JP2001192827A - Vacuum evaporation system - Google Patents

Vacuum evaporation system

Info

Publication number
JP2001192827A
JP2001192827A JP2000000826A JP2000000826A JP2001192827A JP 2001192827 A JP2001192827 A JP 2001192827A JP 2000000826 A JP2000000826 A JP 2000000826A JP 2000000826 A JP2000000826 A JP 2000000826A JP 2001192827 A JP2001192827 A JP 2001192827A
Authority
JP
Japan
Prior art keywords
evaporation
electron gun
evaporation source
vapor deposition
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000000826A
Other languages
Japanese (ja)
Inventor
Kenjiro Ueda
健二朗 上田
Takahiro Kubota
隆弘 窪田
Ichiro Ohama
一郎 大濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000000826A priority Critical patent/JP2001192827A/en
Publication of JP2001192827A publication Critical patent/JP2001192827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To deposit, continuously over a long time, a mixed film consisting of a plurality of elements so that composition ratio becomes uniform in the traveling direction and orthogonal direction of an object to be subjected to vapor deposition and in the direction of a film and thickness becomes constant in the traveling direction and the orthogonal direction. SOLUTION: The system is a vacuum evaporation system capable of depositing a mixture film consisting of different elements at least on one side of an object to be subjected to vapor deposition traveling through a vacuum chamber and is provided with: a crucible (individual evaporation sources) in which a plurality of evaporation materials of dissimilar compositions are filled alternately into respective regions divided in the traveling direction (sheet-width direction) of the object to be subjected to vapor deposition; and an electron gun for heating the evaporation materials. Further, this system has a temperature measuring means, an evaporation rate estimating means, an applied energy determining means, a controlled variable computing means, and an electron gun controlling means, on the basis of the ratio among the results obtained by the above means, for the individual evaporation sources.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、詳しくは、真空槽
内で走行する被蒸着物に蒸着薄膜を形成するための真空
蒸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum vapor deposition apparatus for forming a vapor deposition thin film on an object running in a vacuum chamber.

【0002】[0002]

【従来の技術】従来、真空槽中で走行する被蒸着物に蒸
着薄膜を蒸着する真空蒸着装置として、例えば特開平2
−236273号公報に記載されている装置がある。こ
の装置においては、長方形の蒸発源が、長手方向がフィ
ルムの走行方向と直行方向になるように配置された(フ
ィルムの幅より長い)ている。この蒸着源に、無走査電
子銃から電子線を照射して加熱し、フィルム上に薄膜を
形成させる。そして、電子銃から電子線を照射する際、
電子線が蒸発源の各位置で同じ入射角になるように磁界
を制御して行うようになっている。
2. Description of the Related Art Conventionally, as a vacuum deposition apparatus for depositing a deposition thin film on an object to be deposited traveling in a vacuum chamber, for example, Japanese Patent Application Laid-Open No.
There is an apparatus described in JP-A-236273. In this device, a rectangular evaporation source is arranged (longer than the width of the film) so that the longitudinal direction is perpendicular to the running direction of the film. The deposition source is irradiated with an electron beam from a non-scanning electron gun and heated to form a thin film on the film. And when irradiating the electron beam from the electron gun,
The magnetic field is controlled so that the electron beam has the same incident angle at each position of the evaporation source.

【0003】しかしながら、この装置では蒸着した薄膜
の厚みを制御する手段が無い。そのため、例えば、 真
空槽内の真空度が変化したり、蒸着材料の表面形状が変
化することにより蒸着速度が変化した場合には、薄膜の
厚みがフィルムの走行方向およびその直行方向に対し
て、変動するという問題があった。さらに、この装置
は、複数の蒸着材料を同時に蒸着させることができず、
これらの混合膜をフィルム上に形成できないという問題
があった。
However, this apparatus has no means for controlling the thickness of the deposited thin film. Therefore, for example, when the degree of vacuum in the vacuum chamber changes, or when the deposition rate changes due to a change in the surface shape of the deposition material, the thickness of the thin film is increased with respect to the running direction of the film and the direction perpendicular thereto. There was a problem of fluctuation. Furthermore, this apparatus cannot simultaneously deposit a plurality of deposition materials,
There is a problem that these mixed films cannot be formed on the film.

【0004】かかる問題を解決するために発明された真
空蒸着装置として、例えば、真空槽内の蒸発源を電子銃
で加熱した際の蒸発量の一部を検出する検出器と、この
検出器での検出値に基づいて前記蒸発源の出力を制御す
る手段とを備えた構造のものがある。この方式の検出器
は水晶振動子を備えていて、水晶振動子に蒸着膜が付着
すると、膜厚に依存して振動周波数が変動する原理を利
用している。この真空蒸着装置は、蒸発源からの蒸発量
の一部を制御指標としてフィルム上に製膜された薄膜の
厚みを間接的に制御することができる。
As a vacuum evaporation apparatus invented to solve such a problem, for example, a detector for detecting a part of the evaporation amount when an evaporation source in a vacuum chamber is heated by an electron gun, and a detector for detecting a part of the evaporation amount And means for controlling the output of the evaporation source based on the detected value of the evaporation source. This type of detector is provided with a crystal oscillator, and utilizes the principle that, when a deposited film adheres to the crystal oscillator, the oscillation frequency varies depending on the film thickness. This vacuum vapor deposition apparatus can indirectly control the thickness of a thin film formed on a film using a part of the amount of evaporation from an evaporation source as a control index.

