JPH07180055A - Vacuum film forming device - Google Patents

Vacuum film forming device

Info

Publication number
JPH07180055A
JPH07180055A JP32421593A JP32421593A JPH07180055A JP H07180055 A JPH07180055 A JP H07180055A JP 32421593 A JP32421593 A JP 32421593A JP 32421593 A JP32421593 A JP 32421593A JP H07180055 A JPH07180055 A JP H07180055A
Authority
JP
Japan
Prior art keywords
rate
film thickness
vaporization
crystal
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32421593A
Other languages
Japanese (ja)
Inventor
Masahito Ishikawa
雅仁 石川
Atsushi Maeda
篤 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP32421593A priority Critical patent/JPH07180055A/en
Publication of JPH07180055A publication Critical patent/JPH07180055A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To control the vapor deposition rate to a high degree without using a crystal film thickness meter provided with a power control mechanism by providing a vacuum film forming device with a means for continuously measuring the thickness of a formed film or the film forming rate or for comparing the film thickness or forming rate with the target value and controlling the current of a vaporization source based on the difference from the target value. CONSTITUTION:A command is issued to a vaporization source controller 8 from a process computer 7 in accordance with a set current 10 in vapor deposition, and a vaporization material is vaporized from a vaporization source 9. The vaporization rate is detected by a crystal monitor head 3, and an analog signal proportional to the vaporization rate is emitted from a crystal monitor 4. The analog signal is compared with the set value of the target vaporization rate by an analog comparator 5, and the pulse proportional to the difference is outputted from a pulse oscillator 6. The signal is received by the computer 7, and a command is issued to the controller 8 based on the set value of the change to constitute one closed loop, and the vaporization amt. is controlled. Meanwhile, an optical film thickness meter can be used instead of the crystal monitor 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空成膜装置に関し、と
くに蒸着材の蒸発速度を一定に制御することのできる真
空蒸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum film forming apparatus, and more particularly to a vacuum evaporation apparatus capable of controlling the evaporation rate of an evaporation material to be constant.

【0002】[0002]

【従来の技術】半導体LSI、液晶表示装置、光ディス
ク、磁気記録ディスクなどの高密度化が進展するに伴
い、これらの基板上に形成される薄膜は高精度のものが
要求されるようになってきた。このような薄膜形成方法
の一つに真空蒸着装置を用いる方法がある。真空蒸着装
置は、10-5 Torr 以下程度の圧力の真空中で蒸発源に設
置された物質を加熱して蒸発させ、その蒸気を基板上に
凝縮させて物質の薄膜を形成するための装置である。こ
の装置を用いて形成される薄膜の膜厚は、主として蒸発
源より蒸発する物質の量に依存し、さらにこの蒸発量は
蒸発源の温度を制御する電流に依存する。
2. Description of the Related Art As the density of semiconductor LSIs, liquid crystal display devices, optical disks, magnetic recording disks, etc. has increased, thin films formed on these substrates are required to have high precision. It was One of such thin film forming methods is a method using a vacuum vapor deposition apparatus. A vacuum evaporation system is a device for forming a thin film of a substance by heating and evaporating a substance installed in an evaporation source in a vacuum with a pressure of about 10 -5 Torr or less and condensing the vapor on a substrate. is there. The film thickness of the thin film formed by using this apparatus mainly depends on the amount of the substance evaporated from the evaporation source, and this evaporation amount depends on the electric current for controlling the temperature of the evaporation source.

【0003】従来から、蒸発源の電流制御方法としては
大別してつぎの 2つの方法があった。 (1)パワーコントロール機能を備えた水晶膜厚計を用
い蒸発速度が一定となるように蒸発源の電流値をコント
ロールする水晶レート制御方法。この方法に使用する真
空蒸着装置の構成例を図5に示す。真空槽1内には、被
着材である基板などを載せるための蒸着ドーム2、水晶
モニタセンサヘッド3、パワーコントロール機能を備え
た水晶膜厚計11、プロセスコンピュータ7、蒸発源コ
ントローラ8、蒸着材を蒸発させるための蒸発源9より
構成されている。
Conventionally, there are roughly two methods of controlling the current of the evaporation source, as follows. (1) A crystal rate control method in which the current value of the evaporation source is controlled so that the evaporation rate is constant by using a crystal film thickness meter having a power control function. FIG. 5 shows an example of the structure of a vacuum vapor deposition apparatus used in this method. In the vacuum chamber 1, a vapor deposition dome 2 for mounting a substrate as an adherend, a crystal monitor sensor head 3, a crystal film thickness meter 11 having a power control function, a process computer 7, an evaporation source controller 8, and vapor deposition. It comprises an evaporation source 9 for evaporating the material.

