JP2005281858A - Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus - Google Patents

Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus Download PDF

Info

Publication number
JP2005281858A
JP2005281858A JP2005050123A JP2005050123A JP2005281858A JP 2005281858 A JP2005281858 A JP 2005281858A JP 2005050123 A JP2005050123 A JP 2005050123A JP 2005050123 A JP2005050123 A JP 2005050123A JP 2005281858 A JP2005281858 A JP 2005281858A
Authority
JP
Japan
Prior art keywords
material layer
substrate
ray
deposition
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005050123A
Other languages
Japanese (ja)
Inventor
Kenji Tanase
健司 棚瀬
Koki Ishida
弘毅 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005050123A priority Critical patent/JP2005281858A/en
Priority to CNB2005100511760A priority patent/CN100487948C/en
Priority to TW094106193A priority patent/TWI299758B/en
Priority to KR1020050017176A priority patent/KR100716704B1/en
Priority to US11/071,276 priority patent/US20050244570A1/en
Publication of JP2005281858A publication Critical patent/JP2005281858A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To correctly detect the thickness of a deposited material layer at the film deposition. <P>SOLUTION: X-rays are irradiated on a film thickness monitoring area provided on a substrate 14 or in a vicinity of the substrate 14 while changing the angle of incidence from an X-ray emitter 26. A monitoring unit 52 formed of the same material as a material layer is simultaneously formed on the film thickness monitoring area during the vapor deposition of a material film on the substrate. The X-rays reflected by the film thickness monitoring area reaches from an aperture of a film deposition chamber 10 to an X-ray detector 28. The X-ray detector 28 detects the X-ray reflectance. The thickness of the film deposited on the film thickness monitoring area is calculated by a control device 30 based on the period of oscillation of the reflectance. A material layer of the target thickness is correctly deposited on the substrate by adjusting the deposition speed by controlling the moving speed of a crucible 18, the heating state of a heater 20 or the like according to the calculated thickness of the film thickness monitoring unit 52. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

基板上における材料の堆積および堆積厚の測定に関する。   It relates to the deposition of materials on a substrate and the measurement of the deposition thickness.

従来より、各種のデバイスにおいて、複数の材料層の積層構造が利用されており、その堆積に蒸着やスパッタなどが利用されている。例えば、有機エレクトロルミネッセンス(EL)ディスプレイでは、有機EL素子(OLED)をそれぞれ有する画素をマトリクス配置して表示を行う。この有機EL素子は、正孔輸送層、発光層、電子輸送層などの有機層を有する物が知られており、これらの有機層を真空蒸着によって形成することが、例えば、特許文献1などに記載がある。   Conventionally, in various devices, a laminated structure of a plurality of material layers is used, and vapor deposition, sputtering, or the like is used for the deposition. For example, in an organic electroluminescence (EL) display, display is performed by arranging pixels each having an organic EL element (OLED) in a matrix. This organic EL element is known to have an organic layer such as a hole transport layer, a light emitting layer, and an electron transport layer. For example, Patent Document 1 discloses that these organic layers are formed by vacuum deposition. There is a description.

このような有機ELディスプレイにおいて各有機層の厚さは、電極層などと比較しても非常に薄く、また、複数の有機層を積層することが多い。そのため層の厚さが発光特性に及ぼす影響も大きいと予想され、各層を適切に蒸着することが望まれ、したがって、各層の厚みを正確にしたいという要求がある。   In such an organic EL display, the thickness of each organic layer is much thinner than that of an electrode layer or the like, and a plurality of organic layers are often stacked. Therefore, it is expected that the thickness of the layer has a great influence on the light emission characteristics, and it is desired to appropriately deposit each layer. Therefore, there is a demand for making the thickness of each layer accurate.

また、有機ELディスプレイを作製する場合、なるべく大きな基板を利用して、作成する方が効率的であり、例えば1型〜10型程度のいわゆる小型ディスプレイであれば、これらの領域をマザー基板上に多数一度に作成し、作製後に切断することが好ましい。従って、有機物質の蒸着も、比較的大面積の基板上に蒸着することになる。そこで、基板上の蒸着位置によるバラツキをできるだけ小さく抑えたいという要求もある。   In the case of manufacturing an organic EL display, it is more efficient to use a substrate as large as possible. For example, in the case of a so-called small display of about 1 type to 10 type, these regions are formed on a mother substrate. It is preferable to prepare a large number at once and cut after the preparation. Accordingly, the organic material is also deposited on a substrate having a relatively large area. Therefore, there is also a demand for minimizing variation due to the deposition position on the substrate.

特開2003−257644号公報JP 2003-257644 A

ここで、薄膜の厚さの計測には、分光エリプソメータや、水晶振動子を用いた膜厚計が用いられる。分光エリプソメータでは、成膜後のサンプルを成膜装置外で計測する場合に用いられるものであり、実際の成膜時に計測することはできない。また、分光エリプソメータは、計測する膜表面の平滑性が高いことが要求されるため、有機EL素子よりも下層に例えば薄膜トランジスタなどの素子が形成され、それらに起因する表面の凹凸も多いディスプレイ用途などの有機層の膜厚測定に対して高い精度を得ることができない。   Here, for measuring the thickness of the thin film, a spectroscopic ellipsometer or a film thickness meter using a crystal resonator is used. The spectroscopic ellipsometer is used when a sample after film formation is measured outside the film formation apparatus, and cannot be measured during actual film formation. In addition, since the spectroscopic ellipsometer is required to have high smoothness on the surface of the film to be measured, an element such as a thin film transistor is formed in a lower layer than the organic EL element, and the surface uses unevenness due to them. High accuracy cannot be obtained for the film thickness measurement of the organic layer.

また水晶振動子の振動数変化より膜厚(蒸着量)を計測する方法を採用すると、成膜装置内に水晶振動子を配置して、水晶振動子に付着した材料膜厚を計測可能であるが、連続使用すると、計測値が変化するため、安定した測定が難しい。また、実際に基板上に形成された材料層の厚さを測定することはできない。   In addition, if a method of measuring the film thickness (deposition amount) from the change in the frequency of the crystal unit is adopted, the thickness of the material attached to the crystal unit can be measured by placing the crystal unit in the film forming apparatus. However, when it is used continuously, the measurement value changes, so stable measurement is difficult. In addition, the thickness of the material layer actually formed on the substrate cannot be measured.