【0005】しかしながら、上述した検出器は化学組成
の異なる複数の蒸着材料を同時に蒸着させる場合には、
検出した信号を各々の成分情報に分解することができな
い。その結果、組成比及び厚みの制御の精度が著しく低
下するという問題があった。さらに、間接制御を行って
いるために、例えば蒸着時の電子線の方向が変わった場
合には、検出器の付着量の測定値と実際の薄膜の付着量
が異なることもある。また、さらに、上記検出器は検出
器への総蒸着量の制限から、長時間の連続計測を行う場
合に、計測途中で検出器を切り替える等の対策が必要と
なり、計測の信頼性にも問題があった。
[0005] However, when the above-mentioned detector is used to simultaneously deposit a plurality of deposition materials having different chemical compositions,
The detected signal cannot be decomposed into each component information. As a result, there has been a problem that the accuracy of controlling the composition ratio and the thickness is significantly reduced. Furthermore, because the indirect control is performed, for example, when the direction of the electron beam at the time of vapor deposition changes, the measured value of the adhesion amount of the detector may differ from the actual adhesion amount of the thin film. In addition, the above-described detector requires measures such as switching the detector during the measurement when performing long-time continuous measurement due to the limitation of the total deposition amount on the detector, and there is also a problem in the reliability of the measurement. was there.

【0006】かかる問題を解決した装置として、例えば
特開平1−208465号公報に記載された装置があ
る。この装置は、蒸着後の基板上の蒸着膜に電子線を鋭
角に入射して特性X線を励起させるための電子銃と、こ
の特性X線強度を測定する検出器と、この検出器での検
出値に基づいて個々の蒸発源の出力を制御する手段とを
備える。この装置では、蒸着薄膜の直接計測が可能なた
め、上述した装置に比べて生産効率は向上する。
As an apparatus which has solved such a problem, for example, there is an apparatus described in Japanese Patent Application Laid-Open No. Hei 1-208465. This apparatus includes an electron gun for exciting an characteristic X-ray by injecting an electron beam at an acute angle into a vapor-deposited film on a substrate after vapor deposition, a detector for measuring the characteristic X-ray intensity, and a detector for measuring the characteristic X-ray intensity. Means for controlling the output of each evaporation source based on the detected value. In this apparatus, since the direct measurement of the deposited thin film is possible, the production efficiency is improved as compared with the above-described apparatus.

【0007】しかしながら、上記電子銃は高エネルギー
電子線(RHEED)を蒸着膜に鋭角に入射するため、
励起された特性X線からは、蒸着薄膜のごく表層の情報
しか得ることができない。そのため、厚みを一定にする
ために必要な蒸着薄膜の膜方向全体の情報が得られず問
題であった。さらに、高エネルギー電子線が照射された
部分の蒸着薄膜表面が損傷するという問題もあった。
However, since the above-mentioned electron gun makes a high-energy electron beam (RHEED) incident on the deposited film at an acute angle,
From the excited characteristic X-rays, only information on the very surface layer of the deposited thin film can be obtained. For this reason, there is a problem in that information on the entire film direction of the vapor-deposited thin film necessary for keeping the thickness constant cannot be obtained. Further, there is another problem that the surface of the deposited thin film irradiated with the high energy electron beam is damaged.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明の目的
は、上記従来技術の有する問題点に鑑みて、長時間連続
して、複数の元素からなる混合膜を、組成比が被蒸着物
の走行方向、直行方向及び膜方向に均一に、かつ、厚み
が走行方向及び直行方向に一定となるように形成するこ
とである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to continuously form a mixed film composed of a plurality of elements for a long period of time with a composition ratio of an object to be deposited. It is formed so as to be uniform in the running direction, the orthogonal direction and the film direction, and to have a constant thickness in the running direction and the orthogonal direction.

【0009】[0009]

【課題を解決するための手段】上記目的は、請求項記載
の発明により達成される。すなわち、本発明に関わる蒸
着装置は、真空槽内で走行する被蒸着物の少なくとも片
面に異なる元素からなる混合膜を形成可能な真空蒸着装
置であって、被蒸着物の走行方向(以降、シート幅方向
と呼ぶ)に分割された領域に組成の異なる複数の蒸着材
料が交互に充填された坩堝(以降、個々の蒸発源と呼
ぶ)と、蒸着材料を加熱するための電子銃を備えた蒸着
装置において、個々の蒸発源の温度を非接触で測定する
温度測定手段と、計測された温度データを基に個々の蒸
発源の蒸発速度を推定する蒸発速度推定手段と、個々の
蒸発源の蒸発速度と予め個々の蒸発源に対応して設定さ
れた基準値を比較し、比較した結果に基づいて個々の蒸
発源に投入するエネルギー量を決定する投入エネルギー
決定手段と、個々の投入エネルギー量の総和値を基に電
子銃の出力を決定する第1の制御量演算手段と、個々の
投入するエネルギー量の比率を基に個々の蒸発源の電子
線照射時間を決定する第2の制御量演算手段と、前記第
1、第2の制御量を電子銃に与えて個々の蒸発源の加熱
を制御する電子銃制御手段を備えることにある。
The above object is achieved by the invention described in the claims. That is, the vapor deposition apparatus according to the present invention is a vacuum vapor deposition apparatus capable of forming a mixed film composed of different elements on at least one surface of a substance to be deposited traveling in a vacuum chamber, and the traveling direction of the substance to be deposited (hereinafter, a sheet). A crucible (hereinafter, referred to as individual evaporation sources) in which a plurality of deposition materials having different compositions are alternately filled in a region divided into width directions (hereinafter, referred to as individual evaporation sources), and an evaporation device provided with an electron gun for heating the deposition materials. A temperature measuring means for measuring the temperature of each evaporation source in a non-contact manner; an evaporation rate estimating means for estimating the evaporation rate of each evaporation source based on the measured temperature data; Comparing the speed with a reference value set in advance for each evaporation source, input energy determining means for determining the amount of energy to be input to each evaporation source based on the comparison result, Sum value A first control amount calculating means for determining the output of the electron gun based on the first control amount; a second control amount calculating means for determining the electron beam irradiation time of each evaporation source based on the ratio of the amount of energy to be input; An electron gun control means for applying the first and second control amounts to the electron gun and controlling the heating of the individual evaporation sources is provided.