【0004】この方法は両面に金属電極が蒸着された水
晶円板などの水晶振動子を水晶モニタセンサヘッド3と
して用い、金属電極上に蒸着膜が形成されることによる
固有振動数の変化を測定して蒸発源より蒸発する物質の
蒸発速度が一定となるようにプロセスコンピュータ7お
よび蒸発源コントローラ8により蒸発源9の電流値をコ
ントロールするする方法である。この方法はTiO2
膜時のようにO2 ガスを導入し、反応させながらTiO
2 を作るようなプロセスでは蒸着速度を一定にする最も
良い方法と考えられている。
In this method, a crystal oscillator such as a crystal disk having metal electrodes vapor-deposited on both sides is used as the crystal monitor sensor head 3, and the change in natural frequency due to the vapor deposition film formed on the metal electrodes is measured. Then, the current value of the evaporation source 9 is controlled by the process computer 7 and the evaporation source controller 8 so that the evaporation rate of the substance evaporated from the evaporation source becomes constant. In this method, O 2 gas is introduced as in the film formation of TiO 2, and TiO 2 is reacted while reacting.
It is considered to be the best way to keep the deposition rate constant in the process of making 2 .

【0005】(2)あらかじめ設定した電流値を常に維
持する電流値一定制御方法。この方法に使用する真空蒸
着装置の構成例を図6に示す。真空槽1内には、被着材
である基板などを載せるための蒸着ドーム2、プロセス
コンピュータ7、蒸発源コントローラ8、蒸着材を蒸発
させるための蒸発源9等より構成されている。この方法
は水晶膜厚計などを使用することなく蒸発源の電流値を
最初から一定の値に設定しておく方法である。
(2) A constant current value control method for always maintaining a preset current value. FIG. 6 shows an example of the structure of a vacuum vapor deposition apparatus used in this method. The vacuum chamber 1 includes a vapor deposition dome 2 for mounting a substrate, which is an adherend, a process computer 7, an evaporation source controller 8, an evaporation source 9 for vaporizing the evaporation material, and the like. In this method, the current value of the evaporation source is set to a constant value from the beginning without using a crystal film thickness meter or the like.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述の蒸
発源の電流制御方法には、つぎのような問題がある。 (1)の方法においては、蒸発源の電流制御を完全に水
晶膜厚計に移すため、突発的に起こる水晶発振不良や水
晶板交換忘れなどによる発振不安定時には成膜を中止せ
ざるを得ないという問題がある。また、パワーコントロ
ール機能付の水晶膜厚計は高価であり、工業的に有用で
ないという問題がある。
However, the above-mentioned current control method for the evaporation source has the following problems. In the method (1), since the current control of the evaporation source is completely transferred to the crystal film thickness meter, the film formation must be stopped when the oscillation is unstable due to a sudden crystal oscillation failure or forgetting to replace the crystal plate. There is a problem that there is no. Further, there is a problem that a crystal thickness meter with a power control function is expensive and is not industrially useful.

【0007】(2)の方法においては、水晶膜厚計など
を用いないので、発振不良などによる成膜中止は生じな
く、また価格的にも安価であり工業的に有用であるが、
電流値一定制御では蒸着材量が減少すると、蒸発速度が
不安定となり膜厚制御が困難になるという問題がある。
In the method (2), since a crystal film thickness meter or the like is not used, film formation is not stopped due to oscillation failure or the like, and it is inexpensive and industrially useful.
In the constant current value control, when the amount of the vapor deposition material decreases, the evaporation rate becomes unstable and the film thickness control becomes difficult.

