JPS63176465A - Formation of film by reactive sputtering - Google Patents

Formation of film by reactive sputtering

Info

Publication number
JPS63176465A
JPS63176465A JP501587A JP501587A JPS63176465A JP S63176465 A JPS63176465 A JP S63176465A JP 501587 A JP501587 A JP 501587A JP 501587 A JP501587 A JP 501587A JP S63176465 A JPS63176465 A JP S63176465A
Authority
JP
Japan
Prior art keywords
film
substrate
sputtering
inert gas
reactive gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP501587A
Other languages
Japanese (ja)
Inventor
Toshisuke Ikeo
池尾 利介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP501587A priority Critical patent/JPS63176465A/en
Publication of JPS63176465A publication Critical patent/JPS63176465A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To surely attain reproducibility on film thickness and compsn. by isolating a substrate from a sputtering region, forming a film by presputtering with only an inert gas, exposing the substrate to the sputtering region after the rate of film formation is stabilized, and introducing the inert gas and a reactive gas in a required ratio in flow rate. CONSTITUTION:A substrate 10 is isolated from a sputtering region with a shutter 11, an inert gas is introduced from a feed hole 14 and electric discharge is caused to remove an oxide film from the surface of a target 8 by presputtering. After the rate of film formation on a film thickness sensor 12 is stabilized, the shutter 11 is opened to expose the substrate 10 to the sputtering region. The inert gas and a reactive gas are separately introduced from the feed hole 14 and a feed hole 13 in a required ratio in flow rate, and electric discharge is caused to form a film of a compd. consisting of the substance of the target 8 and the reactive gas on the substrate 10. Thus, the film having a required compsn. can be efficiently formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば、光学的保護膜等の厳密な組成が必要
とされる反応性スパッタリング成膜プロセスに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a reactive sputtering film formation process that requires a precise composition, such as an optical protective film.

(従来の技術) 第1図に示される反応性スパッタリング装置によシ従来
のスパッタリング方法を説明する。
(Prior Art) A conventional sputtering method will be explained using a reactive sputtering apparatus shown in FIG.

コンタクタンスバルブ1を絞す、パルプ2.3を[t、
fii調e器(一般にマスフローコントローラという)
4.5によって酸素、窒素などの反応性ガスとアルゴン
などの不活性ガスを、それぞれ設定流量流し、真空槽6
内の圧力をおよそ10−”torr程度にする。真空槽
6および基板ホルダ9はアースされてアース電位になっ
ている。高周波1!源7をONL、ターゲット8と基板
ホルダ90間で放電を開始させる。放電電流は、陽イオ
ンと電子より構成されている。陽イオンと電子の移動度
のちがいから、電極であるターゲット8は、負のバイア
ス電位を持つ。ターゲット8と基板ホルダ90間の陽イ
オンは、電界により加速され、ターゲット8に衝突する
。ターゲットB内の原子もしくは分子が、たたき出され
(すなわちスパッタリングされ01基板10に到達する
。スパッタリングされた原子もしくは分子は、基板1G
に到達するまでに反応性ガスと反応し、ターゲット8物
質と反応性ガスが設定組成で構成された反応生成物の薄
膜が基板lO上に得られる0 シャッタllを閉じたまま、スパッタリングを一定時間
(数分程度)行なう。(プレスノくツタリングという) その後、シャッタlli開け、基板lO上に成膜を行な
う。膜厚センサ12に、相当量の膜厚が得られたなら、
シャッタllを閉じ高周波電源7ヲOFFシ、反応性ス
パッタリングを終了する0(発明が解決しようとする問
題点) 不活性ガスと反応性ガスの両方を同時に流して、プレス
パツタリングおよび成膜を行なう従来法にては、たとえ
ばターゲット8として5lt−1不活性ガスとしてAr
 ’c 、反応性ガスとして0□を用いて、所要の組成
5tyxの成膜を行なう場合、次の問題点が発生した。
Squeeze contactance valve 1, pulp 2.3 [t,
fii controller (generally called mass flow controller)
4.5, flow reactive gases such as oxygen and nitrogen and inert gases such as argon at set flow rates, and vacuum chamber 6.
The pressure inside is set to about 10-'' torr. The vacuum chamber 6 and the substrate holder 9 are grounded and have a ground potential. The high frequency 1! source 7 is turned ONL, and discharge is started between the target 8 and the substrate holder 90. The discharge current is composed of positive ions and electrons.Due to the difference in mobility between positive ions and electrons, the target 8, which is an electrode, has a negative bias potential. The ions are accelerated by the electric field and collide with the target 8. Atoms or molecules in the target B are ejected (that is, sputtered) and reach the 01 substrate 10.The sputtered atoms or molecules are transferred to the substrate 1G.
Sputtering is continued for a certain period of time with the shutter closed, and a thin film of the reaction product consisting of the target 8 substances and the reactive gas with a set composition is obtained on the substrate. (for about a few minutes). (This is referred to as press-no-kututtering.) Thereafter, the shutter is opened and a film is formed on the substrate. If a considerable amount of film thickness is obtained by the film thickness sensor 12,
Close the shutter, turn off the high frequency power source 7, and end the reactive sputtering 0 (problem to be solved by the invention) Both inert gas and reactive gas are flowed simultaneously to perform pre-sputtering and film formation. In the conventional method, for example, Ar is used as the target 8 as 5lt-1 inert gas.
'c, when forming a film with a required composition of 5tyx using 0□ as a reactive gas, the following problem occurred.