【0010】この構成によれば、個々の蒸発源の表面温
度が経時的に測定できるので、かかる測定値からその時
の各々の蒸着源からの蒸発速度にを得ることができる。
さらに、これらの蒸発速度を基に、個々の蒸発源に投入
するエネルギー量を高精度に演算して電子銃を自動で制
御できるため、長時間連続して、複数の元素からなる混
合膜を、組成比が被蒸着物の走行方向、直行方向及び膜
方向に均一に、かつ、厚みが走行方向及び直行方向に一
定となるように形成することができる。したがって、目
標の組成比、目標の厚み及び膜方向に均一な組成を有す
る混合膜を、シートの全幅で、かつ、連続的に形成でき
る。
According to this configuration, since the surface temperature of each evaporation source can be measured with time, the evaporation rate from each evaporation source at that time can be obtained from the measured value.
Furthermore, based on these evaporation rates, the amount of energy input to each evaporation source can be calculated with high precision and the electron gun can be automatically controlled, so that a mixed film composed of a plurality of elements can be continuously formed for a long time. It can be formed so that the composition ratio is uniform in the running direction, the orthogonal direction, and the film direction of the deposition target, and the thickness is constant in the running direction and the orthogonal direction. Therefore, a mixed film having a target composition ratio, a target thickness, and a uniform composition in the film direction can be continuously formed over the entire width of the sheet.

【0011】[0011]

【実施の形態】本発明の実施の形態を、図面を参照して
詳細に説明する。図1は、本実施形態における真空蒸着
装置の概略構造を示す。この真空蒸着装置は、被蒸着物
として、ポリエチレンテレフタレート(PET)などの
フィルムを例に用いた。尚、被蒸着物の材料は特に限定
されるものではない。真空槽6の巻き出しロール1にセ
ットされたフィルム17は冷却ロール3上を走行し、ニ
アロール5を通り、巻き取りロール2で巻き取られる。
真空槽6内の真空度は油拡散ポンプ(図示略)等から
なる排気系10により所定の真空度に維持される。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic structure of a vacuum evaporation apparatus according to the present embodiment. In this vacuum vapor deposition apparatus, a film such as polyethylene terephthalate (PET) was used as an example of a material to be vapor-deposited. The material of the object to be deposited is not particularly limited. The film 17 set on the unwinding roll 1 of the vacuum chamber 6 travels on the cooling roll 3, passes through the near roll 5, and is wound by the winding roll 2.
The degree of vacuum in the vacuum chamber 6 is maintained at a predetermined degree by an exhaust system 10 including an oil diffusion pump (not shown).

【0012】真空槽6の底部に蒸着材料16を保持する
保持手段の一例である坩堝9が、その内側に収納されて
いる蒸着材料を照射する電子線の照射条件(電子銃と電
子材料との距離など)ができるだけ一定になるように配
置されている。さらに、坩堝9は移動するフィルム17
の被蒸着面に対して蒸着条件が一定に保つことができる
ように、図1の電子銃4に対して接近又は離間すること
ができる。電子銃4は坩堝9に収納された蒸着材料16
に対して電子線18を照射する。また、電子線18によ
り加熱・蒸発された蒸着材料の一部は冷却ロール3上を
走行するフィルム17の被蒸着面に蒸着される。なお、
坩堝9に投入する総エネルギ−量が1台で確保できない
場合や広幅のフィルムを蒸着する場合などでは、複数の
電子銃を使用して、蒸着領域を分割する方法を採用して
もよく、電子銃の設置台数は特に限定されない。
A crucible 9, which is an example of a holding means for holding the vapor deposition material 16 at the bottom of the vacuum chamber 6, irradiates the vapor deposition material accommodated inside the crucible 9 with irradiation conditions of the electron beam (the electron gun and the electronic material). Distance, etc.) as much as possible. Further, the crucible 9 has a moving film 17.
1 can be approached or separated from the electron gun 4 in FIG. 1 so that the evaporation conditions can be kept constant with respect to the surface to be evaporated. The electron gun 4 is composed of the evaporation material 16 stored in the crucible 9.
Is irradiated with an electron beam 18. A part of the evaporation material heated and evaporated by the electron beam 18 is evaporated on the surface of the film 17 running on the cooling roll 3. In addition,
When the total energy input to the crucible 9 cannot be secured by one unit or when a wide film is deposited, a method of dividing the deposition region using a plurality of electron guns may be employed. The number of installed guns is not particularly limited.