【0008】本発明はこのような課題に対処するために
なされたもので、蒸着材の蒸発速度を一定に制御するこ
とができ、かつ水晶膜厚計を用いた場合に水晶発振子が
発振不良時にも成膜を中止しなくてもよい真空蒸着装置
を提供することを目的としている。
The present invention has been made in order to solve such a problem, and it is possible to control the evaporation rate of the vapor deposition material to a constant level, and when the crystal thickness meter is used, the crystal oscillator causes oscillation failure. It is an object of the present invention to provide a vacuum vapor deposition apparatus that does not need to stop film formation at any time.

【0009】[0009]

【課題を解決するための手段】本発明の真空成膜装置
は、成膜される膜厚または成膜速度を連続的に測定する
手段と、膜厚または成膜速度を所定の目標値と比較する
比較手段と、この比較手段より出力される所定の目標値
との差に基づく出力信号により蒸発源電流を制御する制
御手段とを有することを特徴とする。
The vacuum film forming apparatus of the present invention compares the film thickness or the film forming rate with a means for continuously measuring the film thickness or the film forming rate to be formed. And a control means for controlling the evaporation source current by an output signal based on a difference from a predetermined target value output from the comparison means.

【0010】本発明に係わる膜厚または成膜速度を連続
的に測定する手段は、シリコンウエハーやガラス基板な
どに成膜中の薄膜を成膜時に連続して測定できる装置で
あればよい。たとえば水晶膜厚計や光学式膜厚計などを
使用することができる。水晶膜厚計は水晶振動子の固有
振動数をモニターすることにより膜厚を測定する装置で
あり高精度に膜厚を測定することができる。一方、光学
式膜厚計は光源から入射した光を試料に照射させて得ら
れる透過光または反射光の変化量をモニターすることに
より膜厚を測定する装置であり、工業的に安価であり、
かつ種々の蒸発源に対応することができる。
The means for continuously measuring the film thickness or the film formation rate according to the present invention may be any device capable of continuously measuring a thin film being formed on a silicon wafer, a glass substrate or the like at the time of film formation. For example, a crystal film thickness meter or an optical film thickness meter can be used. The crystal film thickness meter is a device that measures the film thickness by monitoring the natural frequency of the crystal oscillator, and can measure the film thickness with high accuracy. On the other hand, the optical film thickness meter is a device for measuring the film thickness by monitoring the amount of change in transmitted light or reflected light obtained by irradiating the sample with light incident from a light source, and is industrially inexpensive,
In addition, various evaporation sources can be supported.

【0011】本発明に係わる膜厚または成膜速度を所定
の目標値と比較する比較手段は、あらかじめ設定してお
いた値(たとえば目標蒸発速度)と水晶膜厚計や光学式
膜厚計などから入力される測定値とを比較することので
きる比較器であり、また比較した結果の差の値を演算し
信号として出力することのできる装置であればよい。た
とえば、アナログ比較器、パルス発生器、プロセスコン
ピュータまたはこれらの組み合わせなどから構成され
る。このような比較手段を使用することにより、パワー
コントロール機能を備えた水晶膜厚計などから直接蒸発
源電流を制御するのに較べて、間接的に蒸発速度を一定
とするように電流値の微調節を行うことができる。ま
た、水晶発信器などの発信不良の場合にもプロセスコン
ピュータの作用により電流値を一定に保つことができる
ため、成膜を続行することができる。
The comparing means for comparing the film thickness or the film forming rate according to the present invention with a predetermined target value is a preset value (for example, a target evaporation rate) and a quartz film thickness meter or an optical film thickness meter. Any device can be used as long as it is a comparator that can compare the measured value input from the device and that can calculate the difference value of the comparison result and output it as a signal. For example, it is composed of an analog comparator, a pulse generator, a process computer or a combination thereof. By using such a comparison means, compared to directly controlling the evaporation source current from a crystal thickness meter equipped with a power control function, the current value can be controlled so that the evaporation rate is indirectly fixed. Adjustments can be made. Further, even when the crystal oscillator or the like has a transmission failure, the current value can be kept constant by the action of the process computer, so that the film formation can be continued.