本発明は、材料堆積中における膜厚の計測を効果的に行い、またその計測値に応じて堆積を効果的に制御することを目的とする。   An object of the present invention is to effectively measure the film thickness during material deposition and to effectively control the deposition according to the measured value.

本発明は、基板上への材料層の堆積厚測定方法であって、基板又は基板近傍の所定箇所に設けられた堆積厚モニタ領域上と、前記基板上とに材料を堆積して材料層を形成し、前記堆積厚モニタ領域にX線光を照射し、この材料層からのX線反射波を検出し、検出したX線反射波の強度に基づいて、基板上に形成された材料層の堆積厚さを測定する。   The present invention is a method for measuring a deposition thickness of a material layer on a substrate, wherein the material layer is deposited by depositing a material on a deposition thickness monitor region provided at a predetermined location near the substrate or the substrate and the substrate. And forming the deposited thickness monitor region with X-ray light, detecting an X-ray reflected wave from the material layer, and based on the detected X-ray reflected wave intensity of the material layer formed on the substrate. Measure the deposition thickness.

また、本発明の他の態様は、基板上への材料層の形成方法であって、基板又は基板近傍の所定箇所に設けられた堆積厚モニタ領域上と、前記基板上とに材料を堆積して材料層を形成し、前記堆積厚モニタ領域にX線光を照射し、この材料層からのX線反射波を検出し、検出したX線反射波の強度に基づいて、基板上に形成された材料層の堆積厚さを測定し、測定結果に応じて、堆積速度を制御する。   Another aspect of the present invention is a method of forming a material layer on a substrate, wherein the material is deposited on a deposition thickness monitor region provided at a predetermined location near the substrate or the substrate and on the substrate. Forming a material layer, irradiating the deposition thickness monitor region with X-ray light, detecting an X-ray reflected wave from the material layer, and forming on the substrate based on the intensity of the detected X-ray reflected wave. The thickness of the deposited material layer is measured, and the deposition rate is controlled according to the measurement result.

また、本発明の他の態様では、前記材料層の堆積に際し、前記材料層を蒸着によって形成する蒸着源における蒸着材料の加熱状態又は前記蒸着源と前記基板との相対的な走査速度の少なくとも一方を制御する。   In another aspect of the present invention, at the time of depositing the material layer, at least one of a heating state of a vapor deposition material in a vapor deposition source for forming the material layer by vapor deposition or a relative scanning speed of the vapor deposition source and the substrate. To control.

また、本発明の他の態様では、前記堆積厚モニタ領域は、基板又は基板近傍において互いに離れて複数設けられ、それぞれの堆積厚モニタ領域における堆積厚に基づいて、前記蒸着源の加熱分布を制御する。   In another aspect of the present invention, a plurality of the deposition thickness monitor regions are provided apart from each other in the substrate or in the vicinity of the substrate, and the heating distribution of the vapor deposition source is controlled based on the deposition thickness in each deposition thickness monitor region. To do.

また、本発明の他の態様では、前記材料層を蒸着する蒸着室は、蒸着室外に配置された発光器から射出され前記堆積厚モニタ領域に到達するX線の光路上及び前記材料層から射出され受光器に到達するX線の光路上にそれぞれX線透過窓を備え、前記材料層を蒸着する間、該X線透過窓を加熱する。   In another aspect of the present invention, the vapor deposition chamber for vapor-depositing the material layer is emitted from a light emitter disposed outside the vapor deposition chamber and emitted from an X-ray optical path reaching the deposition thickness monitor region and from the material layer. X-ray transmission windows are respectively provided on the optical paths of the X-rays reaching the light receiver, and the X-ray transmission windows are heated while the material layer is deposited.

本発明の他の態様では、前記材料層の堆積厚さは、前記X線の前記堆積厚モニタ領域への入射角度を変更しながら、前記X線反射波の干渉によって生ずる前記X線反射波の反射率の振動に基づいて算出する。   In another aspect of the present invention, the deposition thickness of the material layer is such that the X-ray reflected wave generated by interference of the X-ray reflected wave is changed while changing an incident angle of the X-ray to the deposition thickness monitoring region. Calculation is based on the vibration of the reflectance.

このように、本発明によれば、堆積厚モニタ領域において材料層の堆積膜厚を、照射したX線の反射強度に基づいて求める。このようなX線の反射強度から実際の蒸着層等の材料層の堆積厚を検出すれば、精度よく、かつ材料層を形成しながらその厚さを求めることができる。したがって、検出した堆積厚に応じて堆積条件(例えば蒸着源の温度や移動速度など)を制御して、適切な厚さに材料層を形成することができる。また、材料層の形成と同時に測定する、つまり形成時に厚さをモニタリングするので、装置外で別途測定する方法と比較して、堆積厚の測定時間を飛躍的に短縮でき、また堆積値が目的値から外れた処理基板はその時点で厚さを調整したり、工程から除くことができ、製造の効率化を図ることができる。   Thus, according to the present invention, the deposited film thickness of the material layer in the deposited thickness monitor region is obtained based on the reflection intensity of the irradiated X-rays. By detecting the actual deposition thickness of a material layer such as a vapor deposition layer from the reflection intensity of X-rays, the thickness can be obtained accurately and while forming the material layer. Therefore, the material layer can be formed to an appropriate thickness by controlling the deposition conditions (for example, the temperature of the vapor deposition source and the moving speed) according to the detected deposition thickness. In addition, since the thickness is measured at the same time as the material layer is formed, that is, the thickness is monitored at the time of formation, the measurement time of the deposited thickness can be drastically shortened compared to the method of separately measuring outside the apparatus, and the purpose of the deposited value is The thickness of the processed substrate deviating from the value can be adjusted or removed from the process at that time, and the manufacturing efficiency can be improved.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、実施形態に係る堆積装置(蒸着装置)の概略構成を示している。真空チャンバ(成膜室)10は、気密に構成されており、被蒸着体である基板14(例えば、ガラス基板)が導入された後の内部は真空ポンプなどを利用して所定の減圧状態が維持される。真空チャンバ10内の上部には、基板固定部12が設けられ、ここに基板14が固定される。また、固定された基板14の下方には、るつぼ移動レール16が設置されており、ここにるつぼ18が往復移動可能に設置されている。るつぼ18の移動には、基本的にモータ40が利用されるが、動力の伝達方法には各種のものがあり、適宜採用できる。この例では、モータ40により長ねじ42を回転し、この長ねじの回転によってるつぼ18の移動を制御している。なお、移動手段には、均一な蒸着を達成するために、一定速度で移動可能とすることが要求される。   FIG. 1 shows a schematic configuration of a deposition apparatus (evaporation apparatus) according to an embodiment. The vacuum chamber (film formation chamber) 10 is configured to be airtight, and the inside of the interior after the substrate 14 (for example, a glass substrate), which is a deposition target, is introduced, is in a predetermined reduced pressure state using a vacuum pump or the like. Maintained. A substrate fixing part 12 is provided at the upper part in the vacuum chamber 10, and the substrate 14 is fixed thereto. Also, a crucible moving rail 16 is installed below the fixed substrate 14, and a crucible 18 is installed here so as to be able to reciprocate. For the movement of the crucible 18, the motor 40 is basically used, but there are various power transmission methods that can be adopted as appropriate. In this example, the long screw 42 is rotated by the motor 40, and the movement of the crucible 18 is controlled by the rotation of the long screw. The moving means is required to be movable at a constant speed in order to achieve uniform vapor deposition.