【0013】次に、 個々の蒸発源の温度を測定するた
めの赤外線センサ−7について説明する。赤外線センサ
−を真空槽6外の大気中に設置し、石英製のガラス窓1
1を介して各蒸着材料から発する赤外線が確実に採れる
ようにフィルム幅方向の直線上に100mm間隔で配置
している。図6(a)に配置例を示す。なお、配置の間
隔、配列数及び台数は蒸発源の数、間隔に応じて決定す
れば良く、特に限定するものではない。又、センサ−ヘ
ッドの気密性が確保できる場合は、真空槽6内に入れて
温度を測定しても良く、特に限定しない。この赤外線セ
ンサ−の赤外線エネルギ−検出素子7aは半導体(S
i)の検出器であり、検出波長は0.9〜1.0μmである。
個々の蒸発源から発する赤外線をレンズにて集光されて
検出素子7aに導かれ、コントロ−ラ7bにて電気信号
に変換され、温度に換算した信号を蒸発速度演算器12
に送る。この信号は図4(b)に示す予め実験で設定し
た温度と蒸発速度との関係式を基に個々の蒸発源の蒸発
速度に変換された後、制御演算器13に送られる。
Next, an infrared sensor 7 for measuring the temperature of each evaporation source will be described. An infrared sensor is installed in the atmosphere outside the vacuum chamber 6 and a quartz glass window 1 is provided.
In order to reliably receive infrared rays emitted from each of the vapor deposition materials via No. 1, they are arranged at 100 mm intervals on a straight line in the film width direction. FIG. 6A shows an example of the arrangement. The arrangement interval, the number of arrays, and the number of units may be determined according to the number and intervals of the evaporation sources, and are not particularly limited. If the airtightness of the sensor head can be ensured, the temperature may be measured by placing the sensor head in the vacuum chamber 6 without any particular limitation. The infrared energy detecting element 7a of this infrared sensor is a semiconductor (S
i) The detector has a detection wavelength of 0.9 to 1.0 μm.
Infrared rays emitted from individual evaporation sources are condensed by a lens, guided to a detection element 7a, converted into an electric signal by a controller 7b, and converted into a temperature signal.
Send to This signal is converted into the evaporation rate of each evaporation source based on the relational expression between the temperature and the evaporation rate set in advance in the experiment shown in FIG.

【0014】ここに前記赤外線センサ−7、蒸発速度演
算器12はオンラインモニタ手段を構成する。制御量演
算器13は、個々の蒸発源の蒸発速度デ−タを集める。
そして予め設定された蒸発速度と投入エネルギ−量の関
係式を基に個々の蒸発源の投入エネルギ−量を求める。
Here, the infrared sensor 7 and the evaporation rate calculator 12 constitute online monitoring means. The control amount calculator 13 collects evaporation rate data of each evaporation source.
Then, the input energy amounts of the individual evaporation sources are obtained based on a preset relational expression between the evaporation rate and the input energy amount.

【0015】さらに、予め個々の蒸発源の蒸発速度毎に
設定された基準値と計算された値とを比較し、偏差量を
求め、その偏差量を基に制御用PID(比例動作Propor
tinal、積分動作lntegral、微分動作Derivative)演算
を行い、蒸着膜を均一に保つために個々の蒸発源に投入
するエネルギー量を補正する。制御量演算器13は個々
の蒸発源のエネルギー量総和値から、電子銃のパワー
(電力)を決定し、さらに個々の蒸発源のエネルギー量
比率から、個々の蒸発源に電子線を照射する時間を以下
の方法で決定する。個々の蒸発源に投入されるエネルギ
ーは、同じ電子銃4から照射される電子線18が源であ
るために、実際は電子線の照射時間を各々の蒸発源に対
して変化させることにより各材料へ投入されるエネルギ
ーを分配できる。これらの関係式を数式1に示す。
Further, a reference value set in advance for each evaporation rate of each evaporation source is compared with a calculated value, a deviation amount is obtained, and a control PID (proportional operation Proporous operation) is determined based on the deviation amount.
tinal, integral operation lntegral, differential operation Derivative) is performed to correct the amount of energy input to each evaporation source in order to keep the deposited film uniform. The control amount calculator 13 determines the power (electric power) of the electron gun from the total amount of energy of the individual evaporation sources, and further determines the time for irradiating each evaporation source with an electron beam from the energy amount ratio of each evaporation source. Is determined by the following method. Since the energy supplied to each evaporation source is the electron beam 18 emitted from the same electron gun 4, the energy is actually applied to each material by changing the irradiation time of the electron beam for each evaporation source. The input energy can be distributed. Equation 1 shows these relational expressions.