【0012】本発明に係わる蒸発源電流を制御する制御
手段は、上述の差の値の信号に基づき、蒸発源に供給す
る電流値を制御しうる装置であればよい。
The control means for controlling the evaporation source current according to the present invention may be any device capable of controlling the current value supplied to the evaporation source on the basis of the above-mentioned difference value signal.

【0013】[0013]

【作用】膜厚または成膜速度を所定の目標値と比較する
比較手段を使用することにより、蒸発源からの蒸発材の
蒸発速度を一定に保つことができる。また、水晶発振不
良などが生じても成膜を中止しなくてもよい。
By using the comparing means for comparing the film thickness or the film forming rate with the predetermined target value, the evaporation rate of the evaporation material from the evaporation source can be kept constant. In addition, the film formation does not have to be stopped even if crystal oscillation failure occurs.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1 パワーコントロール機能を備えた水晶膜厚計に代えて水
晶モニタを使用した装置の例について説明する。図1は
実施例1の真空蒸着装置の構成を示す図である。 真空
槽1内には、被着材である基板などを載せるための蒸着
ドーム2、膜厚を測定するための水晶モニタセンサヘッ
ド3および水晶モニタ4、比較器を構成するアナログ比
較器5、パルス発生器6およびプロセスコンピュータ
7、蒸着材を蒸発させるための蒸発源コントローラ8お
よび蒸発源9、付着膜厚を監視する光学膜厚計(図示せ
ず)から構成されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. Example 1 An example of an apparatus using a crystal monitor instead of the crystal film thickness meter having a power control function will be described. FIG. 1 is a diagram showing the configuration of the vacuum vapor deposition apparatus of the first embodiment. In the vacuum chamber 1, a vapor deposition dome 2 for mounting a substrate as an adherend, a crystal monitor sensor head 3 and a crystal monitor 4 for measuring the film thickness, an analog comparator 5 constituting a comparator, a pulse It comprises a generator 6 and a process computer 7, an evaporation source controller 8 and an evaporation source 9 for evaporating the vapor deposition material, and an optical film thickness meter (not shown) for monitoring the deposited film thickness.

【0015】この装置を使用して薄膜を形成する方法に
ついてつぎに説明する。被着材に蒸着を行う際には、あ
らかじめ設定電流値10に従いプロセスコンピュータ7
は蒸発源コントローラ8に指令をだすことで蒸発源9か
ら蒸着材が蒸発する。さらにその蒸着材の蒸発速度を水
晶モニタセンサヘッド3で感知し、水晶モニタ4からは
蒸発速度に比例したアナログ信号を出力する。そのアナ
ログ信号をあらかじめ設定しておいた値(目標蒸発速
度)をアナログ比較器5で比較して、その比較値の差の
大きさに比例したパルス数をパルス発生器6から出力す
る。プロセスコンピュータ7は送られてきたパルス信号
を受け、あらかじめ設定しておいた変化量(1パルス当
たりの電流変化量△I(A)/パルス)に基づき蒸発源
コントローラ8に指令をだす。これで1つの閉ループが
形成される。
A method for forming a thin film using this apparatus will be described below. When performing vapor deposition on the adherend, the process computer 7 is set in advance according to the set current value 10.
Issues a command to the evaporation source controller 8 to evaporate the vapor deposition material from the evaporation source 9. Further, the evaporation rate of the vapor deposition material is sensed by the crystal monitor sensor head 3, and the crystal monitor 4 outputs an analog signal proportional to the evaporation rate. A preset value (target evaporation rate) of the analog signal is compared by the analog comparator 5, and a pulse number proportional to the magnitude of the difference between the comparison values is output from the pulse generator 6. The process computer 7 receives the transmitted pulse signal and issues a command to the evaporation source controller 8 based on a preset change amount (current change amount per pulse ΔI (A) / pulse). This forms one closed loop.