すなわち、同じノくワーにて、Arと0□を流量調節器
4.5に同じ流量で設定し、同じ操作圧力でスパッタリ
ング成膜を一定時間行なつ次場合でも、基板lO上の所
要SiOxの膜厚ならびに組成Xの再現性が得られない
That is, even if Ar and 0□ are set at the same flow rate in the flow rate controller 4.5 in the same reactor and sputtering film formation is performed for a certain period of time at the same operating pressure, the required amount of SiOx on the substrate lO Reproducibility of film thickness and composition X cannot be obtained.

本発明は、これらの膜厚ならびに組成の再現性を確実に
達成することを目的とする0 (問題点を解決するための手段) 本発明は、ターゲット物質が設定され且つ排気されてい
るスパッタリング領域と基板との間を遮断状態で不活性
ガスを導入し放電してプレスパツタリングを行ない、膜
厚センサによってプレスパツタリングの成膜速度が安定
に達したことを検知し、前記の遮断状態を解除し、不活
性ガスと反応性ガスを所要の流量比で導入し放電して基
板にターゲット物質と反応性ガスの化合物を成膜するこ
とを特徴とする。
The present invention aims to reliably achieve the reproducibility of these film thicknesses and compositions. Pre-sputtering is performed by introducing an inert gas and discharging the space between the board and the substrate in a state of interruption, and a film thickness sensor detects that the film formation rate of the pre-sputtering has reached a stable state, and the above-mentioned interruption state is established. The method is characterized in that a compound of the target material and the reactive gas is formed on the substrate by introducing an inert gas and a reactive gas at a required flow rate ratio and discharging the discharge gas.

膜厚センサとしては水晶振動式のものなど通常のものが
利用できる。
As the film thickness sensor, a normal one such as a crystal vibration type can be used.

成膜速度は、時間当りの成膜厚さ増加量であり、膜厚セ
ンサに適当な処理検出器を接続して、これによって表示
せしめると便利である。プレスノくツタリング開始後、
成膜速度は増大し、やがて飽和して一定値に達する。た
とえば成膜速度が10秒間変化しなければ安定に達した
ものと判断する0実際には、プレスパツタリングの成膜
速度が安定に達し九ことを直接的に検知する代わりに、
前もって、放電を開始してから成膜速度が安定に達する
までの時間を測定しておき、プレスパックリングの放電
を開始してから、前記の時間が経過した後に反応性ガス
を導入するようにしてもよい0反応性ガスを導入してス
パッタリングを行う際に、実際には前記の遮断状態を保
持したまま反応性ガスを導入し、当初、不安定な成膜速
度が安定に達した後に遮断状態を解除し、化合物を成膜
するように行うことが好ましい。
The film deposition rate is the amount of increase in film thickness per hour, and is conveniently displayed by connecting a suitable process detector to the film thickness sensor. After starting Presunokututtering,
The film formation rate increases and eventually saturates and reaches a constant value. For example, if the film formation rate does not change for 10 seconds, it is determined that stability has been reached.In reality, instead of directly detecting that the film formation speed of press sputtering has reached stability,
Measure the time from the start of discharge until the film formation rate reaches stability in advance, and then introduce the reactive gas after the above-mentioned time has elapsed after starting the discharge of the press-pack ring. When performing sputtering by introducing a reactive gas, the reactive gas is actually introduced while maintaining the above-mentioned cutoff state, and the initially unstable film formation rate is cut off after it reaches a stable state. It is preferable to release the state and form the compound into a film.