るつぼ18は、例えば、基板の幅方向より若干長い細長い箱形状の蒸着源(リニアソース)で、るつぼ18内に収容している蒸着材料を加熱して蒸発させ、るつぼ上方の開口部から材料を放出する。放出された蒸発材料は、基板14の下面に付着し堆積される。るつぼ18を基板14の長さ(長手)方向に移動させる(走査する)ことで、基板14の表面の全面にほぼ同一の条件で材料層を蒸着形成することができる。なお、図においては、るつぼ18を1つのみ示したが、るつぼ18を複数設けそれぞれから材料を蒸発させてもよい。その場合に、各るつぼ18から異なる材料を蒸発させ、積層構造を形成することもできる。   The crucible 18 is, for example, an elongated box-shaped vapor deposition source (linear source) slightly longer than the width direction of the substrate. The vapor deposition material contained in the crucible 18 is heated and evaporated, and the material is removed from the opening above the crucible. discharge. The released evaporation material adheres to the lower surface of the substrate 14 and is deposited. By moving (scanning) the crucible 18 in the length (longitudinal) direction of the substrate 14, a material layer can be deposited on the entire surface of the substrate 14 under substantially the same conditions. Although only one crucible 18 is shown in the figure, a plurality of crucibles 18 may be provided to evaporate the material from each. In that case, a different material can be evaporated from each crucible 18 to form a laminated structure.

基板上の所定部位のみに材料層を蒸着形成する場合には、図示するように基板14の下面にマスク50を配置し、蒸着部を限定する。例えば、有機EL素子を用いたディスプレイにおいて、画素毎にRGB3色のいずれかの発光層を備える有機EL素子を形成し、この発光層を色毎に塗り分け形成する場合であれば、材料毎に開口位置の異なるマスクを交換して蒸着すればよい。また、基板14を別の真空チャンバ10に移動して、開口位置の異なるマスクを用いて蒸着を行ってもよい。なお、蒸着に際し、るつぼ18ではなく、基板14を移動してもよい。   In the case where the material layer is formed by vapor deposition only on a predetermined portion on the substrate, a mask 50 is disposed on the lower surface of the substrate 14 as shown in the figure to limit the vapor deposition portion. For example, in a display using an organic EL element, if an organic EL element having a light emitting layer of any of RGB three colors is formed for each pixel and this light emitting layer is separately formed for each color, for each material What is necessary is just to vapor-deposit by exchanging masks with different opening positions. Alternatively, the substrate 14 may be moved to another vacuum chamber 10 and vapor deposition may be performed using masks having different opening positions. Note that the substrate 14 may be moved instead of the crucible 18 during vapor deposition.

るつぼ18の周面には、ヒータ20が取り付けられ、このヒータ20には、ケーブル22を介しヒータ電源部24が接続されている。従って、ヒータ電源部24からの電力供給によって、ヒータ20の加熱状態が制御され、るつぼ18からの材料の蒸発状態が制御される。   A heater 20 is attached to the peripheral surface of the crucible 18, and a heater power supply unit 24 is connected to the heater 20 via a cable 22. Therefore, the heating state of the heater 20 is controlled by the power supply from the heater power source 24, and the evaporation state of the material from the crucible 18 is controlled.

本実施形態においては、真空チャンバ10の所定部分に複数対の透明部分(窓)11が設けられており、これらに対応して発光器26と、受光器28が配置されている。発光器26から射出された光線は、材料層が形成されている基板14の所定部分(後述する膜厚モニタ領域)で反射され受光器28に至る。光線は、紫外線、可視光線等、200nm〜900nm程度の波長域の光線が採用可能であるが(これらの光線を用いる場合は、例えば受光器28はモニタ領域52に照射された光の透過光を検出する)、本実施形態では、特に、X線を採用している。つまり、本実施形態において発光器26及び受光器28は、具体的にはそれぞれ図1に示すようにX線射出器26、X線検出器(例えばシンチレータ)28である。   In the present embodiment, a plurality of pairs of transparent portions (windows) 11 are provided in a predetermined portion of the vacuum chamber 10, and a light emitter 26 and a light receiver 28 are disposed corresponding to them. The light beam emitted from the light emitter 26 is reflected by a predetermined portion (film thickness monitor region described later) of the substrate 14 on which the material layer is formed, and reaches the light receiver 28. As the light beam, a light beam having a wavelength range of about 200 nm to 900 nm, such as ultraviolet light and visible light, can be adopted. (When these light beams are used, for example, the light receiver 28 transmits the transmitted light of the light irradiated to the monitor region 52. In this embodiment, in particular, X-rays are employed. That is, in the present embodiment, the light emitter 26 and the light receiver 28 are specifically an X-ray emitter 26 and an X-ray detector (for example, a scintillator) 28 as shown in FIG.