【0016】tan=Pan/(ΣPa+ΣPs)× t0 上記の数式において、tan は酸化アルミニウムのブロ
ックnでの電子線走査時間、Pan は酸化アルミニウム
・ブロックnに投入するエネルギー量、ΣPaは計4ブ
ロックの酸化アルミニウムに投入する総エネルギー量、
ΣPSは計4ブロックの酸化珪素に投入する総エネルギ
ー量、t0はハードウェアーに依存する時間定数(ms)
である。
[0016] In ta n = Pa n / (ΣPa + ΣPs) × t0 above equation, ta n electron beam scanning time at block n of aluminum oxide, amount of energy Pa n to be introduced into the aluminum oxide block n, ShigumaPa is Total energy input to a total of 4 blocks of aluminum oxide,
ΣPS is the total energy input to a total of 4 blocks of silicon oxide, and t0 is the time constant (ms) depending on the hardware
It is.

【0017】この制御データ(電子銃のパワーと、電子
線照射時間)は、電子銃制御装置14に送られる。電子
銃制御装置14は、入力された制御データに従って電子
銃4の投入電力と電子線の照射時間を制御する。ここに
制御量演算器13、電子銃制御装置14は制御手段を構
成する。
The control data (power of the electron gun and electron beam irradiation time) is sent to the electron gun controller 14. The electron gun controller 14 controls the power supplied to the electron gun 4 and the irradiation time of the electron beam according to the input control data. Here, the control amount calculator 13 and the electron gun controller 14 constitute control means.

【0018】なお、複数の赤外線センサ−はオンライン
モニタ手段の部分が独立に構成され(図示略)、制御手
段の部分が共通に構成される。本発明では、個々の蒸発
源の温度を測定する手段として半導体検出器がSiであ
る赤外線センサ−を用いたが、半導体検出器がInGa
Asの赤外線センサ−でも良く、例として光ファイバ−
にレ−ザ−パルスを放射して散乱光強度から温度を測定
する方法や図6(b)に示すような赤外線カメラ1台で
個々の蒸着源の温度分布を測定する方法でも良く特に限
定するもではない。また、個々の蒸発源の投入エネルギ
−を検量線から算出する方法及び個々の蒸発源に電子銃
のエネルギーを分配する前記計算式も特に限定するもの
ではない。
Incidentally, the plurality of infrared sensors are constituted independently of the on-line monitor means (not shown), and are constituted commonly by the control means. In the present invention, an infrared sensor having a semiconductor detector of Si is used as a means for measuring the temperature of each evaporation source.
As infrared sensor may be used, such as an optical fiber.
A method of measuring the temperature from the scattered light intensity by radiating a laser pulse to the laser beam or a method of measuring the temperature distribution of each vapor deposition source with one infrared camera as shown in FIG. Not even. Further, the method of calculating the input energy of each evaporation source from the calibration curve and the above formula for distributing the energy of the electron gun to each evaporation source are not particularly limited.

【0019】[0019]

【実施例】以下に本発明の態様を実施例をもって説明す
るが、これによって限定されるものではない。 (実施例1)蒸着されるシート17として、ポリエチレ
ンテレフタレート(PET)フィルム(東洋紡績(株)
製、E5100:商品名)を用いた。
EXAMPLES The embodiments of the present invention will be described below with reference to examples, but are not limited thereto. (Example 1) A polyethylene terephthalate (PET) film (Toyobo Co., Ltd.) was used as the sheet 17 to be deposited.
E5100: trade name).

【0020】蒸着材料(蒸発源)として3〜5mm程度
の大きさの粒子状をした酸化アルミニウム(Al2O
3、純度99.5%)と酸化珪素(SiO2、純度9
9.9%)を用いた。これらの材料を保持する一個の坩
堝は銅製であり、底部に外形20mmΦの冷却用水冷管
20を設けた構造とした。冷却水の流量は略4m3/h
である。
As an evaporation material (evaporation source), aluminum oxide (Al 2 O) in the form of particles having a size of about 3 to 5 mm is used.
3, purity 99.5%) and silicon oxide (SiO2, purity 9)
9.9%). One crucible holding these materials was made of copper, and had a structure in which a cooling water cooling tube 20 having an outer diameter of 20 mmΦ was provided at the bottom. Cooling water flow rate is about 4m 3 / h
It is.

【0021】この坩堝9内には、蒸着材料をフィルム幅
方向に対向して交互1列に配置させるために、2mm厚
みのカーボン製しきり板19を幅方向100mm間隔で
配置させ、計8ブロックの材料を収納できる構造とし
た。このしきり板19は、後述する電子銃4の電子線1
8が各蒸着材料に入射される角度と略等しい角度に傾斜
して配置されている。しきり板19で確保された各ブロ
ックには、前記2種類の蒸着材料を交互に均一に収容し
た。図2、3に、本実施例で用いた坩堝9の概略構造を
示す。
In this crucible 9, 2 mm-thick carbon stripping plates 19 are arranged at intervals of 100 mm in the width direction in order to alternately arrange the vapor deposition materials in a line facing the film width direction. The structure is such that materials can be stored. The partition plate 19 is used to hold an electron beam 1 of an electron gun 4 described later.
8 are arranged to be inclined at an angle substantially equal to the incident angle on each deposition material. The two types of vapor deposition materials were alternately and uniformly stored in each block secured by the partition plate 19. 2 and 3 show a schematic structure of the crucible 9 used in this embodiment.

