JP2002129327A - Method and apparatus for forming thin film - Google Patents

Method and apparatus for forming thin film

Info

Publication number
JP2002129327A
JP2002129327A JP2000325294A JP2000325294A JP2002129327A JP 2002129327 A JP2002129327 A JP 2002129327A JP 2000325294 A JP2000325294 A JP 2000325294A JP 2000325294 A JP2000325294 A JP 2000325294A JP 2002129327 A JP2002129327 A JP 2002129327A
Authority
JP
Japan
Prior art keywords
thin film
substrate
temperature
supply source
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000325294A
Other languages
Japanese (ja)
Inventor
Koichi Kodera
宏一 小寺
Akira Shiokawa
塩川  晃
Kanako Miyashita
加奈子 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000325294A priority Critical patent/JP2002129327A/en
Publication of JP2002129327A publication Critical patent/JP2002129327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for forming a thin film, which accurately control a substrate temperature giving a big influence on performance of a formed thin film at a predetermined value, and are suitable for mass production with a little performance variation. SOLUTION: A material supplying part for thin film consisting of a material for thin film and a hearth for supporting it comprises having a mechanism for cooling on a basis of flowing a cooling fluid, in the hearth, detecting a fluid temperature (Tin) of the cooling fluid in front of the hearth and a fluid temperature (Tout) at an exit, and controlling a substrate temperature during formation of the thin film at the predetermined temperature, by sending a temperature signal based on the difference of the temperature Tout and Tin to a substrate heating apparatus, to form the thin film with a constant performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高い品質を有する機
能薄膜をバラツキなく提供する薄膜形成方法および薄膜
形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming method and a thin film forming apparatus for providing a functional thin film having high quality without variation.

【0002】[0002]

【従来の技術】近年、半導体、光メモリディスク、フラ
ットディスプレイには各種の機能薄膜が活用されてお
り、その製造において真空蒸着法やスパッタリング法等
の薄膜形成装置が利用されている。薄膜形成装置の一例
として、図2にプラズマディスプレイパネルの保護層M
gOを成膜する際に使用される真空蒸着装置の断面構成
図を示す。基板搬入チャンバ31、基板加熱チャンバ3
2、成膜チャンバ33、冷却チャンバ34、基板搬出チ
ャンバ35の5チャンバより構成され、基板1が順次、
搬送されて、成膜チャンバ33においてMgO薄膜が形
成される。成膜チャンバ33の下部壁面には一例として
電子ビームガン12が設置されており、各々の電子ビー
ムガン12からハース部4の凹部に収納されたMgO結
晶ペレット群よりなる薄膜原材料3に電子ビーム13が
集光させて照射される。これによって薄膜原材料3は局
所的に加熱昇温され、MgOが蒸発し、搬送移動する基
板1にMgO薄膜が形成される。ここで、ハース部4と
それに収納された薄膜原材料3を総合して薄膜材料供給
源2と呼ぶことにする。
2. Description of the Related Art In recent years, various types of functional thin films have been used for semiconductors, optical memory disks, and flat displays, and thin-film forming apparatuses such as a vacuum evaporation method and a sputtering method have been used in their manufacture. As an example of a thin film forming apparatus, FIG. 2 shows a protective layer M of a plasma display panel.
FIG. 1 is a cross-sectional configuration diagram of a vacuum evaporation apparatus used when forming gO. Substrate loading chamber 31, substrate heating chamber 3
2. It is composed of five chambers: a film forming chamber 33, a cooling chamber 34, and a substrate unloading chamber 35.
It is transported and an MgO thin film is formed in the film forming chamber 33. The electron beam guns 12 are installed on the lower wall surface of the film forming chamber 33 as an example. It is irradiated with light. As a result, the thin film raw material 3 is locally heated and heated, MgO evaporates, and an MgO thin film is formed on the substrate 1 that is transported and moved. Here, the hearth portion 4 and the thin film raw material 3 stored therein are collectively referred to as a thin film material supply source 2.

【0003】[0003]

【発明が解決しようとする課題】MgO薄膜の膜成長を
促進し、薄膜の結晶性を高めるために、基板1を加熱し
ながら薄膜を形成する方式が採られている。このため、
基板加熱チャンバ32と成膜チャンバ基板33には搬送
される基板1に対向するように加熱ヒータより成る基板
加熱装置5が配置され、基板温度を所定の温度に上げて
いる。
In order to promote the growth of the MgO thin film and increase the crystallinity of the thin film, a method of forming the thin film while heating the substrate 1 has been adopted. For this reason,
A substrate heating device 5 composed of a heater is disposed in the substrate heating chamber 32 and the film forming chamber substrate 33 so as to face the substrate 1 to be conveyed, and raises the substrate temperature to a predetermined temperature.

【0004】基板温度はMgO薄膜の性能に大きな影響
を与えるため、その量産成膜においては基板温度が常に
同じ温度になるように制御して薄膜形成を行う必要があ
る。このため、通常、基板加熱チャンバ32において所
定の基板温度に加熱昇温した後、成膜チャンバ33にお
いてその基板温度を維持するように基板加熱装置6を作
動させ、搬送された基板1に薄膜を形成している。
Since the substrate temperature has a great influence on the performance of the MgO thin film, it is necessary to form the thin film by controlling the substrate temperature so that it is always the same in mass production film formation. Therefore, usually, after heating and raising the temperature to a predetermined substrate temperature in the substrate heating chamber 32, the substrate heating device 6 is operated so as to maintain the substrate temperature in the film forming chamber 33, and the thin film is deposited on the transported substrate 1. Has formed.

【0005】ところが、基板1が薄膜材料供給源2の直
上に位置し、薄膜が堆積している際には、電子ビーム照
射による加熱によって薄膜材料供給源2から大きな熱輻
射が発生し、図3の経過時間と基板位置に対する基板温
度の変動特性図に示すように、基板温度が所定温度に対
して大きく上昇し、極大値を示す。薄膜材料供給源2か
らの熱輻射は電子ビームの照射状態や薄膜原材料3の状
態等によって大きく影響を受けるため、基板温度の極大
値はばらつきやすい。また基板1の搬送に伴い、基板温
度が刻々と変化するため、一枚ごとの基板の温度履歴を
同じようにコントロールすることが難しく、MgO薄膜
性能の変動の要因になっていた。
However, when the substrate 1 is located directly above the thin film material supply source 2 and a thin film is deposited, large heat radiation is generated from the thin film material supply source 2 by heating by electron beam irradiation. As shown in the characteristic diagram of the variation of the substrate temperature with respect to the elapsed time and the substrate position, the substrate temperature rises significantly with respect to the predetermined temperature and shows a maximum value. Since the heat radiation from the thin film material supply source 2 is greatly affected by the irradiation state of the electron beam, the state of the thin film raw material 3, and the like, the maximum value of the substrate temperature tends to vary. In addition, since the substrate temperature changes every moment as the substrate 1 is transported, it is difficult to control the temperature history of each substrate in the same manner, and this has been a factor of the fluctuation of the MgO thin film performance.