図示するようにマスク50が基板14とるつぼ18との間に基板14に近接して配置されており、このマスク50には、X線射出器26からのX線を照射するモニタ領域(モニタ部52)に対応する位置に膜厚測定用の開口部54が設けられている。なお、マスク50の開口部54の位置に合わせて発光器26及び受光器28の位置を移動可能としておくことが好ましい。また、後述するように、膜厚の測定に際しては、膜厚モニタ領域へのX線の入射角度を変更する必要があるため、X線射出器26はX線の膜厚モニタ領域への入射角度を調整するための角度調整機構を備える。また、このX線射出器26及びX線検出器28は、いずれもX線のモニタ部への入射角度射出角度が大きいため、基板14及びマスク50の側方に配置されており、対応する光路上において成膜室10に設けられるX線透過窓11も、成膜室10の側壁に設けられている。   As shown in the figure, a mask 50 is disposed in proximity to the substrate 14 between the substrate 14 and the crucible 18, and a monitor region (monitor unit) for irradiating X-rays from the X-ray ejector 26 is disposed on the mask 50. 52) is provided at a position corresponding to 52). In addition, it is preferable that the positions of the light emitter 26 and the light receiver 28 are movable in accordance with the position of the opening 54 of the mask 50. Further, as will be described later, when measuring the film thickness, it is necessary to change the incident angle of the X-rays to the film thickness monitor region. Therefore, the X-ray ejector 26 has the incident angle of the X-rays to the film thickness monitor region. An angle adjustment mechanism for adjusting the angle is provided. Further, since both the X-ray emitter 26 and the X-ray detector 28 have a large incident angle emission angle to the X-ray monitor unit, the X-ray emitter 26 and the X-ray detector 28 are arranged on the side of the substrate 14 and the mask 50, and the corresponding light. An X-ray transmission window 11 provided in the film forming chamber 10 on the road is also provided on the side wall of the film forming chamber 10.

るつぼ18から放出される蒸着材料は、画素領域に応じたパターンの開口部と同様に、
膜厚測定用開口部54を通って基板14の対応する位置に付着し、これにより基板上には、画素領域などの所望パターンの材料層の形成と同時に、後述する図5のように同一材料で、かつ同一条件で膜厚(堆積厚)モニタ領域に膜厚モニタ部(モニタ膜)52が形成される。そして、X線射出器26から射出されたX線は、膜厚測定用開口部54及び基板14のこの膜厚モニタ領域で反射して、X線検出器28に到達する。X線検出器28は、検出したX線反射波の強度を検出し、検出強度についての信号を制御装置30に供給し、制御装置30は反射率の振動を検出し、この振動の周期から蒸着膜の厚さを算出する。制御装置30は、ヒータ電源部24を制御して、蒸着膜厚が適切なものになるように、ヒータ電源部24からヒータ20への電流供給を制御するとともに、モータ40を制御してるつぼ18の移動速度を制御する。このような制御により材料層の膜厚が最適値となるように基板上への材料の堆積速度(成膜速度)が制御される。
The vapor deposition material emitted from the crucible 18 is similar to the pattern opening corresponding to the pixel region.
Through the film thickness measurement opening 54, it adheres to the corresponding position of the substrate 14, and as a result, the same material is formed on the substrate as shown in FIG. The film thickness monitor section (monitor film) 52 is formed in the film thickness (deposition thickness) monitor region under the same conditions. The X-rays emitted from the X-ray emitter 26 are reflected by the film thickness measurement opening 54 and the film thickness monitor region of the substrate 14 and reach the X-ray detector 28. The X-ray detector 28 detects the intensity of the detected X-ray reflected wave, supplies a signal about the detected intensity to the control device 30, and the control device 30 detects the vibration of the reflectance, and vapor deposition is performed from the period of this vibration. The film thickness is calculated. The control device 30 controls the heater power source 24 to control the current supply from the heater power source 24 to the heater 20 and to control the motor 40 so that the vapor deposition film thickness is appropriate. Control the moving speed of the. By such control, the material deposition rate (film formation rate) on the substrate is controlled so that the film thickness of the material layer becomes an optimum value.

ここで、膜厚測定に用いるのが例えば紫外線で、紫外線をモニタ部52に照射し、このモニタ部52を透過して受光部に到達する光を検出してその吸光強度から予め求めた検量データを参照することで蒸着膜の厚さを検出する場合、紫外線をモニタ部52を透過させるため、発光器26,受光器28は、図1を参照すると蒸着室10の上下に設ける。しかし、本実施形態のように、X線を膜厚測定に採用する場合、X線射出器26は、入射X線が測定対象表面、つまり、膜厚モニタ領域で全反射するような大きな入射角(材料層形成表面に対して例えば0.2°〜6°程度)で入射可能な位置に設け、またX線検出器28は材料層形成面(膜厚モニタ領域)で、入射角と同様大きな射出角で反射されるX線を検出できる位置に設ける。   Here, for example, ultraviolet rays are used for film thickness measurement, and ultraviolet rays are irradiated to the monitor unit 52, light that passes through the monitor unit 52 and reaches the light receiving unit is detected, and calibration data obtained in advance from the light absorption intensity. When the thickness of the vapor deposition film is detected by referring to FIG. 1, the light emitter 26 and the light receiver 28 are provided above and below the vapor deposition chamber 10 in order to transmit ultraviolet rays through the monitor unit 52. However, when X-rays are used for film thickness measurement as in this embodiment, the X-ray ejector 26 has a large incident angle at which the incident X-rays are totally reflected on the measurement target surface, that is, the film thickness monitor region. The X-ray detector 28 has a material layer forming surface (film thickness monitor region), which is as large as the incident angle. It is provided at a position where X-rays reflected at the exit angle can be detected.