【0022】電子銃4として、250kWのもの1台を
フィルム幅方向の中央の位置に配置した。この電子銃4
により、坩堝内に交互配置されたSiO2が4ブロッ
ク、Al23が4ブロックの計8ブロックの蒸着材料を
蒸着させる仕様とした。
One electron gun 4 having a power of 250 kW was disposed at the center of the film width direction. This electron gun 4
According to the specification, a total of 8 blocks of the vapor deposition material were deposited, with 4 blocks of SiO 2 and 4 blocks of Al 2 O 3 alternately arranged in the crucible.

【0023】蒸着中の真空槽内圧力は4×10-4Pa以
下を常時確保できるような排気系とした。具体的には、
50000L/秒の油拡散ポンプを真空槽底部に直接接
続する構造にした。
The evacuation system was designed so that the pressure in the vacuum chamber during vapor deposition could always be kept at 4 × 10 −4 Pa or less. In particular,
The structure was such that a 50000 L / sec oil diffusion pump was directly connected to the bottom of the vacuum chamber.

【0024】個々の蒸着源の温度測定用の赤外線センサ
−7は、検出素子がSi、測定波長が0.9μm、スポッ
ト径φ12mm(距離1000mm)仕様のセンサ−を
用い、真空槽6外のフィルム17の幅方向に100mm
の等間隔で計8台を配置し、個々の蒸発源との距離は、
980mmとして連続的に温度の測定を行った。
The infrared sensor 7 for measuring the temperature of each deposition source uses a sensor having a detection element of Si, a measurement wavelength of 0.9 μm, and a spot diameter of φ12 mm (distance of 1000 mm). 100mm in the width direction of
8 units are arranged at equal intervals, and the distance to each evaporation source is
The temperature was continuously measured at 980 mm.

【0025】各蒸着ブロックから蒸発するガスの分布は
坩堝中の各蒸着材料の蒸発特性を示す図5の31(酸化
珪素・ブロックからの蒸発成分)、32(酸化アルミニ
ューム・ブロックからの蒸発成分)に示すように、真上
が最も強度が高く、横に広がる程、強度が低下する分布
を示す。この分布強度及び形状は、電子ビームの強度、
電子線が入射される角度、電子銃と坩堝までの距離およ
び蒸発面積に主に依存する。従って、組成比が被蒸着物
の走行方向、直行方向及び膜方向に均一に、かつ、厚み
が走行方向及び直行方向に一定となるように薄膜を形成
させるためには、蒸着材料の配置は重要である。
The distribution of gas evaporating from each evaporation block shows the evaporation characteristics of each evaporation material in the crucible. FIG. 5 shows 31 (evaporation component from silicon oxide block) and 32 (evaporation component from aluminum oxide block). As shown in ()), the distribution is such that the intensity is highest immediately above, and the intensity decreases as it spreads laterally. This distribution intensity and shape are the intensity of the electron beam,
It mainly depends on the angle at which the electron beam is incident, the distance between the electron gun and the crucible, and the evaporation area. Therefore, in order to form a thin film so that the composition ratio is uniform in the running direction, the orthogonal direction, and the film direction of the deposition target, and the thickness is constant in the running direction and the orthogonal direction, the arrangement of the evaporation material is important. It is.

【0026】本実施例における材料の配置は、図2、3
に示す通りであり、電子銃と最も近い坩堝表面までの距
離を1000mmとした。図中A、Sは夫々Al23
SiO2が収納されていることを示す。なお、蒸着材料
は図3に示す薄いしきり板で材料を分割して配置した。
The arrangement of the materials in this embodiment is shown in FIGS.
And the distance to the surface of the crucible closest to the electron gun was 1000 mm. In the figure, A and S are Al 2 O 3 ,
Indicates that SiO 2 is stored. In addition, the vapor deposition material was divided and arranged by a thin partition plate shown in FIG.

【0027】前述した条件にてフィルム17の蒸着を行
った。フィルムの走行速度は300m/分で計40、0
00mを蒸着した。坩堝は電子銃方向に向かって2mm
/分の速度で移動させた(駆動装置は図示略)。自動制
御の効果を確認するために自動制御を行った場合と、自
動制御を行わない場合とを比較した。その結果を表1に
示す。尚、比較対象の蒸着厚みデ−タはオフラインで蛍
光X線式の厚み測定器を用いて測定した。自動制御を行
わない場合には総厚み変動及び組成比変動が大きいのに
対して、自動制御を行うと、非常に安定な膜が形成され
ることが判る。
The film 17 was deposited under the conditions described above. The running speed of the film is 300 m / min and a total of 40,0
00m was deposited. The crucible is 2mm toward the electron gun
/ Min (drive device is not shown). In order to confirm the effect of the automatic control, the case where the automatic control was performed and the case where the automatic control was not performed were compared. Table 1 shows the results. In addition, the vapor deposition thickness data to be compared was measured off-line using a fluorescent X-ray type thickness measuring instrument. It can be seen that when the automatic control is not performed, the total thickness fluctuation and the composition ratio fluctuation are large, but when the automatic control is performed, a very stable film is formed.