【0006】また、成膜エネルギの集中する薄膜材料供
給源2からは強力な光が発せられるため、赤外線検知に
よる非接触の基板温度測定が薄膜材料供給源2の直上で
は困難であることも課題であり、基板温度を精度良くコ
ントロールすることを難しくしていた。
In addition, since strong light is emitted from the thin film material supply source 2 where the film formation energy is concentrated, non-contact substrate temperature measurement by infrared detection is difficult immediately above the thin film material supply source 2. This made it difficult to control the substrate temperature with high accuracy.

【0007】本発明は、上述の問題に鑑み、形成する薄
膜の性能に大きな影響を与える基板温度を所定の値に高
精度に制御し、性能バラツキが少なく、量産に適した薄
膜形成方法および薄膜形成装置を提供することを目的に
している。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a thin film forming method and a thin film suitable for mass production, in which a substrate temperature which greatly affects the performance of a thin film to be formed is controlled to a predetermined value with high accuracy. It is intended to provide a forming apparatus.

【0008】[0008]

【課題を解決するための手段】請求項1に係わる薄膜形
成方法は、薄膜材料供給源からの薄膜材料の飛翔により
基板に薄膜を形成する薄膜形成方法において、薄膜材料
供給源は薄膜原材料とそれを支持するハース部より成
り、ハース部は冷却流体を流すことに基づく冷却機構を
有し、冷却流体がハース部へ入る前の流体温度Tinと出
る際の流体温度Toutを検出し、その温度差Tout−Tin
に基づく温度信号を基板加熱装置に送ることによって、
薄膜形成中における基板温度を所定の温度に制御するも
のである。
According to a first aspect of the present invention, there is provided a thin film forming method for forming a thin film on a substrate by flying a thin film material from a thin film material supply source. The hearth portion has a cooling mechanism based on flowing a cooling fluid, detects a fluid temperature Tin before the cooling fluid enters the hearth portion and a fluid temperature Tout when the cooling fluid exits, and detects the temperature difference. Tout-Tin
By sending a temperature signal based on the
The temperature of the substrate during the formation of the thin film is controlled to a predetermined temperature.

【0009】請求項2に係わる薄膜形成方法は、冷却流
体は常に同一圧力にてハースに導入されるものである。
According to a second aspect of the present invention, the cooling fluid is always introduced into the hearth at the same pressure.

【0010】請求項3に係わる薄膜形成方法は、基板は
薄膜材料供給源に対向して位置する軌道面上を搬送され
るものである。
According to a third aspect of the present invention, the substrate is conveyed on a track surface located opposite to a thin film material supply source.

【0011】請求項4に係わる薄膜形成方法は、基板加
熱装置は基板搬送方向に分割され、搬送される基板の軌
道面に対向して配置されるものである。
According to a fourth aspect of the present invention, in the thin film forming method, the substrate heating device is divided in the substrate transport direction, and is disposed so as to face the track surface of the substrate to be transported.

【0012】請求項5に係わる薄膜形成方法は、搬送さ
れる基板の軌道面に沿って、少なくとも薄膜材料供給源
の直上に対して搬送方向の前後に基板温度センサが設け
られ、基板温度センサによって検出された基板温度に基
づいて基板加熱装置を制御するものである。
According to a fifth aspect of the present invention, there is provided a thin film forming method, wherein a substrate temperature sensor is provided along a track surface of a substrate to be conveyed, at least immediately before a thin film material supply source in a conveying direction. The substrate heating device is controlled based on the detected substrate temperature.

【0013】請求項6に係わる薄膜形成方法は、前記基
板温度センサは基板の非成膜側に配置し、基板から発す
る赤外線を検出することを特徴とするものである。
According to a sixth aspect of the present invention, in the thin film forming method, the substrate temperature sensor is disposed on a non-film-forming side of the substrate, and detects infrared rays emitted from the substrate.

【0014】請求項7に係わる薄膜形成方法は、薄膜材
料供給源の直上あるいはその近傍の基板加熱装置には前
記温度差Tout−Tinに基づく温度信号が送られ、薄膜
材料供給源の直上を基板が搬送される際の基板温度が所
定温度に制御されるものである。
According to a seventh aspect of the present invention, a temperature signal based on the temperature difference Tout-Tin is sent to the substrate heating device immediately above or near the thin film material supply source. Is controlled at a predetermined temperature when the substrate is transported.

【0015】請求項8に係わる薄膜形成方法は、薄膜材
料供給源の直上あるいはその近傍の基板加熱装置には前
記温度差Tout−Tinに基づく温度信号と、前記基板温
度センサによって検出された基板温度に基づく温度信号
が送られ、薄膜材料供給源の直上を基板が搬送される際
の基板温度が所定温度に制御されるものである。
In the thin film forming method according to the present invention, the substrate heating device immediately above or near the thin film material supply source may include a temperature signal based on the temperature difference Tout-Tin and a substrate temperature detected by the substrate temperature sensor. Is sent, and the substrate temperature when the substrate is transported immediately above the thin film material supply source is controlled to a predetermined temperature.

【0016】請求項9に係わる薄膜形成方法は、薄膜材
料供給源の薄膜原材料に電子ビームあるいはプラズマビ
ームを照射して薄膜原材料を加熱蒸発させるものであ
る。
According to a ninth aspect of the present invention, there is provided a thin film forming method wherein a thin film raw material of a thin film material supply source is irradiated with an electron beam or a plasma beam to heat and evaporate the thin film raw material.

【0017】請求項10に係わる薄膜形成方法は、薄膜
材料供給源として導電性のハース部上に薄膜原材料を形
成し、ハース部に直流、あるいは交流の電力を投入して
薄膜原材料をスパッタ蒸発させるものである。
According to a tenth aspect of the present invention, a thin film raw material is formed on a conductive hearth portion as a thin film material supply source, and DC or AC power is applied to the hearth portion to sputter evaporate the thin film raw material. Things.

【0018】請求項11に係わる薄膜形成装置は、薄膜
材料供給源からの薄膜材料の飛翔により基板に薄膜を形
成する薄膜形成装置において、薄膜材料供給源は薄膜原
材料とそれを支持するハース部より成り、ハース部は冷
却流体を流すことに基づく冷却機構を有し、冷却流体が
ハース部へ入る前の流体温度Tinと出る際の流体温度T
outを検出する冷却流体温度検出器を有し、その温度差
Tout−Tinに基づく温度信号を基板加熱装置に送るこ
とによって、薄膜形成中における基板温度を所定の温度
に制御するものである。
According to an eleventh aspect of the present invention, there is provided a thin film forming apparatus for forming a thin film on a substrate by flying a thin film material from a thin film material supply source, wherein the thin film material supply source comprises a thin film raw material and a hearth portion supporting the thin film raw material. The hearth portion has a cooling mechanism based on flowing a cooling fluid, and the fluid temperature Tin before the cooling fluid enters the hearth portion and the fluid temperature T when the cooling fluid exits the hearth portion.
It has a cooling fluid temperature detector for detecting out, and sends a temperature signal based on the temperature difference Tout-Tin to the substrate heating device to control the substrate temperature during the thin film formation to a predetermined temperature.