【0016】ところで、水晶モニタセンサヘッド3の水
晶が発振不良を起こした場合は、パルス発生器6からプ
ロセスコンピュータ7にパルス信号が送られなくなる
が、発振不良を起こす直前の電流値(設定電流値10に
パルス信号数により補正した値)で成膜は続行する。そ
して光学膜厚計で指定した膜厚になったことを検出して
その層を終了する。そして次層の成膜に入るが、次層の
電流制御は、次層の設定電流値10の電流値一定制御を
行う。(水晶発振不良に対しても電流値一定制御を行う
ことで成膜が続行できる。)。
By the way, when the crystal of the crystal monitor sensor head 3 causes the oscillation failure, the pulse signal is not sent from the pulse generator 6 to the process computer 7, but the current value (set current value) immediately before the oscillation failure occurs. The film formation is continued with a value corrected to 10 by the number of pulse signals. Then, when the specified thickness is detected by the optical film thickness meter, the layer is finished. Then, the film formation of the next layer starts, but the current control of the next layer is performed by constant current value control of the set current value 10 of the next layer. (It is possible to continue film formation by performing constant current value control even for crystal oscillation failure.).

【0017】また、本装置を用いて、多層膜を形成する
場合には、各層毎にあらかじめ設定電流を設定しておき
蒸着材の減少などにより蒸発速度が目標蒸発速度とのズ
レが生じた場合そのズレを補正するために前述の設定電
流に対し△I(A)だけプラスまたはマイナする。これ
を 1つの閉ループとして連続的に制御することで、パワ
ーコントロール機能を備えた水晶膜厚計を用いた水晶レ
ート制御と同じ精度での成膜が可能となる。
Further, when a multilayer film is formed by using this apparatus, if a preset current is set for each layer in advance and the evaporation rate deviates from the target evaporation rate due to a decrease in the vapor deposition material or the like. In order to correct the deviation, the amount of ΔI (A) is added or subtracted from the set current described above. By continuously controlling this as one closed loop, it is possible to form a film with the same accuracy as the crystal rate control using the crystal film thickness meter having the power control function.

【0018】また、水晶が発振不良となった時も、その
層は、発振不良を起こす直前の電流値の電流値一定制御
として成膜が続行し、次層はその層の設定電流値そのま
まで電流値一定制御を行い成膜する。これにより、成膜
中に水晶発振子が発振不良を起こすとその層だけは発振
不良を起こす直前の電流値で電流値一定制御を行い成膜
できるが次層からの成膜はできないという、水晶成膜計
を使用した水晶レート制御の欠点をおぎない、最終層完
了まで成膜を中止することなく実行できる。
Also, even when the crystal becomes defective in oscillation, film formation is continued on that layer as a constant current value control of the current value immediately before the occurrence of oscillation failure, and the next layer remains the current value set for that layer. A film is formed by controlling the current value constant. As a result, when the crystal oscillator causes oscillation failure during film formation, only that layer can be formed by performing constant current value control with the current value immediately before the oscillation failure occurs, but it cannot be formed from the next layer. The crystal rate control using a film-forming meter can be carried out without stopping the film formation until the final layer is completed.

【0019】実施例2 パワーコントロール機能を備えた水晶膜厚計に代えて光
学式膜厚計を使用した装置の例について説明する。図2
は実施例2の蒸気レート制御方法を適用した真空蒸着装
置の構成を示す図である。真空槽1内には、被着材であ
る基板などを載せるための蒸着ドーム2、透過光または
反射光強度の時間的変化を測定するための光源12、反
射ミラー13、モニタ基板14、受光部15および光学
式膜厚モニター16、蒸着材を蒸発させるための蒸発源
9、付着膜厚を監視する光学膜厚計(図示せず)から構
成されている。
Example 2 An example of an apparatus using an optical film thickness meter in place of the crystal film thickness meter having a power control function will be described. Figure 2
FIG. 8 is a diagram showing a configuration of a vacuum vapor deposition apparatus to which the vapor rate control method of Example 2 is applied. In the vacuum chamber 1, a vapor deposition dome 2 for mounting a substrate or the like as an adherend, a light source 12 for measuring a temporal change of transmitted light or reflected light intensity, a reflection mirror 13, a monitor substrate 14, a light receiving unit. 15 and an optical film thickness monitor 16, an evaporation source 9 for evaporating the vapor deposition material, and an optical film thickness meter (not shown) for monitoring the adhered film thickness.