成膜される化合物の組成比は不活性ガスと反応性ガスの
流量比によって変えることができる。組成比の確認は公
知の螢光X縁側定法などによって行うことができる。
The composition ratio of the compound formed into a film can be changed by changing the flow rate ratio of the inert gas and the reactive gas. The composition ratio can be confirmed by the known fluorescent X edge method.

目的の組成を得るには、あらかじめ、本発明の方法に従
い、一定のスパッタパワー、不活性ガス圧にて、何点か
の流量で反応性ガスを流し、基板io上にできた膜の組
成を測定し、反応性ガス流量と組成の相関曲線を出し、
それより、目的の組成に対応する反応性ガス流量を求め
その反応性ガス流量にて、反応性スパッタリング成膜を
行なう。
To obtain the desired composition, in advance, according to the method of the present invention, a reactive gas is flowed at several flow rates at a constant sputtering power and inert gas pressure, and the composition of the film formed on the substrate IO is determined. Measure and obtain a correlation curve between reactive gas flow rate and composition,
Then, a reactive gas flow rate corresponding to the target composition is determined, and reactive sputtering film formation is performed at that reactive gas flow rate.

(作 用) 次に本発明の作用を第2図にて説明する。不活性ガスの
みのプレスパツタリングを行なうと、ターゲット8表面
の酸化被膜がスパッタされて除去される。酸化被膜が除
去されるに従い、膜厚センサ12上の成膜速度は上昇し
ていき、酸化被膜が完全に除去されると成膜速度はター
ゲット物質の成膜速度と一致し、その後一定値に安定す
る。この状態がa点である。つまり、ターゲット8表面
の酸化被膜が完全に除去され、純粋なターゲット物質が
露出したことを検知する。その後、反応性ガスである0
□を設定値(C点相当)の流量だけ導入すれば操作線に
従い、0点の状態を得ることができる。そして、シャッ
タ11を開いて遮断状態を解除し、0点の0.流量に和
尚し次組成の反応化合物を基板lO上に成膜する。
(Function) Next, the function of the present invention will be explained with reference to FIG. When pre-sputtering is performed using only an inert gas, the oxide film on the surface of the target 8 is sputtered and removed. As the oxide film is removed, the film formation rate on the film thickness sensor 12 increases, and when the oxide film is completely removed, the film formation rate matches the film formation rate of the target material, and then remains at a constant value. Stabilize. This state is point a. In other words, it is detected that the oxide film on the surface of the target 8 has been completely removed and the pure target material has been exposed. Then the reactive gas 0
By introducing □ by the set value (corresponding to point C), the state of 0 point can be obtained according to the operating line. Then, the shutter 11 is opened to release the cut-off state, and the 0 point is 0. After adjusting the flow rate, a film of a reaction compound having the following composition is formed on the substrate 1O.

本発明の方法によれば、常にa点を経るため、必ずa−
b−c−d−e−fの操作線で反応性スパッタリングを
行なうことになり、従来方法でのターゲット8表面状態
による非再現性の問題は解決され、確実に0点の状態の
反応性スパッタリング成膜が行なえ、その状態に相当し
九組成と成膜速度が、安定して得ることができる。
According to the method of the present invention, since the method always passes through point a,
Reactive sputtering is performed using the b-c-d-e-f operating line, which solves the problem of non-reproducibility due to the target 8 surface condition in the conventional method, and ensures reactive sputtering at zero point. Film formation can be carried out, and a stable composition and film formation rate corresponding to that state can be obtained.

なお、a−b−c−dの操作線上において基板lO上の
510Xの組成Xは0〜2.0までの範囲で得られる。
In addition, on the a-b-c-d operating line, the composition X of 510X on the substrate IO can be obtained in the range of 0 to 2.0.