【0019】請求項12に係わる薄膜形成装置は、冷却
流体が常に同一圧力にてハース部に導入されるものであ
る。
In the thin film forming apparatus according to the twelfth aspect, the cooling fluid is always introduced into the hearth at the same pressure.

【0020】請求項13に係わる薄膜形成装置は、基板
は薄膜材料供給源に対向して位置する軌道面上を搬送さ
れるものである。
In the thin film forming apparatus according to a thirteenth aspect, the substrate is transported on a track surface located opposite to a thin film material supply source.

【0021】請求項14に係わる薄膜形成装置は、基板
加熱装置は基板搬送方向に分割され、搬送される基板の
軌道面に対向して配置されるものである。
According to a fourteenth aspect of the present invention, in the thin film forming apparatus, the substrate heating device is divided in a substrate transport direction, and is arranged to face a track surface of the substrate to be transported.

【0022】請求項15に係わる薄膜形成装置は、搬送
される基板の軌道面に沿って、少なくとも薄膜材料供給
源の直上に対して搬送方向の前後に基板温度センサが設
けられ、基板温度センサによって検出された基板温度に
基づいて基板加熱装置が制御されるものである。
According to a fifteenth aspect of the present invention, in the thin film forming apparatus, a substrate temperature sensor is provided along a track surface of a substrate to be transported at least immediately before a thin film material supply source in the transport direction. The substrate heating device is controlled based on the detected substrate temperature.

【0023】請求項16に係わる薄膜形成装置は、基板
温度センサは基板の非成膜側に配置し、基板から発する
赤外線を検出するものである。
In a thin film forming apparatus according to a sixteenth aspect, the substrate temperature sensor is arranged on the non-film-forming side of the substrate, and detects infrared rays emitted from the substrate.

【0024】請求項17に係わる薄膜形成装置は、薄膜
材料供給源の直上あるいはその近傍の基板加熱装置には
前記温度差Tout−Tinに基づく温度信号が送られ、薄
膜材料供給源の直上を基板が搬送される際の基板温度が
所定温度に制御されるものである。
In the thin film forming apparatus according to the seventeenth aspect, a temperature signal based on the temperature difference Tout-Tin is sent to a substrate heating device immediately above or near the thin film material supply source, and the substrate is heated immediately above the thin film material supply source. Is controlled at a predetermined temperature when the substrate is transported.

【0025】請求項18に係わる薄膜形成方法は、薄膜
材料供給源の直上あるいはその近傍の基板加熱装置には
前記温度差Tout−Tinに基づく温度信号と、前記基板
温度センサによって検出された基板温度に基づく温度信
号が送られ、薄膜材料供給源の直上を基板が搬送される
際の基板温度が所定温度に制御されるものである。
The thin film forming method according to claim 18, wherein the substrate heating device immediately above or near the thin film material supply source has a temperature signal based on the temperature difference Tout-Tin and a substrate temperature detected by the substrate temperature sensor. Is sent, and the substrate temperature when the substrate is transported immediately above the thin film material supply source is controlled to a predetermined temperature.

【0026】請求項19に係わる薄膜形成装置は、薄膜
材料供給源の薄膜原材料に電子ビームあるいはプラズマ
ビームを照射して薄膜原材料を加熱蒸発させるものであ
る。
The thin film forming apparatus according to the nineteenth aspect irradiates a thin film raw material of a thin film material supply source with an electron beam or a plasma beam to heat and evaporate the thin film raw material.

【0027】請求項20に係わる薄膜形成装置は、薄膜
材料供給源として導電性のハース部上に薄膜原材料を形
成し、ハース部に直流、あるいは交流の電力を投入して
薄膜原材料をスパッタ蒸発させるものである。
According to a twentieth aspect of the present invention, a thin film material is formed on a conductive hearth portion as a thin film material supply source, and DC or AC power is applied to the hearth portion to sputter vaporize the thin film material. Things.

【0028】このような本発明により、薄膜材料供給源
の中のハース部を流れる冷却流体の入口と出口における
温度差Tout−Tinを冷却流体温度検出器を用いて検出
することによって熱輻射による基板温度の上昇分を求
め、その信号を基板加熱装置へフィードバックさせるこ
とにより、基板温度を所定の温度に維持することがで
き、性能バラツキの少ない、量産に適した薄膜形成方法
および薄膜形成装置を提供することができる。
According to the present invention, the temperature difference Tout-Tin between the inlet and the outlet of the cooling fluid flowing through the hearth portion in the thin film material supply source is detected by using the cooling fluid temperature detector, so that the substrate by heat radiation is detected. A thin film forming method and a thin film forming apparatus suitable for mass production that can maintain the substrate temperature at a predetermined temperature by obtaining a rise in temperature and feeding the signal back to the substrate heating device, with little variation in performance. can do.

【0029】[0029]

【発明の実施の形態】本発明の実施形態を図1に示すM
gO薄膜を形成する真空蒸着装置の構成断面図に基づい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIG.
A description will be given based on a cross-sectional view of a configuration of a vacuum deposition apparatus for forming a gO thin film.

【0030】従来例と同様に、真空蒸着装置は基板搬入
チャンバ31、基板加熱チャンバ32、成膜チャンバ3
3、冷却チャンバ34、基板搬出チャンバ35の5チャ
ンバより構成されており、基板1が順次、搬送される。
成膜チャンバ33の下部壁面には一例として電子ビーム
ガン12が設置されており、電子ビームガン12からハ
ース部4の凹部に収納されたMgO結晶ペレット群より
なる薄膜原材料3に電子ビーム13が集光させて照射さ
れる。これによって薄膜原材料3は電子ビームによって
局所的に加熱昇温され、MgOが蒸発し、搬送移動する
基板1にMgO薄膜が形成される。ハース部4には冷却
流体を流すことに基づく冷却機構7を設置し、電子ビー
ム照射による加熱によってハース部4が溶融することを
避ける。
As in the conventional example, the vacuum deposition apparatus includes a substrate loading chamber 31, a substrate heating chamber 32, and a film forming chamber 3.
3, the cooling chamber 34, and the substrate unloading chamber 35. The substrate 1 is sequentially transported.
An electron beam gun 12 is installed on the lower wall surface of the film forming chamber 33 as an example, and the electron beam 13 is condensed from the electron beam gun 12 onto the thin film raw material 3 composed of a group of MgO crystal pellets housed in the recess of the hearth portion 4. Irradiated. As a result, the thin film raw material 3 is locally heated and heated by the electron beam, the MgO evaporates, and an MgO thin film is formed on the substrate 1 that is transported and moved. A cooling mechanism 7 based on flowing a cooling fluid is provided in the hearth portion 4 to avoid melting of the hearth portion 4 due to heating by electron beam irradiation.