【0020】この装置を使用して薄膜を形成する方法に
ついてつぎに説明する。プロセスコンピュータ7にプロ
グラムされている動作のフローチャートを図3に示す。
まず成膜開始時の時刻をt1 、成膜終了時の時刻を
2 、成膜時の蒸発源の電流値をIn とする。とくに蒸
着条件の変化による蒸発レート変化がない場合は、あら
かじめプロセスコンピュータ7に入力された目標時間T
s で成膜は終了するため、光量変化は図4に示す曲線a
のようになる。すなわちt2 −t1 =Ts となり、所定
の目標値との差に基づく出力信号は 0 となる。したが
って、次の成膜時の電流値In+1 は In+1 =In となる。しかし、蒸着条件の変化により光量変化が図4
に示す曲線bや曲線cのように目標時間Ts で成膜が終
了しない場合は、あらかじめプロセスコンピュータ7に
入力された電流補正値△Iで補正を行う。すなわち、 t2 −t1 >Ts の時(曲線C):In+1 =In +△I t2 −t1 <Ts の時(曲線b):In+1 =In −△I この補正された電流値は次の成膜時の電流値In+1 とし
て蒸発源制御装置8に送られ蒸発源9を制御する。
A method for forming a thin film using this apparatus will be described below. A flow chart of the operations programmed in the process computer 7 is shown in FIG.
First time at the time of film formation start t 1, t 2 time during film formation completed, the current value of the evaporation source during the deposition and I n. In particular, when there is no change in the evaporation rate due to changes in the vapor deposition conditions, the target time T previously input to the process computer 7
Since the film formation is completed at s , the change in the light amount is represented by the curve a shown in FIG.
become that way. That is, t 2 −t 1 = T s , and the output signal based on the difference from the predetermined target value becomes 0. Therefore, the current value I n + 1 during the next film formation is I n + 1 = I n . However, the change in light amount due to changes in vapor deposition conditions is shown in FIG.
When the film formation is not completed within the target time T s as indicated by the curves b and c shown in (1), the current correction value ΔI input to the process computer 7 in advance is used for correction. That is, when t 2 −t 1 > T s (curve C): I n + 1 = I n + ΔI t 2 −t 1 <T s (curve b): I n + 1 = I n − ΔI This corrected current value is sent to the evaporation source control device 8 as the current value I n + 1 for the next film formation to control the evaporation source 9.

【0021】以上のようなフローチャートに示した方法
で、蒸発源の電流値を補正することにより、成膜に要す
る時間を管理し、蒸発レートを一定に制御することがで
きる。 また、目標時間Ts 、電流補正値△Iはプロセ
スコンピュータ7より任意に設定できるため、プロセス
コンピュータ7のみで各蒸発源(抵抗加熱、電子銃加熱
など)に対応できる。また成膜方法としては真空蒸着法
のみならず他の方法、たとえばスパッタリング法にも適
用できる。
By correcting the current value of the evaporation source by the method shown in the above flow chart, the time required for film formation can be managed and the evaporation rate can be controlled to be constant. Further, since the target time T s and the current correction value ΔI can be set arbitrarily by the process computer 7, each process computer 7 alone can cope with each evaporation source (resistance heating, electron gun heating, etc.). Further, as the film forming method, not only the vacuum vapor deposition method but also other methods such as sputtering method can be applied.