X線を用いた膜厚の測定は、具体的にはX線反射率測定法(Grazing Incidence X-ray Reflectively technique:GIXR法)を採用可能であり、入射角度を変更しながら反射波の強度(反射率)を検出し、反射率の振動周期からその膜厚を算出するという原理を用いる。材料層(モニタ部52)の表面で反射したX線と、材料層とその下層(例えば基板)との界面で反射したX線とでは、図2に示すように光路差が存在するため、反射波は互いに干渉する。この光路差は、測定対象膜の膜厚tと、X線の入射角度θと全反射臨界角θcとの差に相当する測定対象膜への入射角、射出角、測定対象膜の下層との界面への入射角及び射出角θ’(θ’=θ−θc)に依存して発生する。   Specifically, the film thickness measurement using X-rays can adopt the X-ray reflectivity measurement method (Grazing Incidence X-ray Reflectively technique: GIXR method), and the intensity of the reflected wave ( The principle of detecting the (reflectance) and calculating the film thickness from the oscillation cycle of the reflectance is used. Since there is an optical path difference between the X-ray reflected at the surface of the material layer (monitor unit 52) and the X-ray reflected at the interface between the material layer and its lower layer (for example, the substrate), reflection occurs as shown in FIG. The waves interfere with each other. This optical path difference is the difference between the film thickness t of the measurement target film, the incident angle to the measurement target film corresponding to the difference between the X-ray incident angle θ and the total reflection critical angle θc, the emission angle, and the lower layer of the measurement target film. It occurs depending on the incident angle to the interface and the exit angle θ ′ (θ ′ = θ−θc).

入射角度θを変化させながらX線検出器、より具体的にはX線反射率測定用検出器28によって反射率を測定すると、その反射率には、図3に示すような干渉による振動構造が発生する。よって、その振動の周期から材料層の厚さtを計算することができる。膜厚が大きくなると周期が減少し、例えば制御装置30が反射率からフーリエ解析を行うことで、定量的に膜厚を求めることができる。このような本実施形態におけるX反射波強度の測定は、既に膜厚測定として実績のある分光エリプソメータに替えて、その強度に基づいて膜厚を測定できる。   When the reflectivity is measured by the X-ray detector, more specifically, the X-ray reflectivity measuring detector 28 while changing the incident angle θ, the reflectivity has a vibration structure due to interference as shown in FIG. Occur. Therefore, the thickness t of the material layer can be calculated from the period of the vibration. As the film thickness increases, the period decreases. For example, the control device 30 can perform a Fourier analysis from the reflectance, whereby the film thickness can be obtained quantitatively. The measurement of the X reflected wave intensity in this embodiment can be measured based on the intensity instead of the spectroscopic ellipsometer that has already been proven as a film thickness measurement.

以上に説明したX線射出器26、X線検出器28は、真空チャンバ10内に設けてもよい。この場合には、シャッタをつけ、X線射出器26、X線検出器28に対し不要な蒸着物質の堆積を防止することが好適である。あるいはシャッタの代わりに、少なくともX線検出器28の周囲の温度を制御して(例えば一定の高温になるように加熱制御)、蒸着物質がX線検出器28に付着しないようにしてもよい。   The X-ray ejector 26 and the X-ray detector 28 described above may be provided in the vacuum chamber 10. In this case, it is preferable to attach a shutter to prevent the deposition of unnecessary vapor deposition material on the X-ray emitter 26 and the X-ray detector 28. Alternatively, instead of the shutter, at least the temperature around the X-ray detector 28 may be controlled (for example, heating control is performed so as to be a constant high temperature) so that the vapor deposition material does not adhere to the X-ray detector 28.

ここで、有機EL素子において、有機層の厚さは発光層での発光条件を決めるための重要な要素の一つと考えられ、より高い発光効率や高精度の発光制御を実現する上で、この有機層の厚さの精度に対する要求は今後さらに高まる。そして、例えば、CuPc膜は、有機EL素子において、陽極と正孔輸送層の間に設けられる正孔注入層として利用されることが多く、通常10nm程度と非常に薄いが、このような極めて薄い膜についてもより精度良く膜厚を制御することが望まれる。上述のように連続使用時の安定性に欠ける水晶振動子を用いたのでは正確な計測が困難である。   Here, in the organic EL element, it is considered that the thickness of the organic layer is one of the important factors for determining the light emission conditions in the light emitting layer, and in order to realize higher light emission efficiency and high-precision light emission control, The demand for the accuracy of the organic layer thickness will increase further in the future. For example, a CuPc film is often used as a hole injection layer provided between an anode and a hole transport layer in an organic EL element, and is usually very thin, about 10 nm. It is desired that the film thickness be controlled with higher accuracy. As described above, accurate measurement is difficult if a crystal resonator lacking stability during continuous use is used.

さらに、上記CuPc膜は、その膜表面が乱反射の起きやすい表面状態となるため、このような膜については、エリプソメータによる膜厚測定に適していない。これに対し、本実施形態のようなX線反射率測定法では、エリプソメータより高い測定精度が得られ、かつ、リアルタイムでの膜厚測定が可能である。また、有機EL素子の有機層の材料は、現在、その耐久性に依然として課題が多い。このため、下層側の電極(陽極又は陰極)の形成後、例えば真空蒸着法によって形成される多層構造の有機層の各層は、表面にゴミが付着したり有機層の劣化を速める水分が酸素などにさらされる可能性を低減する上で、真空雰囲気を破らずに連続形成することが望まれている。したがって、本実施形態のように真空蒸着室内で成膜した膜の厚さを随時測定すれば、例えばエリプソメータを用いた場合のように、膜厚測定のためだけに基板を装置外に出す必要もなく、膜厚の正確な制御が可能となる。なお、有機EL素子の多層構造の有機層は、例えば陽極が下層側の電極で、上層が電子注入層とほぼ一体に形成された陰極である場合に、下から順に正孔注入層、正孔輸送層、発光層、電子輸送層の積層構造が一例として挙げられ、各層の厚さをそれぞれ最適な値になるよう制御しながら連続して形成することが可能となる。   Furthermore, since the film surface of the CuPc film is in a surface state in which irregular reflection easily occurs, such a film is not suitable for film thickness measurement using an ellipsometer. On the other hand, in the X-ray reflectivity measurement method as in this embodiment, measurement accuracy higher than that of an ellipsometer can be obtained, and film thickness can be measured in real time. Moreover, the material of the organic layer of the organic EL element still has many problems in its durability. For this reason, after the formation of the lower layer side electrode (anode or cathode), for example, each layer of the organic layer having a multilayer structure formed by a vacuum deposition method has moisture that adheres to the surface or accelerates the deterioration of the organic layer. In order to reduce the possibility of exposure, it is desired to form continuously without breaking the vacuum atmosphere. Therefore, if the thickness of the film formed in the vacuum evaporation chamber is measured as needed as in this embodiment, it is necessary to take the substrate out of the apparatus only for film thickness measurement, for example, when using an ellipsometer. Therefore, the film thickness can be accurately controlled. The organic layer having a multilayer structure of the organic EL element includes, for example, a hole injection layer and a hole in order from the bottom when the anode is an electrode on the lower layer side and the upper layer is a cathode formed almost integrally with the electron injection layer. A laminated structure of a transport layer, a light emitting layer, and an electron transport layer is given as an example, and it is possible to continuously form each layer while controlling the thickness of each layer to an optimum value.