【0031】基板加熱領域である基板加熱チャンバ32
の中には、搬送される基板1に対向して加熱ヒータより
構成される基板加熱装置5が設置され、基板1が基板加
熱チャンバ32を出るときには所定の基板温度に昇温さ
れている。これは、基板搬送の軌道面上に設けられた基
板温度センサ8によってフィードバックがかけられ温度
制御されるものである。基板温度センサ8は、基板加熱
装置5に空けられた穴部を通して基板1より発する赤外
線を検出するものであり、非接触で基板温度を測定する
ことができる。この基板温度センサ8は、薄膜形成領域
である成膜チャンバ33にも設置され、成膜チャンバ3
3内の基板加熱装置6の温度制御も行う。
A substrate heating chamber 32 which is a substrate heating area
A substrate heating device 5 composed of a heater is installed in the inside of the substrate 1 so as to face the substrate 1 to be conveyed. When the substrate 1 exits the substrate heating chamber 32, the substrate is heated to a predetermined substrate temperature. In this method, feedback is applied by the substrate temperature sensor 8 provided on the track surface of the substrate transfer to control the temperature. The substrate temperature sensor 8 detects infrared rays emitted from the substrate 1 through a hole formed in the substrate heating device 5, and can measure the substrate temperature in a non-contact manner. The substrate temperature sensor 8 is also installed in the film forming chamber 33 which is a thin film forming area,
The temperature control of the substrate heating device 6 in 3 is also performed.

【0032】しかし、薄膜材料供給源2の直上では、熱
輻射の発生とともに、加熱された薄膜原材料3から発せ
られる強力な光により、正確な基板温度の測定ができな
くなる課題が生ずる。そこで、この部位での搬送される
基板1の基板温度を非接触で測定する手段として、薄膜
材料供給源2を構成するハース部4に冷却用として流す
冷却流体のハース部へ入る前の流体温度Tinと出る際の
流体温度Toutを検出し、その温度差Tout−Tinに基づ
く温度信号に着目した。図4は薄膜材料供給源2からの
熱輻射による基板温度の温度上昇値△Tと冷却流体の温
度差Tout−Tinの関係を求めた特性図である。図4よ
り、冷却流体の温度差Tout−Tinが上昇するに従っ
て、輻射熱による温度上昇△Tが大きくなっており、T
out−Tinを検出することによって、△Tを予測するこ
とができる。すなわち、薄膜材料供給源2の直上に対し
て、基板搬送方向の前方および後方に位置する基板温度
センサ8−1、8−3の温度測定値T1とT2の平均値
(T1+T2)/2に、図4によって予測される温度上
昇△Tを加算することによって、薄膜材料供給源2の直
上の熱輻射を含む基板温度を推定することが可能とな
り、薄膜材料供給源2の直上の基板加熱装置6にフィー
ドバックをかけ、基板温度をコントロールできる。な
お、この際、冷却流体は常に同一流量速度にてハース部
4内に供給される必要がある。
However, immediately above the thin film material supply source 2, a problem arises that accurate measurement of the substrate temperature cannot be performed due to generation of heat radiation and strong light emitted from the heated thin film raw material 3. Therefore, as a means for measuring the substrate temperature of the substrate 1 conveyed at this portion in a non-contact manner, the fluid temperature before flowing into the hearth portion of the cooling fluid flowing for cooling into the hearth portion 4 constituting the thin film material supply source 2 is used. The fluid temperature Tout at the time of exiting Tin was detected, and attention was paid to a temperature signal based on the temperature difference Tout−Tin. FIG. 4 is a characteristic diagram showing the relationship between the temperature rise value ΔT of the substrate temperature due to heat radiation from the thin film material supply source 2 and the temperature difference Tout−Tin of the cooling fluid. From FIG. 4, as the temperature difference Tout−Tin of the cooling fluid increases, the temperature increase ΔT due to radiant heat increases.
ΔT can be predicted by detecting out-Tin. That is, the average value (T1 + T2) / 2 of the temperature measurement values T1 and T2 of the substrate temperature sensors 8-1 and 8-3 located in front and rear of the substrate transport direction with respect to immediately above the thin film material supply source 2, By adding the temperature rise ΔT predicted by FIG. 4, it is possible to estimate the substrate temperature including the heat radiation directly above the thin film material supply source 2, and the substrate heating device 6 directly above the thin film material supply source 2. To control the substrate temperature. At this time, the cooling fluid must always be supplied into the hearth portion 4 at the same flow rate.

【0033】さらに成膜チャンバ33内の基板温度の制
御方法について詳細に説明する。薄膜形成領域である成
膜チャンバ33には一例として、基板搬送方向に、基板
1に対向して3基に分割された基板加熱装置6を配置す
る。各々の分割された基板加熱装置6は独立に制御でき
るようにしている。3基の基板温度制御装置6をここで
は基板加熱チャンバ32側より6−1、6−2、6−3
とする。基板加熱装置6−1の直上には基板1を介在し
て赤外線検出型の基板温度センサ8−1を設置し、蒸着
領域手前の基板温度T1を検知して、基板加熱装置6−
1に温度信号を送る。同様に基板加熱装置6−3の直上
にも赤外線検出型の基板温度センサ8−3を設置し、蒸
着領域直後の基板温度T2を検知して、基板加熱装置6
−3に温度信号を送り、基板1が所定の温度になるよう
にフィードバックをかける。
Further, a method of controlling the substrate temperature in the film forming chamber 33 will be described in detail. In the film forming chamber 33 which is a thin film forming area, for example, a substrate heating device 6 divided into three units facing the substrate 1 is disposed in the substrate transport direction. Each of the divided substrate heating devices 6 can be controlled independently. Here, the three substrate temperature control devices 6 are connected to the substrate heating chamber 32 from the side of 6-1, 6-2, and 6-3.
And A substrate temperature sensor 8-1 of an infrared detection type is installed directly above the substrate heating device 6-1 with the substrate 1 interposed therebetween, and detects the substrate temperature T1 just before the vapor deposition region.
1 sends a temperature signal. Similarly, an infrared detection type substrate temperature sensor 8-3 is installed directly above the substrate heating device 6-3 to detect the substrate temperature T2 immediately after the deposition region, and
-3, and a feedback is applied so that the substrate 1 has a predetermined temperature.

