパッタ装置と、上記スパッタ
装置にガスを供給するガス供給手段と、前記スパッタ装
置に設けられ前記透明電極の蒸着速度を測定する蒸着速
度計と、前記ガス供給手段から前記スパッタ装置に供給
されるガスの流量を制御するガス流量制御計と、前記蒸
着速度計の値が所定値になるようにガス流量を制御する
信号を前記ガス供給手段に供給する制御手段とを具備す
ることを特徴とず本透明電極の製造装置。Scope of Claims: (1) In a method of forming a transparent electrode in a sputtering apparatus, the transparent electrode is introduced into the sputtering apparatus in order to control the deposition rate to a predetermined value during sputtering.
The method for manufacturing a transparent electrode according to claim 1, characterized in that the transparent electrode is made of an oxide of. (3) The method for manufacturing a transparent electrode according to claim 1, wherein the transparent electrode is made of an oxide of Sn. (4) A sputtering device for forming a transparent electrode, a gas supply means for supplying gas to the sputtering device, a evaporation rate meter installed in the sputtering device to measure the deposition rate of the transparent electrode, and a gas supplying device. a gas flow rate controller for controlling the flow rate of gas supplied to the sputtering apparatus; and a control means for supplying a signal to the gas supply means for controlling the gas flow rate so that the value of the vapor deposition rate meter becomes a predetermined value. The present transparent electrode manufacturing apparatus is characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19328981A JPS5894703A (en) | 1981-11-30 | 1981-11-30 | Method of producing transparent electrode and device for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19328981A JPS5894703A (en) | 1981-11-30 | 1981-11-30 | Method of producing transparent electrode and device for producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5894703A true JPS5894703A (en) | 1983-06-06 |
JPH0375967B2 JPH0375967B2 (en) | 1991-12-04 |
Family
ID=16305435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19328981A Granted JPS5894703A (en) | 1981-11-30 | 1981-11-30 | Method of producing transparent electrode and device for producing same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5894703A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0247255A (en) * | 1988-08-05 | 1990-02-16 | Matsushita Electric Ind Co Ltd | Production of thin oxide film |
WO2012157202A1 (en) * | 2011-05-13 | 2012-11-22 | シャープ株式会社 | Thin film-forming method |
KR20170108819A (en) | 2016-03-17 | 2017-09-27 | 시바우라 메카트로닉스 가부시끼가이샤 | Film forming apparatus and film forming method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51116999A (en) * | 1975-04-08 | 1976-10-14 | Toppan Printing Co Ltd | Process for manufacturing transparent conductive plastic |
JPS53118417A (en) * | 1977-03-25 | 1978-10-16 | Asahi Glass Co Ltd | Production of glass with transparent* electrically conductive coat of sno2 |
JPS56130009A (en) * | 1980-03-17 | 1981-10-12 | Sharp Kk | Method of producing transparent conductive film |
-
1981
- 1981-11-30 JP JP19328981A patent/JPS5894703A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51116999A (en) * | 1975-04-08 | 1976-10-14 | Toppan Printing Co Ltd | Process for manufacturing transparent conductive plastic |
JPS53118417A (en) * | 1977-03-25 | 1978-10-16 | Asahi Glass Co Ltd | Production of glass with transparent* electrically conductive coat of sno2 |
JPS56130009A (en) * | 1980-03-17 | 1981-10-12 | Sharp Kk | Method of producing transparent conductive film |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0247255A (en) * | 1988-08-05 | 1990-02-16 | Matsushita Electric Ind Co Ltd | Production of thin oxide film |
WO2012157202A1 (en) * | 2011-05-13 | 2012-11-22 | シャープ株式会社 | Thin film-forming method |
KR20170108819A (en) | 2016-03-17 | 2017-09-27 | 시바우라 메카트로닉스 가부시끼가이샤 | Film forming apparatus and film forming method |
US10260145B2 (en) | 2016-03-17 | 2019-04-16 | Shibaura Mechatronics Corporation | Film formation apparatus and film formation method |
Also Published As
Publication number | Publication date |
---|---|
JPH0375967B2 (en) | 1991-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tonejc et al. | Enhanced solubility of iron in aluminum obtained by rapid quenching technique | |
JPH03155625A (en) | Manufacture of plasma cvd film | |
US20100282598A1 (en) | Method for controlling a reactive-high-power pulsed magnetron sputter process and corresponding device | |
US4579639A (en) | Method of sensing the amount of a thin film deposited during an ion plating process | |
Maniv et al. | Surface oxidation kinetics of sputtering targets | |
US4151330A (en) | Mb3 Ge Superconductive films grown with nitrogen | |
JPS5894703A (en) | Method of producing transparent electrode and device for producing same | |
US4151329A (en) | Nb3 Ge Superconductive films | |
JP4360716B2 (en) | Copper thin film manufacturing method and sputtering apparatus used in the method | |
JPS61193441A (en) | Method of forming metal thin film and therefor device | |
JPS58167767A (en) | Formation of thin film | |
US3664943A (en) | Method of producing tantalum nitride film resistors | |
JP2894564B2 (en) | Continuous transparent conductive thin film production equipment | |
US3475309A (en) | Method of making paramagnetic nickel ferrite thin films | |
JPS596376A (en) | Sputtering apparatus | |
JP2000107587A (en) | Method and apparatus for calibrating gas pressure in bell jar (vacuum film forming chamber or container) | |
Volrabova et al. | Piezoelectric Microbalance and its use in the Study of Volatile Inhibitors | |
JPH02157123A (en) | Production of thin barium titanate film | |
JPS63176465A (en) | Formation of film by reactive sputtering | |
JP2584633B2 (en) | Superconducting thin film production equipment | |
JPH0247255A (en) | Production of thin oxide film | |
JP2007031815A (en) | Planer magnetron sputtering apparatus and planer magnetron sputtering film deposition method | |
JPH0146587B2 (en) | ||
JPH0365501A (en) | Preparation of oxide thin film | |
JP3297194B2 (en) | Method for producing film forming film |