また、本実施形態のようにX線の反射強度を検出して得たその反射率に基づいて、膜厚を測定する方法では、その測定原理上、標準試料を必要とせず、絶対的な分析結果を得ることができる。また、X線射出器26の発生するX線強度の長期的変動が原理的に測定結果に影響を与えないので、較正作業をする必要が無く、材料層の厚さをリアルタイムに容易かつ正確に測定することができる。   Further, in the method of measuring the film thickness based on the reflectance obtained by detecting the reflection intensity of the X-ray as in the present embodiment, a standard sample is not required on the basis of the measurement principle, and an absolute analysis is performed. The result can be obtained. In addition, since long-term fluctuations in the X-ray intensity generated by the X-ray ejector 26 do not affect the measurement results in principle, there is no need for calibration work, and the thickness of the material layer can be easily and accurately adjusted in real time. Can be measured.

通常の蒸着工程においては、まずるつぼ18を所定温度まで加温し、蒸発状態を安定化する。これは、るつぼ18を図1に示すような基板14の下方から外れた待機位置に位置させて行う。この待機位置のるつぼ18の上方には、水晶式の膜厚計を配置し、蒸発状態を検出することも好適である。   In a normal vapor deposition process, first, the crucible 18 is heated to a predetermined temperature to stabilize the evaporation state. This is done by placing the crucible 18 in a standby position off the bottom of the substrate 14 as shown in FIG. It is also preferable to place a quartz-type film thickness meter above the crucible 18 at the standby position to detect the evaporation state.

また、基板14を基板固定部12にセットしておく。そして、モータ40を駆動して、るつぼ18を所定速度で移動させ、基板14の下表面に蒸着を行う。上述のように、X線反射強度の振動周波数から、膜厚を検出できるため、この検出結果に基づいて、ヒータ20による加熱状態や、モータ40の回転数を制御することで、常に安定した蒸着を行うことができる。なお、このような制御は、1つの基板14に対して蒸着のバラツキを防止するために行ってもよいし、複数の基板14に対する蒸着のバラツキを防止するために行ってもよい。   Further, the substrate 14 is set on the substrate fixing portion 12. Then, the motor 40 is driven to move the crucible 18 at a predetermined speed, and vapor deposition is performed on the lower surface of the substrate 14. As described above, since the film thickness can be detected from the vibration frequency of the X-ray reflection intensity, by controlling the heating state by the heater 20 and the number of rotations of the motor 40 based on the detection result, the deposition is always stable. It can be performed. Note that such control may be performed in order to prevent variations in deposition on one substrate 14 or may be performed in order to prevent variations in deposition on a plurality of substrates 14.

さらに、上記実施形態では、実際に蒸着対象となっている基板14における蒸着膜厚を検出した。しかし、ダミー基板を用い、そのダミー基板における蒸着状態を調べて、るつぼ18の加熱状態およびるつぼ18の移動状態を制御してもよい。ここで、このダミー基板は、実際に蒸着する基板14の代わりに設けてもよいし、基板14に隣接して設けてもよい。さらに、図4に示すように、ダミー基板15は、平板でなくてもよく、円柱状や多角柱状として、複数の蒸着膜の形成毎にるつぼ18の変更と対応してその周面位置(又は周面)を変更し、対応する周面での蒸着膜の堆積厚を上述のX線反射率から算出することで、るつぼ18からの蒸発物質の蒸発状態を検出することができ、これに基づいて蒸着量の制御ができる。特に、ダミー基板を円柱状として、これを適宜回転させて、表面に蒸着させて、この膜厚を検出することが好適である。   Furthermore, in the said embodiment, the vapor deposition film thickness in the board | substrate 14 actually used as vapor deposition object was detected. However, a dummy substrate may be used, and the deposition state on the dummy substrate may be investigated to control the heating state of the crucible 18 and the movement state of the crucible 18. Here, this dummy substrate may be provided in place of the substrate 14 to be actually deposited, or may be provided adjacent to the substrate 14. Further, as shown in FIG. 4, the dummy substrate 15 may not be a flat plate, but may be a columnar shape or a polygonal columnar shape, corresponding to the change in the crucible 18 every time a plurality of vapor deposition films are formed (or the peripheral surface position (or And the evaporation state of the evaporated substance from the crucible 18 can be detected by calculating the deposition thickness of the vapor deposition film on the corresponding peripheral surface from the above-mentioned X-ray reflectivity. The amount of vapor deposition can be controlled. In particular, it is preferable to detect the film thickness by making the dummy substrate into a cylindrical shape, rotating it appropriately, and depositing it on the surface.

図5には、基板14上に設定したモニタ領域に形成されるモニタ部(膜厚測定部)52が示されている。この例では、基板14の幅方向(るつぼ18の長手方向に一致)において、3点のモニタ領域が設定され、ここにモニタ部(モニタ膜)52が形成されている。これらモニタ部は、基板14中で、実際の有機EL素子領域(あるいは表示領域)としては利用されない領域に設定されている。そして、本実施形態では、るつぼ18が幅方向に細長い形状を有し、このるつぼ18はその長手方向(基板14の幅方向)と直交する方向に移動する。そこで、このるつぼ18の長手方向に沿って3点のモニタ部52を形成することによって、るつぼ18の長手方向における蒸発量の均一性を検出することができ、この検出結果に基づいて、るつぼ18の長手方向における加熱状態を制御することができる。加熱状態は、ヒータ20をるつぼ18の長手方向で、複数に分割しておき、分割ヒータへの個別の通電を制御することなどによって行える。   FIG. 5 shows a monitor unit (film thickness measuring unit) 52 formed in the monitor region set on the substrate 14. In this example, three monitor areas are set in the width direction of the substrate 14 (matching the longitudinal direction of the crucible 18), and a monitor section (monitor film) 52 is formed here. These monitor sections are set in the substrate 14 as areas that are not used as actual organic EL element areas (or display areas). In this embodiment, the crucible 18 has an elongated shape in the width direction, and the crucible 18 moves in a direction perpendicular to the longitudinal direction (the width direction of the substrate 14). Therefore, by forming three monitor portions 52 along the longitudinal direction of the crucible 18, the uniformity of the evaporation amount in the longitudinal direction of the crucible 18 can be detected. Based on the detection result, the crucible 18 is detected. The heating state in the longitudinal direction can be controlled. The heating state can be performed by dividing the heater 20 into a plurality of parts in the longitudinal direction of the crucible 18 and controlling individual energization to the divided heaters.