【0022】[0022]

【発明の効果】本発明の真空成膜装置は、膜厚または成
膜速度を連続的に測定する手段と、膜厚または成膜速度
を所定の目標値と比較する比較手段と、この比較手段よ
り出力される所定の目標値との差に基づく出力信号によ
り蒸発源電流を制御する制御手段とを有するので、膜厚
または成膜速度を連続的に測定する手段が水晶モニタで
ある場合においては、水晶発振子が発振不良を起こして
も成膜を中止することなく作業ができる。また、パワー
コントロール機能付水晶膜厚計を使用しなくても高精度
で蒸発速度を制御することができる。
The vacuum film forming apparatus of the present invention comprises means for continuously measuring the film thickness or film forming rate, comparing means for comparing the film thickness or film forming rate with a predetermined target value, and this comparing means. Since it has a control means for controlling the evaporation source current by an output signal based on the difference from a predetermined target value output by a quartz monitor, the means for continuously measuring the film thickness or the film formation rate is Even if the crystal oscillator causes oscillation failure, work can be performed without stopping film formation. In addition, the evaporation rate can be controlled with high accuracy without using a crystal thickness meter with a power control function.

【0023】また、光学的膜厚測定装置が測定手段であ
る場合においては、成膜時間を一定に管理することがで
きるので、パワーコントロール機能付水晶膜厚計を使用
しなくても高精度で蒸発速度を制御することができる。
さらに、抵抗加熱、電子銃加熱などの種々の蒸発源の制
御に対応できる。
Further, in the case where the optical film thickness measuring device is the measuring means, since the film forming time can be controlled to be constant, the quartz film thickness meter with a power control function can be used with high accuracy. The evaporation rate can be controlled.
Furthermore, it is possible to control various evaporation sources such as resistance heating and electron gun heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の真空蒸着装置の構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of a vacuum vapor deposition apparatus of Example 1.

【図2】実施例2の蒸気レート制御方法を適用した真空
蒸着装置の構成を示す図である。
FIG. 2 is a diagram showing the configuration of a vacuum vapor deposition apparatus to which the vapor rate control method of Example 2 is applied.

【図3】実施例2のフローチャートを示す図である。FIG. 3 is a diagram illustrating a flowchart of a second embodiment.

【図4】実施例2の光量変化のグラフを示す図である。FIG. 4 is a diagram showing a graph of a light amount change of Example 2.

【図5】水晶レート制御方法の真空蒸着装置の構成を示
す図である。
FIG. 5 is a diagram showing a configuration of a vacuum vapor deposition apparatus of a crystal rate control method.

【図6】電流値一定制御方法の真空蒸着装置の構成を示
す図である。
FIG. 6 is a diagram showing a configuration of a vacuum vapor deposition apparatus according to a constant current value control method.

【符号の説明】[Explanation of symbols]

1…真空槽、2…蒸着ドーム、3…水晶モニタセンサヘ
ッド、4…水晶モニタ、5…アナログ比較器、6…パル
ス発生器、7…プロセスコンピュータ、8…蒸発源コン
トローラ、9…蒸発源、10…設定電流値、11…パワ
ーコントロール機能を備えた水晶膜厚計、12…光源、
13…反射ミラー、14…モニタ基板、15…受光部、
16…光学式膜厚モニター、17…光。
DESCRIPTION OF SYMBOLS 1 ... Vacuum tank, 2 ... Deposition dome, 3 ... Quartz monitor sensor head, 4 ... Quartz monitor, 5 ... Analog comparator, 6 ... Pulse generator, 7 ... Process computer, 8 ... Evaporation source controller, 9 ... Evaporation source, 10 ... Set current value, 11 ... Quartz film thickness meter with power control function, 12 ... Light source,
13 ... Reflective mirror, 14 ... Monitor substrate, 15 ... Light receiving part,
16 ... Optical film thickness monitor, 17 ... Light.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 成膜される膜厚または成膜速度を連続的
に測定する手段と、前記膜厚または成膜速度を所定の目
標値と比較する比較手段と、前記比較手段より出力され
る前記所定の目標値との差に基づく出力信号により蒸発
源電流を制御する制御手段とを有することを特徴とする
真空成膜装置。
1. A means for continuously measuring a film thickness or a film forming rate to be formed, a comparing means for comparing the film thickness or the film forming rate with a predetermined target value, and an output from the comparing means. A vacuum film forming apparatus comprising: a control unit that controls an evaporation source current according to an output signal based on a difference from the predetermined target value.
JP32421593A 1993-12-22 1993-12-22 Vacuum film forming device Pending JPH07180055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32421593A JPH07180055A (en) 1993-12-22 1993-12-22 Vacuum film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32421593A JPH07180055A (en) 1993-12-22 1993-12-22 Vacuum film forming device