【0034】冷却流体を流すことによって冷却機能を持
たせたハース部4は、冷却流体がハース部4へ入る前の
流体温度Tinと出る際の流体温度Toutを検出する冷却
流体温度検出器9を有する。原薄膜材料供給源2の直上
の基板加熱装置6−2には、薄膜材料供給源2の直上に
対して、基板搬送方向の前方および後方に設置した赤外
線検出型の基板温度センサ8−1、8−3によって検知
される基板温度T1、T2、および冷却流体温度検出器
9からの温度信号、すなわちハース部4を流れる冷却流
体の入口と出口によって検出される温度差Tout−Tin
に基づく温度信号によってハース部4直上を基板が通過
する際の基板温度を前述のように予測し、基板温度が薄
膜材料供給源2直上においても所定の温度を維持するよ
うに温度信号が送られる。
The hearth portion 4 having a cooling function by flowing a cooling fluid is provided with a cooling fluid temperature detector 9 for detecting a fluid temperature Tin before the cooling fluid enters the hearth portion 4 and a fluid temperature Tout when the cooling fluid exits. Have. The substrate heating device 6-2 directly above the raw thin film material supply source 2 includes an infrared detection type substrate temperature sensor 8-1, which is installed in front and rear of the substrate conveyance direction with respect to the immediately above thin film material supply source 2, The substrate temperature T1, T2 detected by 8-3 and the temperature signal from the cooling fluid temperature detector 9, that is, the temperature difference Tout-Tin detected by the inlet and outlet of the cooling fluid flowing through the hearth portion 4.
As described above, the substrate temperature when the substrate passes just above the hearth portion 4 is predicted by the temperature signal based on the above, and a temperature signal is sent so that the substrate temperature maintains a predetermined temperature immediately above the thin film material supply source 2. .

【0035】図5は、チャンバ内を搬送された基板1に
関し、本発明によって得られた基板温度の場所による推
移を示した結果である。基板加熱チャンバで昇温された
基板温度は成膜チャンバにおいても一定に維持すること
ができる。このように本発明により、従来例として図3
に示した熱輻射に基づく基板温度の極大現象が解消され
ている。なお、図4の熱輻射による基板温度の温度上昇
値△Tと冷却流体の温度差Tout−Tinの関係特性図は
ハース部4のサイズ、薄膜材料供給源2と基板1との距
離等により異なるため、予め個々の成膜系についてその
特性図を実験により求める必要がある。
FIG. 5 is a graph showing the transition of the substrate temperature obtained according to the present invention with respect to the location of the substrate 1 transferred in the chamber. The substrate temperature raised in the substrate heating chamber can be kept constant also in the film forming chamber. Thus, according to the present invention, FIG.
The maximum phenomenon of the substrate temperature based on the thermal radiation shown in FIG. The characteristic diagram of the relationship between the temperature rise value ΔT of the substrate temperature due to thermal radiation and the temperature difference Tout−Tin of the cooling fluid in FIG. 4 differs depending on the size of the hearth portion 4, the distance between the thin film material supply source 2 and the substrate 1, and the like. Therefore, it is necessary to determine the characteristic diagram of each film forming system in advance by experiments.

【0036】次に本発明を他の成膜方式に適用した実施
形態について説明する。液晶ディスプレイの薄膜トラン
ジスタ(TFT)を構成するゲート電極Taをスパッタ
リング法で形成する場合であり、図6に使用するスパッ
タリング装置の断面平面図を示す。基板搬入チャンバ3
1(図示せず)、基板加熱チャンバ32、成膜チャンバ
33、冷却チャンバ34、基板搬出チャンバ35(図示
せず)が連結され、基板1が搬送される。成膜チャンバ
33にはハース部4の凹部に収納されたTaターゲット
よりなる薄膜原材料3がボンディングされており、薄膜
材料供給源2が構成される。導電性の金属より成るハー
ス部4には直流の電力源10が接続され、薄膜原材料3
にマイナスの電圧が印加される。減圧下の成膜チャンバ
33内にはArガスが導入され、電力印加によって発生
するプラズマ中のArイオンが薄膜原材料3に衝突して
Ta材料を飛翔させ、基板1にTa薄膜が形成される。
ハース部4には冷却流体を流すことに基づく冷却機構7
を設置し、薄膜材料供給源2が過度に加熱されることを
避ける。
Next, an embodiment in which the present invention is applied to another film forming method will be described. FIG. 6 is a cross-sectional plan view of a sputtering apparatus used when a gate electrode Ta constituting a thin film transistor (TFT) of a liquid crystal display is formed by a sputtering method. Substrate loading chamber 3
1 (not shown), a substrate heating chamber 32, a film forming chamber 33, a cooling chamber 34, and a substrate unloading chamber 35 (not shown) are connected, and the substrate 1 is transported. The thin film raw material 3 made of a Ta target housed in the recess of the hearth portion 4 is bonded to the film forming chamber 33, and the thin film material supply source 2 is formed. A DC power source 10 is connected to the hearth portion 4 made of a conductive metal,
Is applied with a negative voltage. Ar gas is introduced into the film forming chamber 33 under reduced pressure, and Ar ions in plasma generated by application of electric power collide with the thin film raw material 3 to fly the Ta material, thereby forming a Ta thin film on the substrate 1.
A cooling mechanism 7 based on flowing a cooling fluid to the hearth portion 4
To prevent the thin film material supply source 2 from being excessively heated.

【0037】成膜チャンバ33には一例として、基板搬
送方向に、基板1に対向して3基に分割された基板加熱
装置6を配置する。各々の分割された基板加熱装置6は
独立に制御できるようにしている。3基の基板温度制御
装置6をここでは基板加熱チャンバ32側より6−1、
6−2、6−3とする。基板加熱装置6−1の直上には
基板1を介在して赤外線検出型の基板温度センサ8−1
を設置し、蒸着領域手前の基板温度T1を検知して、基
板加熱装置6−1に温度信号を送る。同様に基板加熱装
置6−3の直上にも赤外線検出型の基板温度センサ8−
3を設置し、蒸着領域直後の基板温度T2を検知して、
基板加熱装置6−3に温度信号を送り、基板1が所定の
温度になるようにフィードバックをかける。
In the film forming chamber 33, as an example, a substrate heating device 6 divided into three units facing the substrate 1 is disposed in the substrate transport direction. Each of the divided substrate heating devices 6 can be controlled independently. Here, the three substrate temperature control devices 6 are 6-1 from the substrate heating chamber 32 side,
6-2 and 6-3. An infrared detection type substrate temperature sensor 8-1 is provided directly above the substrate heating device 6-1 with the substrate 1 interposed therebetween.
Is installed, the substrate temperature T1 just before the deposition region is detected, and a temperature signal is sent to the substrate heating device 6-1. Similarly, immediately above the substrate heating device 6-3, an infrared detection type substrate temperature sensor 8-
3 is installed, and the substrate temperature T2 immediately after the deposition region is detected,
A temperature signal is sent to the substrate heating device 6-3, and feedback is applied so that the substrate 1 has a predetermined temperature.