なお、図5において、破線で示した膜厚モニタ領域(モニタ部52)は、多層の蒸着を真空雰囲気を破らずに連続して実行する場合において、異なる蒸着源を用いた異なる蒸着膜の膜厚測定にそれぞれ使用することもできる。すなわち、成膜時に用いるマスク50として、膜厚測定用の開口部の位置がそれぞれ異なるマスクを用いれば、基板上に形成された各モニタ部はそれぞれ異なる位置に形成され、既に形成されている下層の有機膜と重ならず、確実に形成した膜の厚さを測定することができる。X線反射率測定法では、積層された複数の層のそれぞれの厚さを振動周期に基づいて算出することもできるが、考慮すべき因子が多くなるため、図5に示すように異なる層からなるモニタ部を重ねずに異なるモニタ領域に形成することによって、各層の厚さをより高い精度で求めることができる。なお、この膜厚測定用の開口部の位置は、互いに例えば10mm程度異なっていればよい。成膜室毎にこの膜厚測定用開口部の位置の異なるマスクを用いても良い。以上のような方法により、連続して積層する膜についてもそれぞれの厚さを確実に測定することができる。なお、モニタ領域は、基板14の全体(但し有機EL素子の非形成領域が望ましい)に分散させて設けてもよい。   In FIG. 5, the film thickness monitor region (monitor unit 52) indicated by a broken line is a film of different vapor deposition films using different vapor deposition sources when performing multilayer vapor deposition continuously without breaking the vacuum atmosphere. Each can also be used for thickness measurement. That is, if the mask 50 used at the time of film formation is a mask in which the positions of the film thickness measurement openings are different, the monitor portions formed on the substrate are formed at different positions, and the lower layer already formed. It is possible to measure the thickness of the formed film without overlapping with the organic film. In the X-ray reflectivity measurement method, the thickness of each of a plurality of stacked layers can be calculated based on the vibration period. However, since there are many factors to be considered, as shown in FIG. By forming the monitor portions in different monitor regions without overlapping, the thickness of each layer can be obtained with higher accuracy. In addition, the position of the opening for measuring the film thickness may be different from each other by about 10 mm, for example. You may use the mask from which the position of this opening part for film thickness measurement differs for every film-forming chamber. By the method as described above, it is possible to reliably measure the thicknesses of the films that are continuously laminated. The monitor region may be provided dispersed throughout the substrate 14 (however, the region where the organic EL element is not formed is desirable).

また、上述の実施形態では、るつぼ18として細長い形状のものを利用した。しかし、るつぼ18としては、点状のものを多数併設してもよい。るつぼ18をこのような面状のものとすれば、基板14およびるつぼ18のいずれも移動することなく、大面積の基板14に対する蒸着が行える。一方、このような大面積の蒸着を行うと、蒸着膜厚にバラツキが生じやすいが、本実施形態の膜厚検出を基板上の分散された複数の点で行い、るつぼ18の加熱状態を部分的に制御する構成をとれば、全体として均一な蒸着を行えるように制御することができる。なお、蒸着対象である基板14が小面積の場合には単一の点状のるつぼ18を採用しても良い。また、検出した膜厚が目標値に対して±50%程度のずれで
ある場合には、るつぼ18の加熱制御だけでは不十分なことがあり、基板14とるつぼ18との相対速度(例えばるつぼ18のスキャン速度)を変更することが望ましい。
In the above-described embodiment, the crucible 18 having an elongated shape is used. However, as the crucible 18, a large number of point-like ones may be provided. If the crucible 18 has such a planar shape, vapor deposition can be performed on the large-area substrate 14 without moving both the substrate 14 and the crucible 18. On the other hand, when such a large area of vapor deposition is performed, the film thickness of the vapor deposition tends to vary, but the film thickness detection of this embodiment is performed at a plurality of dispersed points on the substrate, and the heating state of the crucible 18 is partially If the configuration is controlled in a controlled manner, it can be controlled so that uniform vapor deposition can be performed as a whole. In addition, when the board | substrate 14 which is vapor deposition object is a small area, you may employ | adopt the single point-like crucible 18. FIG. Further, when the detected film thickness is about ± 50% of the target value, the heating control of the crucible 18 may not be sufficient, and the relative speed between the substrate 14 and the crucible 18 (for example, the crucible). It is desirable to change the 18 scan speed).

また、真空チャンバ10にX線射出器26、X線検出器28に対応して設けられている窓11は加熱して高温にすることによって、蒸着物のこれらの窓に対する堆積を防止することができる。X線射出器26、X線検出器28を真空チャンバ10の内部に設ける場合においても、検出計の蒸着物質を堆積させたくない箇所について、高温として堆積を防止することが好適である。   In addition, the windows 11 provided in the vacuum chamber 10 corresponding to the X-ray emitter 26 and the X-ray detector 28 are heated to a high temperature, thereby preventing deposition of vapor deposition on these windows. it can. Even when the X-ray ejector 26 and the X-ray detector 28 are provided inside the vacuum chamber 10, it is preferable to prevent the deposition of the vapor deposition material of the detector at a high temperature to prevent the deposition.