一方、fm@#C’〜tの操作線上ではSl 0.の単
一組成しか得られず基板10上の成膜速度も遅いO 実施例 0.1−反応性ガスとしAr k不活性ガスとして利用
して、Siの反応性スパッタリングを行なう場合につい
て説明する。01およびArFiそれぞれ系外の供給源
よりパルプ213、流量調節器4,5、供給口13.1
4を経て真空槽6に導入される0反応性ガスの供給口1
3は基板lOに向け、不活性ガスの供給口14はターゲ
ット8に向けであることが好ましい。ターゲット8はS
tでありマグネトロン方式にされている。真空槽6内を
充分に排気し、好ましくは、その圧力をI X 10−
@torr以下にして、排気口15のコンダクタンスパ
ルプlを絞す、不活性ガスのパルプ3を開いてArを真
空槽6に流す。
On the other hand, on the operating line of fm@#C'~t, Sl 0. Example 0.1 - A case will be described in which reactive sputtering of Si is performed using Ark as a reactive gas and an inert gas. Pulp 213, flow rate regulators 4 and 5, and supply port 13.1 are supplied from outside supply sources for 01 and ArFi, respectively.
Supply port 1 for zero-reactive gas introduced into the vacuum chamber 6 via 4
3 is preferably directed toward the substrate IO, and the inert gas supply port 14 is preferably directed toward the target 8. Target 8 is S
t and uses a magnetron system. The inside of the vacuum chamber 6 is sufficiently evacuated, and preferably the pressure is reduced to I x 10-
@torr or less, the conductance pulp 1 at the exhaust port 15 is squeezed, and the inert gas pulp 3 is opened to flow Ar into the vacuum chamber 6.

その圧力制御は、流量調節器5によって行なう。The pressure control is performed by a flow rate regulator 5.

高周波電源7よジターゲット8に高周波を印加してプレ
スパツタリングを行なう。その際の電源パワーは、ター
ゲット8がSiの場合には1〜2落の範囲で実施した。
Pre-sputtering is performed by applying a high frequency to the high frequency power source 7 and the target 8. At this time, the power supply power was set in the range of 1 to 2 drops when the target 8 was Si.

以上の過程において、膜厚センサ12で、成膜速度t−
Ti−=夕しておく、その検出値は、徐々に大きくなり
、やがて一定値で安定する。一定値に達するまでの時間
は、だい危い1〜5分程度であった。膜厚センサ12の
成膜速度が一定値で安定し次後、反応性ガスのパルプ2
を開け、ガス供給口13より0.を真空槽6に流す。流
量調節器4を調節して第2図の設定値C点までOx R
fK ’!:増して行く。
In the above process, the film thickness sensor 12 detects the film forming rate t-
The detected value gradually increases and eventually stabilizes at a constant value. The time it took to reach a certain value was approximately 1 to 5 minutes. After the film formation rate of the film thickness sensor 12 stabilizes at a constant value, the reactive gas pulp 2
, and from the gas supply port 13 0. flows into the vacuum chamber 6. Adjust the flow rate regulator 4 to reach the set value C point in Figure 2.
fK'! : It will increase.

0、流量が安定した後、シャッタ11を開け、基板lO
上に反応生成物薄膜を形成する。
0. After the flow rate stabilizes, open the shutter 11 and remove the substrate lO.
A reaction product thin film is formed on top.

装置によシ異なるが、たとえばスパッタ圧力5 X 1
O−3torrにて02流量を7 cr、7分流せば、
810□、4の組成の薄膜が再現性良く得られた。
Although it varies depending on the device, for example, the sputtering pressure is 5 x 1
If the flow rate of 02 is 7 cr for 7 minutes at O-3 torr,
A thin film having a composition of 810□, 4 was obtained with good reproducibility.

(発明の効果) 以上説明したように、本発明は所要の組成のターゲット
物質を確実に安定して効率的に基板に成膜せしめること
ができる。
(Effects of the Invention) As described above, the present invention can reliably, stably and efficiently form a target material having a desired composition onto a substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常の反応性スパッタリング装置の概略構成を
示す模式図、第2図は本発明の作用効果を説明する次め
に反応性ガスの流量と膜厚センサの成膜速度との関係を
示すグラフであるOl・・・コンダクタンスパルプ、2
・・・パルプ、3・・・パルプ、4・・・流量調節器、
5・・・流量調節器、6・・・真空槽、7・・・高周波
電源、8・・・ターゲット、9・・・基板ホルダ、lO
・・・基板、11・・・シャッタ、12・・・膜厚セン
サ、13・・・供給口、14・・・供給口、15・・・
排気口
Figure 1 is a schematic diagram showing the general configuration of a conventional reactive sputtering device, and Figure 2 explains the effects of the present invention.Next, it shows the relationship between the flow rate of reactive gas and the film formation rate of the film thickness sensor Graph showing Ol... conductance pulp, 2
... Pulp, 3... Pulp, 4... Flow rate regulator,
5...Flow rate regulator, 6...Vacuum chamber, 7...High frequency power supply, 8...Target, 9...Substrate holder, lO
... Substrate, 11... Shutter, 12... Film thickness sensor, 13... Supply port, 14... Supply port, 15...
exhaust port

Claims (1)