【0038】冷却流体を流すことによって冷却機能を持
たせたハース部4は、冷却流体がハース部4へ入る前の
流体温度Tinと出る際の流体温度Toutを検出する冷却
流体温度検出器9を有する。薄膜材料供給源2の直上の
基板加熱装置6−2には、薄膜材料供給源2の直上に対
して、基板搬送方向の前方および後方に設置した赤外線
検出型の基板温度センサ8−1、8−3によって検知さ
れる基板温度T1、T2、および冷却流体温度検出器9
からの温度信号、すなわちハース部4を流れる冷却流体
の入口と出口によって検出される温度差Tout−Tinに
基づく温度信号によってハース部4直上を基板が通過す
る際の基板温度を予測し、基板温度が薄膜材料供給源2
直上においても所定の温度を維持するように温度信号が
送られ、基板温度をコントロールする。このようにスパ
ッタリング法においても、薄膜材料供給源2から発生す
る熱輻射による基板温度の上昇△Tを、基板温度T1、
T2、および冷却流体温度検出器9からの温度信号、す
なわちハース部4を流れる冷却流体の入口と出口によっ
て検出される温度差Tout−Tinより予測することがで
き、基板温度を所定の値に制御することができる。
The hearth portion 4 having a cooling function by flowing a cooling fluid is provided with a cooling fluid temperature detector 9 for detecting a fluid temperature Tin before the cooling fluid enters the hearth portion 4 and a fluid temperature Tout when the cooling fluid exits. Have. Substrate heating devices 6-2 directly above the thin film material supply source 2 include infrared detection type substrate temperature sensors 8-1 and 8 installed in front and rear of the substrate conveyance direction with respect to the immediately above the thin film material supply source 2. -3 detected by the substrate temperature T1, T2, and the cooling fluid temperature detector 9
From the temperature of the cooling fluid flowing through the hearth portion 4, that is, a temperature signal based on the temperature difference Tout−Tin detected by the inlet and the outlet of the cooling fluid flowing through the hearth portion 4, the substrate temperature when the substrate passes directly above the hearth portion 4 is predicted. Is thin film material source 2
A temperature signal is sent so as to maintain a predetermined temperature even immediately above, and the substrate temperature is controlled. As described above, also in the sputtering method, the rise ΔT of the substrate temperature due to the heat radiation generated from the thin film material supply source 2 is reduced by the substrate temperature T1,
T2 and the temperature signal from the cooling fluid temperature detector 9, that is, the temperature difference Tout-Tin detected by the inlet and the outlet of the cooling fluid flowing through the hearth portion 4, and the substrate temperature can be controlled to a predetermined value. can do.

【0039】本発明の実施形態において、MgO薄膜、
Ta薄膜を例として説明したが、これに限定されるもの
でなく、他の材料であっても同様の効果を得ることがで
きる。また、実施形態では、蒸着のためのエネルギ源と
して電子ビームを用いて説明しているが、これに限定さ
れるものでなく、例えばホロカソードタイプの低電圧、
高電流プラズマビーム等を用いても同様の効果が得られ
る。また、スパッタリング法においては、直流電力を薄
膜材料供給源2に投入した場合を実施形態で説明してい
るが、これに限定されるものでなく、RFのような交流
電力を用いても同様の効果が得られる。
In an embodiment of the present invention, an MgO thin film,
Although a Ta thin film has been described as an example, the present invention is not limited to this, and similar effects can be obtained with other materials. Further, in the embodiment, an electron beam is described as an energy source for vapor deposition, but the present invention is not limited to this. For example, a hollow cathode type low voltage,
Similar effects can be obtained by using a high-current plasma beam or the like. Further, in the sputtering method, the case where DC power is supplied to the thin film material supply source 2 is described in the embodiment, but the present invention is not limited to this, and the same applies when using AC power such as RF. The effect is obtained.

【0040】[0040]

【発明の効果】以上、説明したように、本発明によれ
ば、成膜エネルギが集中し、強力な光を発する薄膜材料
供給源の直上の基板温度を非接触で精度良く測定できる
ため、薄膜形成中において薄膜の性能に大きな影響を与
える基板温度を所定の値に高精度に制御することがで
き、性能バラツキの少ない品質の高い薄膜を提供するこ
とが可能となり、その工業的価値は極めて高い。
As described above, according to the present invention, since the film formation energy is concentrated and the substrate temperature immediately above the thin film material supply source that emits strong light can be accurately measured in a non-contact manner. During the formation, the substrate temperature, which greatly affects the performance of the thin film, can be controlled to a predetermined value with high precision, and it is possible to provide a high-quality thin film with little performance variation, and its industrial value is extremely high .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる実施形態を説明する真空蒸着装
置の断面構成図
FIG. 1 is a cross-sectional configuration diagram of a vacuum deposition apparatus illustrating an embodiment according to the present invention.

【図2】従来例を説明する真空蒸着装置の断面構成図FIG. 2 is a cross-sectional configuration diagram of a vacuum evaporation apparatus illustrating a conventional example.

【図3】従来例における基板の位置と基板温度の関係を
説明する特性図
FIG. 3 is a characteristic diagram illustrating a relationship between a substrate position and a substrate temperature in a conventional example.

【図4】本発明に係わる熱輻射による基板温度の温度上
昇値△Tと冷却流体の温度差Tout−Tinの関係を求め
た特性図
FIG. 4 is a characteristic diagram showing a relationship between a temperature rise value ΔT of a substrate temperature due to thermal radiation and a temperature difference Tout−Tin of a cooling fluid according to the present invention.

【図5】本発明に係わる基板の位置と基板温度の関係を
説明する特性図
FIG. 5 is a characteristic diagram illustrating a relationship between a substrate position and a substrate temperature according to the present invention.

【図6】本発明の第二の実施形態を説明するスパッタリ
ング装置の平面断面構成図
FIG. 6 is a plan cross-sectional configuration diagram of a sputtering apparatus illustrating a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 薄膜材料供給源 3 薄膜原材料 4 ハース部 5 基板加熱装置(基板加熱チャンバ内) 6,6−1,6−2,6−3 基板加熱装置(成膜チャ
ンバ内) 7 冷却機構 8,8−1,8−3 基板温度センサ 9 冷却流体温度検出器
DESCRIPTION OF SYMBOLS 1 Substrate 2 Thin film material supply source 3 Thin film raw material 4 Hearth part 5 Substrate heating device (in a substrate heating chamber) 6,6-1, 6-2, 6-3 Substrate heating device (in a film forming chamber) 7 Cooling mechanism 8, 8-1, 8-3 Substrate temperature sensor 9 Cooling fluid temperature detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮下 加奈子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4K029 BA16 BA43 BD00 BD02 CA01 DA08 DB17 DB18 DB21 DB24 EA08 KA01  ──────────────────────────────────────────────────続 き Continued from the front page (72) Inventor Kanako Miyashita 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 4K029 BA16 BA43 BD00 BD02 CA01 DA08 DB17 DB18 DB21 DB24 EA08 KA01