Publications (1)

Publication Number Publication Date
JPH07180055A true JPH07180055A (en) 1995-07-18

Family

ID=18163334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32421593A Pending JPH07180055A (en) 1993-12-22 1993-12-22 Vacuum film forming device

Country Status (1)

Country Link
JP (1) JPH07180055A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094344A2 (en) * 1999-10-14 2001-04-25 Hoya Corporation Thin film forming method and apparatus
WO2003012160A1 (en) * 2001-07-31 2003-02-13 Asahi Optronics, Ltd. High frequency ion plating vapor deposition system
CN100410419C (en) * 2005-06-03 2008-08-13 中国科学院上海光学精密机械研究所 Computer controlled film coating device
KR20150135082A (en) * 2014-05-23 2015-12-02 캐논 톡키 가부시키가이샤 Method for controlling film thickness by crystal oscillation type film thickness monitor
JP2020033620A (en) * 2018-08-31 2020-03-05 キヤノントッキ株式会社 Film deposition apparatus and method of controlling film deposition apparatus
JP2022090053A (en) * 2018-08-31 2022-06-16 キヤノントッキ株式会社 Film deposition apparatus and method of controlling film deposition apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094344A2 (en) * 1999-10-14 2001-04-25 Hoya Corporation Thin film forming method and apparatus
EP1094344A3 (en) * 1999-10-14 2002-04-17 Hoya Corporation Thin film forming method and apparatus
US6481369B1 (en) 1999-10-14 2002-11-19 Hoya Corporation Thin film forming method and apparatus
US6656518B2 (en) 1999-10-14 2003-12-02 Hoya Corporation Thin film forming method and apparatus
WO2003012160A1 (en) * 2001-07-31 2003-02-13 Asahi Optronics, Ltd. High frequency ion plating vapor deposition system
CN100410419C (en) * 2005-06-03 2008-08-13 中国科学院上海光学精密机械研究所 Computer controlled film coating device
KR20150135082A (en) * 2014-05-23 2015-12-02 캐논 톡키 가부시키가이샤 Method for controlling film thickness by crystal oscillation type film thickness monitor
JP2020033620A (en) * 2018-08-31 2020-03-05 キヤノントッキ株式会社 Film deposition apparatus and method of controlling film deposition apparatus
JP2022090053A (en) * 2018-08-31 2022-06-16 キヤノントッキ株式会社 Film deposition apparatus and method of controlling film deposition apparatus

Similar Documents

Publication Publication Date Title
US4311725A (en) Control of deposition of thin films
US5754297A (en) Method and apparatus for monitoring the deposition rate of films during physical vapor deposition
JPH01108378A (en) Sputtering device
US6798499B2 (en) Method of forming optical thin films on substrate at high accuracy and apparatus therefor
US6656518B2 (en) Thin film forming method and apparatus
JPH07180055A (en) Vacuum film forming device
JPH0772307A (en) Method and device for forming thin film
JPS58167767A (en) Formation of thin film
GB2029017A (en) Control of deposition of thin films
WO2023079770A1 (en) Device for controlling film formation, film forming device, and film forming method
JP2825298B2 (en) Film thickness measuring device
JP3926073B2 (en) Thin film forming method and apparatus
JPS6328862A (en) Method for controlling film thickness
JP2000008164A (en) Production of base material with thin film and production device therefor
JPH10251844A (en) Production of thin film-coated substrate, its production device and thin film-coated substrate
JP2000171630A (en) Formation of multilayered optical thin film
JPH0547631B2 (en)
JP2005241282A (en) Film thickness detection method and apparatus and film deposition method and apparatus
JP2516976B2 (en) Vapor phase growth equipment
JPS596376A (en) Sputtering apparatus
JPH0878791A (en) Thin-film forming device
JP2001192827A (en) Vacuum evaporation system
JPH0730447B2 (en) Thin film formation method
JPH1030171A (en) Electron beam vacuum depositing device
JPS62149871A (en) Formation of thin film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980908