【0028】[0028]

【表1】 〔別実施の形態〕 (1)上記実施形態では、真空槽としていわゆる1チャ
ンバー式を用いた例を示たが 、シートの被蒸着材
料を走行する室と蒸着材料を加熱する室とを異なる減圧
状 態にして真空蒸着を行う、いわゆる2チャンバ
ー式の装置にも、本発明を適用 できる。
[Table 1] [Other Embodiments] (1) In the above-described embodiment, an example in which a so-called one-chamber system is used as the vacuum chamber is described. The present invention is also applicable to a so-called two-chamber type apparatus in which vacuum evaporation is performed in this state.

【0029】(2)上記実施形態では、被蒸着材料の巻
き出しロール及び巻き取りロールを真空槽内に配置した
例を示したが、巻き出しロール及び巻き取りロールを蒸
着する真空槽外に配置し、蒸着を高真空槽内で行う連続
方式の装置にも適用できる。
(2) In the above embodiment, the example in which the unwinding roll and the take-up roll of the material to be vapor-deposited are arranged in the vacuum chamber has been described. However, the present invention can also be applied to a continuous apparatus in which vapor deposition is performed in a high vacuum chamber.

【0030】(3)上記実施形態では、シート状の被蒸
着材料としてフィルムを例に挙げたが、被蒸着材料とし
ては紙、布、樹脂、金属、無機材などでもよい。又、蒸
着材料として、上記した酸化アルミニュームと酸化珪素
以外に、種々の元素、化合物を使用することができ、更
に2種以上の蒸着材料を用いて2種以上の元素または成
分からなる混合膜を形成するようにしても良い。
(3) In the above embodiment, a film is taken as an example of the sheet-like material to be deposited, but the material to be deposited may be paper, cloth, resin, metal, inorganic material or the like. Various elements and compounds other than the above-described aluminum oxide and silicon oxide can be used as the vapor deposition material, and a mixed film composed of two or more elements or components using two or more vapor deposition materials can be used. May be formed.

【0031】(4)上記実施形態では加熱手段を電子銃
としたが、坩堝を誘導加熱コイルにより加熱する蒸着装
置にも適用できる。
(4) In the above embodiment, the heating means is an electron gun. However, the present invention can be applied to a vapor deposition apparatus in which a crucible is heated by an induction heating coil.

【0032】[0032]

【発明の効果】上述したように、本発明によれば、長時
間連続して、複数の元素からなる混合膜を、組成比が被
蒸着物の走行方向、直行方向及び膜方向に均一に、か
つ、厚みが走行方向及び直行方向に一定となるように形
成できる真空蒸着装置を提供できた。
As described above, according to the present invention, a mixed film composed of a plurality of elements is continuously formed for a long period of time so that the composition ratio is uniform in the running direction, the perpendicular direction, and the film direction of the deposition target. In addition, a vacuum evaporation apparatus that can be formed so that the thickness is constant in the running direction and in the perpendicular direction can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の一実施形態に係わる真空蒸着装置の概略
全体構成図
FIG. 1 is a schematic overall configuration diagram of a vacuum evaporation apparatus according to an embodiment of the present invention.

【図2】発明の一実施形態に係わる真空蒸着装置に用い
る坩堝とその配置を説明する図
FIG. 2 is a diagram illustrating a crucible used in a vacuum evaporation apparatus according to an embodiment of the present invention and an arrangement thereof.

【図3】図2の坩堝の構造を説明する図FIG. 3 is a view for explaining the structure of the crucible of FIG. 2;

【図4】坩堝投入エネルギー量とフィルム蒸着速度との
関係を説明するグラフと蒸発源の表面温度とフィルム蒸
着速度との関係を説明するグラフ
FIG. 4 is a graph illustrating the relationship between the amount of energy supplied to the crucible and the film deposition rate, and a graph illustrating the relationship between the surface temperature of the evaporation source and the film deposition rate.

【図5】各蒸着材料ブロックの蒸着特性を説明するグラ
FIG. 5 is a graph illustrating the vapor deposition characteristics of each vapor deposition material block.

【図6】赤外線センサ−の配置方法を説明する図FIG. 6 is a diagram illustrating an arrangement method of an infrared sensor.

【符号の説明】[Explanation of symbols]