【特許請求の範囲】[Claims] ターゲット物質が設定され且つ排気されているスパッタ
リング領域と基板との間を遮断状態で不活性ガスを導入
し放電してプレスパッタリングを行ない、膜厚センサに
よつてプレスパッタリングの成膜速度が安定に達したこ
とを検知し、前記の遮断状態を解除し、不活性ガスと反
応性ガスを所要の流量比で導入し放電して基板にターゲ
ット物質と反応性ガスの化合物を成膜することを特徴と
する反応性スパッタリング成膜方法
Pre-sputtering is performed by introducing an inert gas and discharging the space between the sputtering area where the target material is set and evacuated and the substrate in a state of isolation, and the film-forming speed of pre-sputtering is stabilized by a film thickness sensor. It is characterized by detecting that the target substance and reactive gas have been reached, canceling the cut-off state, introducing inert gas and reactive gas at a required flow rate ratio, and discharging to form a film of a compound of the target material and reactive gas on the substrate. Reactive sputtering film formation method
JP501587A 1987-01-14 1987-01-14 Formation of film by reactive sputtering Pending JPS63176465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP501587A JPS63176465A (en) 1987-01-14 1987-01-14 Formation of film by reactive sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP501587A JPS63176465A (en) 1987-01-14 1987-01-14 Formation of film by reactive sputtering

Publications (1)

Publication Number Publication Date
JPS63176465A true JPS63176465A (en) 1988-07-20

Family

ID=11599701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP501587A Pending JPS63176465A (en) 1987-01-14 1987-01-14 Formation of film by reactive sputtering

Country Status (1)

Country Link
JP (1) JPS63176465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132280A (en) * 1990-09-21 1992-05-06 Agency Of Ind Science & Technol Manufacture of josephson junction
JP2010001518A (en) * 2008-06-19 2010-01-07 Sumitomo Metal Mining Co Ltd Method of manufacturing heat-resistant and light-shielding film, and heat-resistant and light-shielding film
US9530629B2 (en) 2002-09-26 2016-12-27 Applied Multilayers Llc Method for depositing multilayer coatings
CN111761486A (en) * 2020-04-24 2020-10-13 佛山市汉腾自动化有限公司 Automatic adjusting method of glass film removing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132280A (en) * 1990-09-21 1992-05-06 Agency Of Ind Science & Technol Manufacture of josephson junction
US9530629B2 (en) 2002-09-26 2016-12-27 Applied Multilayers Llc Method for depositing multilayer coatings
JP2010001518A (en) * 2008-06-19 2010-01-07 Sumitomo Metal Mining Co Ltd Method of manufacturing heat-resistant and light-shielding film, and heat-resistant and light-shielding film
CN111761486A (en) * 2020-04-24 2020-10-13 佛山市汉腾自动化有限公司 Automatic adjusting method of glass film removing device
CN111761486B (en) * 2020-04-24 2022-01-25 佛山市汉腾自动化有限公司 Automatic adjusting method of glass film removing device

Similar Documents

Publication Publication Date Title
US4812712A (en) Plasma processing apparatus
EP0686708A4 (en) Film forming method and film forming apparatus
JPS63176465A (en) Formation of film by reactive sputtering
JP2579470B2 (en) Method of manufacturing nitride thin film resistor
US6730365B2 (en) Method of thin film deposition under reactive conditions with RF or pulsed DC plasma at the substrate holder
US5919342A (en) Method for depositing golden titanium nitride
JPH04136165A (en) Reactive gas introducing type film forming device
JPH09202968A (en) Sputtering device and formation of deposited film
JP4735291B2 (en) Deposition method
JP2894564B2 (en) Continuous transparent conductive thin film production equipment
JP3354591B2 (en) Sputtering method
JPH04337071A (en) Sputtering apparatus and formation of thin film using the above
RU1163656C (en) Method of plasma reactive applying of films in vacuum
JPH02115361A (en) Sputtering film formation
JPH0247255A (en) Production of thin oxide film
JPS6334931A (en) Apparatus for manufacturing semiconductor
JPH0772347B2 (en) Sputtering device
JP2000192236A (en) Sputtering method and device
JPH06220634A (en) Film quarity controlling method in sputtering device
JPS5894703A (en) Method of producing transparent electrode and device for producing same
JPH048506B2 (en)
JP2633575B2 (en) Film forming equipment
JPH03115565A (en) Sputtering device and film forming method
JP2918926B2 (en) Film forming method and apparatus
JPH06248448A (en) Sheet type sputtering method