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 薄膜材料供給源からの薄膜材料の飛翔に
より基板に薄膜を形成する薄膜形成方法において、薄膜
材料供給源は薄膜原材料とそれを支持するハース部より
成り、ハース部は冷却流体を流すことに基づく冷却機構
を有し、冷却流体がハース部へ入る前の流体温度Tinと
出る際の流体温度Toutを検出し、その温度差Tout−T
inに基づく温度信号を基板加熱装置に送ることによっ
て、薄膜形成中における基板温度を所定の温度に制御す
る薄膜形成方法。
1. A thin film forming method for forming a thin film on a substrate by flying a thin film material from a thin film material supply source, wherein the thin film material supply source comprises a thin film raw material and a hearth portion supporting the thin film raw material, and the hearth portion supplies a cooling fluid. It has a cooling mechanism based on flowing, detects a fluid temperature Tin before the cooling fluid enters the hearth portion and a fluid temperature Tout when the cooling fluid exits, and determines the temperature difference Tout−T
A thin film forming method for controlling a substrate temperature during forming a thin film to a predetermined temperature by sending a temperature signal based on in to a substrate heating device.
【請求項2】 冷却流体は常に同一流体速度にてハース
に導入される請求項1記載の薄膜形成方法。
2. The method according to claim 1, wherein the cooling fluid is always introduced into the hearth at the same fluid velocity.
【請求項3】 基板は薄膜材料供給源に対向して位置す
る軌道面上を搬送される請求項1記載の薄膜形成方法。
3. The thin film forming method according to claim 1, wherein the substrate is conveyed on a track surface located opposite to a thin film material supply source.
【請求項4】 基板加熱装置は基板搬送方向に分割さ
れ、搬送される基板の軌道面に対向して配置される請求
項3記載の薄膜形成方法。
4. The thin film forming method according to claim 3, wherein the substrate heating device is divided in the substrate transport direction, and is disposed so as to face a track surface of the substrate to be transported.
【請求項5】 搬送される基板の軌道面に沿って、少な
くとも薄膜材料供給源の直上に対して搬送方向の前後に
基板温度センサが設けられ、基板温度センサによって検
出された基板温度に基づいて基板加熱装置を制御する請
求項4あるいは5に記載の薄膜形成方法。
5. A substrate temperature sensor is provided along a track surface of a substrate to be conveyed, at least immediately before the thin film material supply source, in front and rear of the conveyance direction, and based on the substrate temperature detected by the substrate temperature sensor. 6. The thin film forming method according to claim 4, wherein the substrate heating device is controlled.
【請求項6】 前記基板温度センサは基板の非成膜側に
配置し、基板から発する赤外線を検出することを特徴と
する請求項5記載の薄膜形成方法。
6. The thin film forming method according to claim 5, wherein the substrate temperature sensor is disposed on a non-film-forming side of the substrate, and detects infrared rays emitted from the substrate.
【請求項7】 薄膜材料供給源の直上あるいはその近傍
の基板加熱装置には前記温度差Tout−Tinに基づく温
度信号が送られ、薄膜材料供給源の直上を基板が搬送さ
れる際の基板温度が所定温度に制御される請求項1から
6のいずれかに記載の薄膜形成方法。
7. A temperature signal based on the temperature difference Tout−Tin is sent to the substrate heating device immediately above or near the thin film material supply source, and the substrate temperature when the substrate is transported immediately above the thin film material supply source is determined. 7. The method for forming a thin film according to claim 1, wherein the temperature is controlled to a predetermined temperature.
【請求項8】 薄膜材料供給源の直上あるいはその近傍
の基板加熱装置には前記温度差Tout−Tinに基づく温
度信号と、前記基板温度センサによって検出された基板
温度に基づく温度信号が送られ、薄膜材料供給源の直上
を基板が搬送される際の基板温度が所定温度に制御され
る請求項1から7のいずれかに記載の薄膜形成方法。
8. A temperature signal based on the temperature difference Tout−Tin and a temperature signal based on the substrate temperature detected by the substrate temperature sensor are sent to a substrate heating device immediately above or near the thin film material supply source, 8. The thin film forming method according to claim 1, wherein a substrate temperature when the substrate is transported immediately above the thin film material supply source is controlled to a predetermined temperature.
【請求項9】 薄膜材料供給源の薄膜原材料に電子ビー
ムあるいはプラズマビームを照射して薄膜原材料を加熱
蒸発させる請求項1から8のいずれかに記載の薄膜形成
方法。
9. The method for forming a thin film according to claim 1, wherein the thin film raw material of the thin film material supply source is irradiated with an electron beam or a plasma beam to heat and evaporate the thin film raw material.
【請求項10】 薄膜材料供給源として導電性のハース
部上に薄膜原材料を形成し、ハース部に直流、あるいは
交流の電力を投入して薄膜原材料をスパッタ蒸発させる
請求項1から8のいずれかに記載の薄膜形成方法。
10. A thin film material is formed on a conductive hearth portion as a thin film material supply source, and DC or AC power is applied to the hearth portion to sputter evaporate the thin film material. 3. The method for forming a thin film according to item 1.
【請求項11】 薄膜材料供給源からの薄膜材料の飛翔
により基板に薄膜を形成する薄膜形成装置において、薄
膜材料供給源は薄膜原材料とそれを支持するハース部よ
り成り、ハース部は冷却流体を流すことに基づく冷却機
構を有し、冷却流体がハース部へ入る前の流体温度Tin
と出る際の流体温度Toutを検出する冷却流体温度検出
器を有し、その温度差Tout−Tinに基づく温度信号を
基板加熱装置に送ることによって、薄膜形成中における
基板温度を所定の温度に制御する薄膜形成装置。
11. A thin film forming apparatus for forming a thin film on a substrate by flying a thin film material from a thin film material supply source, wherein the thin film material supply source comprises a thin film raw material and a hearth portion for supporting the thin film material, and the hearth portion supplies a cooling fluid. Has a cooling mechanism based on flowing, and a fluid temperature Tin before the cooling fluid enters the hearth.
A cooling fluid temperature detector that detects a fluid temperature Tout when the substrate exits, and sends a temperature signal based on the temperature difference Tout−Tin to the substrate heating device to control the substrate temperature during the thin film formation to a predetermined temperature. Thin film forming equipment.
【請求項12】 冷却流体は常に同一流体速度にてハー
スに導入される請求項11記載の薄膜形成装置。
12. The thin film forming apparatus according to claim 11, wherein the cooling fluid is always introduced into the hearth at the same fluid velocity.
【請求項13】 基板は薄膜材料供給源に対向して位置
する軌道面上を搬送される請求項11記載の薄膜形成装
置。
13. The thin film forming apparatus according to claim 11, wherein the substrate is transported on a track surface located opposite to a thin film material supply source.
【請求項14】 基板加熱装置は基板搬送方向に分割さ
れ、搬送される基板の軌道面に対向して配置される請求
項13記載の薄膜形成装置。
14. The thin film forming apparatus according to claim 13, wherein the substrate heating device is divided in a substrate transport direction, and is arranged to face a track surface of the substrate to be transported.
【請求項15】 搬送される基板の軌道面に沿って、少
なくとも薄膜材料供給源の直上に対して搬送方向の前後
に基板温度センサが設けられ、基板温度センサによって
検出された基板温度に基づいて基板加熱装置が制御され
る請求項14あるいは15に記載の薄膜形成装置。
15. A substrate temperature sensor is provided along a track surface of a substrate to be conveyed, at least immediately before a thin film material supply source in the conveyance direction, and based on the substrate temperature detected by the substrate temperature sensor. 16. The thin film forming apparatus according to claim 14, wherein the substrate heating device is controlled.
【請求項16】 前記基板温度センサは基板の非成膜側
に配置し、基板から発する赤外線を検出することを特徴
とする請求項15記載の薄膜形成装置。
16. The thin film forming apparatus according to claim 15, wherein said substrate temperature sensor is arranged on a non-film-forming side of the substrate and detects infrared rays emitted from the substrate.
【請求項17】 薄膜材料供給源の直上あるいはその近
傍の基板加熱装置には前記温度差Tout−Tinに基づく
温度信号が送られ、薄膜材料供給源の直上を基板が搬送
される際の基板温度が所定温度に制御される請求項11
から16のいずれかに記載の薄膜形成装置。
17. A temperature signal based on the temperature difference Tout−Tin is sent to the substrate heating device immediately above or near the thin film material supply source, and the substrate temperature when the substrate is conveyed immediately above the thin film material supply source. Is controlled to a predetermined temperature.
17. The thin film forming apparatus according to any one of items 1 to 16.
【請求項18】 薄膜材料供給源の直上あるいはその近
傍の基板加熱装置には前記温度差Tout−Tinに基づく
温度信号と、前記基板温度センサによって検出された基
板温度に基づく温度信号が送られ、薄膜材料供給源の直
上を基板が搬送される際の基板温度が所定温度に制御さ
れる請求項11から17のいずれかに記載の薄膜形成装
置。
18. A temperature signal based on the temperature difference Tout−Tin and a temperature signal based on the substrate temperature detected by the substrate temperature sensor are sent to a substrate heating device immediately above or near the thin film material supply source, 18. The thin film forming apparatus according to claim 11, wherein a substrate temperature when the substrate is transported immediately above the thin film material supply source is controlled to a predetermined temperature.
【請求項19】 薄膜材料供給源の薄膜原材料に電子ビ
ームあるいはプラズマビームを照射して薄膜原材料を加
熱蒸発させる請求項11から18のいずれかに記載の薄
膜形成装置。
19. The thin film forming apparatus according to claim 11, wherein the thin film raw material of the thin film material supply source is irradiated with an electron beam or a plasma beam to heat and evaporate the thin film raw material.
【請求項20】 薄膜材料供給源として導電性のハース
部上に薄膜原材料を形成し、ハース部に直流、あるいは
交流の電力を投入して薄膜原材料をスパッタ蒸発させる
請求項11から18のいずれかに記載の薄膜形成装置。
20. A thin film material is formed on a conductive hearth portion as a thin film material supply source, and DC or AC power is applied to the hearth portion to sputter evaporate the thin film material. 2. The thin film forming apparatus according to 1.
JP2000325294A 2000-10-25 2000-10-25 Method and apparatus for forming thin film Pending JP2002129327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325294A JP2002129327A (en) 2000-10-25 2000-10-25 Method and apparatus for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325294A JP2002129327A (en) 2000-10-25 2000-10-25 Method and apparatus for forming thin film