4 加熱手段 7a 検出素子(Si) 7b コントロ−ラ 8 保持手段(坩堝) 9 蒸着材料 10 電子線 19 しきり板 Reference Signs List 4 heating means 7a detection element (Si) 7b controller 8 holding means (crucible) 9 vapor deposition material 10 electron beam 19 threshold plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空槽内で走行する被蒸着物の少なくと
も片面に異なる元素からなる混合膜を形成可能な真空蒸
着装置であって、被蒸着物の走行方向(以降、シート幅
方向と呼ぶ)に分割された領域に組成の異なる複数の蒸
着材料が交互に充填された坩堝(以降、個々の蒸発源と
呼ぶ)と、蒸着材料を加熱するための電子銃を備えた蒸
着装置において、個々の蒸着源の温度を非接触で測定す
る温度測定手段と、計測された温度データを基に個々の
蒸発源の蒸発速度を推定する蒸発速度推定手段と、個々
の蒸発源の蒸発速度と予め個々の蒸発源に対応して設定
された基準値を比較し、比較した結果に基づいて個々の
蒸発源に投入するエネルギー量を決定する投入エネルギ
ー決定手段と、個々の投入エネルギー量の総和値を基に
電子銃の出力を決定する第1の制御量演算手段と、個々
の投入するエネルギー量の比率を基に個々の蒸発源の電
子線照射時間を決定する第2の制御量演算手段と、前記
第1、第2の制御量を電子銃に与えて個々の蒸発源の加
熱を制御する電子銃制御手段を備えた真空蒸着装置。
1. A vacuum deposition apparatus capable of forming a mixed film made of different elements on at least one surface of a deposition object running in a vacuum chamber, wherein the deposition direction is referred to as a sheet width direction. In a crucible (hereinafter, referred to as individual evaporation sources) in which a plurality of deposition materials having different compositions are alternately filled in divided regions, and in an evaporation apparatus having an electron gun for heating the evaporation material, Temperature measuring means for measuring the temperature of the evaporation source in a non-contact manner; evaporating rate estimating means for estimating the evaporation rate of each evaporation source based on the measured temperature data; Comparing the reference values set corresponding to the evaporation sources, input energy determining means for determining the amount of energy to be input to each evaporation source based on the comparison result, and a total value of the individual input energy amounts. Determine the output of the electron gun First control amount calculating means for performing the control, second control amount calculating means for determining the electron beam irradiation time of each evaporation source based on the ratio of the energy amounts to be input, and the first and second controls A vacuum evaporation apparatus having electron gun control means for controlling the heating of each evaporation source by giving an amount to an electron gun.
JP2000000826A 2000-01-06 2000-01-06 Vacuum evaporation system Pending JP2001192827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000000826A JP2001192827A (en) 2000-01-06 2000-01-06 Vacuum evaporation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000000826A JP2001192827A (en) 2000-01-06 2000-01-06 Vacuum evaporation system

Publications (1)

Publication Number Publication Date
JP2001192827A true JP2001192827A (en) 2001-07-17

Family

ID=18530119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000000826A Pending JP2001192827A (en) 2000-01-06 2000-01-06 Vacuum evaporation system

Country Status (1)

Country Link
JP (1) JP2001192827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077413A (en) * 2005-09-09 2007-03-29 Sumitomo Electric Ind Ltd Film deposition control method, film deposition control device, and film deposition apparatus
JP2010229531A (en) * 2009-03-30 2010-10-14 Toppan Printing Co Ltd Vapor deposition apparatus
KR101074630B1 (en) 2008-10-24 2011-10-17 하이디스 테크놀로지 주식회사 organic thin film forming Apparatus
CN113348264A (en) * 2018-11-20 2021-09-03 博斯特曼彻斯特有限公司 Evaporation vessel control system, PVD machine and method for operating PVD machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077413A (en) * 2005-09-09 2007-03-29 Sumitomo Electric Ind Ltd Film deposition control method, film deposition control device, and film deposition apparatus
JP4701937B2 (en) * 2005-09-09 2011-06-15 住友電気工業株式会社 Deposition equipment
KR101074630B1 (en) 2008-10-24 2011-10-17 하이디스 테크놀로지 주식회사 organic thin film forming Apparatus
JP2010229531A (en) * 2009-03-30 2010-10-14 Toppan Printing Co Ltd Vapor deposition apparatus
CN113348264A (en) * 2018-11-20 2021-09-03 博斯特曼彻斯特有限公司 Evaporation vessel control system, PVD machine and method for operating PVD machine
JP2022507610A (en) * 2018-11-20 2022-01-18 ボブスト マンチェスター リミテッド How to operate the evaporator boat control system, PVD device, and PVD device
JP7395588B2 (en) 2018-11-20 2023-12-11 ボブスト マンチェスター リミテッド Evaporator boat control system, PVD device, and method of operating a PVD device

Similar Documents

Publication Publication Date Title
US7871667B2 (en) Method of operating vacuum deposition apparatus and vacuum deposition apparatus
US5544182A (en) Laser system for laser ablation process and laser ablation process for preparing thin film of oxide superconductor material thereby
JP2005281858A (en) Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus
JP2005281859A (en) Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus
JP2001192827A (en) Vacuum evaporation system
EP1028174B1 (en) Functional roll film and production thereof
JP4260229B2 (en) Method for coating a transparent metal oxide on a film
JP2000234166A (en) Vacuum deposition device
JP3750368B2 (en) Vacuum deposition equipment
JP2000256835A (en) Vacuum deposition device
JP4427974B2 (en) Thin film forming method, thin film forming apparatus, and highly functional thin film
JP4539789B2 (en) Vacuum deposition equipment
JP3633815B2 (en) Vacuum deposition equipment
JPH07180055A (en) Vacuum film forming device
JPH10251844A (en) Production of thin film-coated substrate, its production device and thin film-coated substrate
JPH01208465A (en) Vacuum vapor deposition equipment
JP2000239842A (en) Vacuum deposition device
JP2000212732A (en) Vacuum vapor deposition device
JP2000230819A (en) Thickness monitor device
JP3493653B2 (en) Vacuum deposition equipment
JP2002129327A (en) Method and apparatus for forming thin film
JPH11335836A (en) Production of transparent gas barrier film and apparatus for its production
JP6132053B2 (en) Method for continuously producing an inorganic layer laminated plastic film
JPS62107060A (en) Vapor deposition apparatus by electron beam
JP2006337303A (en) Apparatus for measuring humidity in vacuum chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100128