Publications (1)

Publication Number Publication Date
JP2002129327A true JP2002129327A (en) 2002-05-09

Family

ID=18802679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325294A Pending JP2002129327A (en) 2000-10-25 2000-10-25 Method and apparatus for forming thin film

Country Status (1)

Country Link
JP (1) JP2002129327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038384A1 (en) * 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 Film forming apparatus and film forming method using same
KR101042849B1 (en) 2003-12-19 2011-06-17 삼성모바일디스플레이주식회사 Method of thermal vapour deposition using resist

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042849B1 (en) 2003-12-19 2011-06-17 삼성모바일디스플레이주식회사 Method of thermal vapour deposition using resist
WO2010038384A1 (en) * 2008-09-30 2010-04-08 キヤノンアネルバ株式会社 Film forming apparatus and film forming method using same

Similar Documents

Publication Publication Date Title
CN102217038B (en) Deposition apparatus and deposition method using the same
KR100711885B1 (en) Source for organic layer and the method for controlling heating source thereof
JP4782219B2 (en) Vacuum deposition equipment
JP2007291506A (en) Film deposition method
JP2004225058A (en) Film deposition apparatus, display panel manufacturing apparatus, and method for the same
JP2010196082A (en) Vacuum vapor deposition apparatus
JP4611884B2 (en) Vapor deposition film thickness measuring method and vapor deposition system
KR20130113302A (en) Vapor deposition method and the apparatus thereof
TWI568872B (en) Evaporation apparatus
US8025734B2 (en) Method for controlling the volume of a molecular beam
JP6116290B2 (en) Vapor deposition apparatus and vapor deposition method
JP2004100002A (en) Evaporation source and thin-film deposition system using the same
JP2011162846A (en) Vacuum evaporation source
US8075693B2 (en) Crucible heating apparatus and deposition apparatus including the same
JP2008266790A (en) Apparatus and method of applying lubricant coating to magnetic disk via vapor flow path including selectively opened and closed shutter
US20100189904A1 (en) Film forming apparatus and film forming method using the same
JP2002129327A (en) Method and apparatus for forming thin film
JP2014070227A (en) Filming apparatus, and temperature control method and device for evaporation source of the filming apparatus
US20080236481A1 (en) Method of and apparatus for monitoring mass flow rate of lubricant vapor forming lubricant coatings of magnetic disks
JP2002129325A (en) Apparatus and method for forming thin film
JPH11335820A (en) Vapor deposition and vapor deposition device
JP4074672B2 (en) Sputtering method
JP4847496B2 (en) Vapor deposition source unit, vapor deposition method, vapor deposition source unit control apparatus and film forming apparatus
JP2005325425A (en) Organic vapor deposition method and organic vapor deposition system
EP1975928A2 (en) Method of and apparatus for substantially preventing condensation on surfaces of a flow path for lubricant vapor flowing to a magnetic disk to form a lubricant coating on the disk