以上の説明では、図1に示すように下方にるつぼ18が配置され、マスク及び基板がその上方に面方向が水平方向に向いて配置された、横型の蒸着装置を例に挙げている。しかし、これに限らず、縦型の堆積装置(真空蒸着やスパッタ装置)においても、成膜室の基板への材料層形成側にX線射出器26からのX線を透過させる窓と、モニタ領域で反射されたX線を透過させX線検出器28に到達させるための窓を設け、X線反射強度の振動周期から膜厚を測定することでリアルタイムでの膜厚測定が可能となる。   In the above description, as shown in FIG. 1, a horizontal vapor deposition apparatus in which a crucible 18 is disposed below, and a mask and a substrate are disposed above the surface in a horizontal direction is taken as an example. However, the present invention is not limited to this, and in a vertical deposition apparatus (vacuum deposition or sputtering apparatus), a window that transmits X-rays from the X-ray ejector 26 to the material layer forming side of the substrate in the film formation chamber, and a monitor A window for transmitting the X-rays reflected in the region to reach the X-ray detector 28 is provided, and the film thickness can be measured in real time by measuring the film thickness from the vibration period of the X-ray reflection intensity.

図6は、この縦型の堆積装置(成膜装置)600の構成の一例を示しており、原理的には、上述の図1の成膜装置と同様であり、基板64及び蒸着源の支持方向が垂直方向である点が異なっている。即ち、成膜室60内で、膜の形成される基板64は垂直方向に起立支持されている。また、例えば基板と同程度の幅のライン状の蒸着源70が垂直方向に支持されており、図6の例では、この蒸着源70と基板64との相対位置が変化するように、例えば蒸着源70が移動し、この蒸着源70からの材料が直接又はマスク66を介して基板64上に付着する構成である。マスク66には膜厚測定用の開口部74が有機EL素子の非形成領域に設けられており、蒸着源70からこの開口部を通過して基板64上に形成された膜にX線射出器76からX線を入射角度を変えながら照射し、X線検出器78によってX線反射強度を測定することで、上記と同様に膜厚を正確かつ成膜後直ちに装置内で測定することができる。ここで、縦型の堆積装置600において、基板64が起立支持されているため、発光器76からの光は成膜室60の側面から入射させることが好ましく、例えば光ファイバを利用して成膜室60の中に光を導入すればよい。   FIG. 6 shows an example of the configuration of the vertical deposition apparatus (film formation apparatus) 600, which is in principle the same as the film formation apparatus of FIG. 1 described above, and supports the substrate 64 and the evaporation source. The difference is that the direction is vertical. That is, the substrate 64 on which the film is formed is supported upright in the vertical direction in the film forming chamber 60. Further, for example, a linear vapor deposition source 70 having the same width as that of the substrate is supported in the vertical direction. In the example of FIG. 6, for example, vapor deposition is performed so that the relative position between the vapor deposition source 70 and the substrate 64 changes. The source 70 moves and the material from the vapor deposition source 70 is deposited on the substrate 64 directly or through a mask 66. The mask 66 is provided with an opening 74 for measuring the film thickness in a non-formation region of the organic EL element. An X-ray ejector is formed on the film formed on the substrate 64 from the vapor deposition source 70 through the opening. By irradiating the X-ray from 76 while changing the incident angle and measuring the X-ray reflection intensity by the X-ray detector 78, the film thickness can be measured in the apparatus accurately and immediately after the film formation as described above. . Here, in the vertical deposition apparatus 600, since the substrate 64 is supported upright, the light from the light emitter 76 is preferably incident from the side surface of the film formation chamber 60. For example, the film is formed using an optical fiber. Light may be introduced into the chamber 60.

また、図7に示すように、蒸着源の放出端としてシャワー状ノズル80を採用し、成膜順に、順次、キャリアガス中に成膜材料(例えば有機材料)源を蒸発させ、これを加熱ガスラインからバルブを介して選択的に加熱成膜室内に保持された基板14にノズル80から放出し積層する気相成長型成膜装置800においても上記膜厚測定方式を採用することができる。即ち、例えば基板14とノズル80の間に配置されるマスク90に膜厚測定用の開口部を設け、その位置に形成された膜の厚さを、X線射出器86とX線検出器88を用いてX線反射率の振動周期を算出することにより精度良く測定することができる。またマスク90の膜厚測定用開口部84の位置は例えば蒸着源が変更される毎にシャッタなどで変更したり、異なるマスクを用いるなどすることで、連続成膜される薄膜の各膜厚をリアルタイムに測定することができる。   In addition, as shown in FIG. 7, a shower-like nozzle 80 is employed as the discharge end of the vapor deposition source, and the film-forming material (for example, organic material) source is sequentially evaporated in the carrier gas in the order of film formation. The above-described film thickness measurement method can also be adopted in a vapor deposition type film forming apparatus 800 that discharges from the nozzle 80 and stacks on the substrate 14 selectively held in the heated film forming chamber through a valve from the line. That is, for example, a mask 90 disposed between the substrate 14 and the nozzle 80 is provided with an opening for film thickness measurement, and the thickness of the film formed at that position is determined by the X-ray emitter 86 and the X-ray detector 88. Can be measured with high accuracy by calculating the vibration period of the X-ray reflectivity. Further, the position of the film thickness measurement opening 84 of the mask 90 is changed by, for example, a shutter every time the deposition source is changed, or by using a different mask, the thickness of each thin film to be continuously formed can be changed. It can be measured in real time.

本発明の実施形態に係るX線反射率測定による膜厚測定機能を備えた蒸着装置全体の構成を示す図である。It is a figure which shows the structure of the whole vapor deposition apparatus provided with the film thickness measurement function by the X-ray reflectivity measurement which concerns on embodiment of this invention. X線を測定に用いた場合の膜厚に依存して発生する光路差を説明する図である。It is a figure explaining the optical path difference produced | generated depending on the film thickness at the time of using an X-ray for a measurement. X線反射率の振動構造を概念的に示す図である。It is a figure which shows notionally the vibration structure of a X-ray reflectivity. 基板に併設された膜厚測定用のダミー基板の例を示す図である。It is a figure which shows the example of the dummy board | substrate for the film thickness measurement attached to the board | substrate. 基板のモニタ部を示す図である。It is a figure which shows the monitor part of a board | substrate. 縦型の蒸着装置に本実施形態の膜厚測定機構を適用した例である。This is an example in which the film thickness measurement mechanism of this embodiment is applied to a vertical vapor deposition apparatus. シャワー状ノズルを用いた成膜装置に本実施形態の膜厚測定機構を適用した例である。This is an example in which the film thickness measurement mechanism of this embodiment is applied to a film forming apparatus using a shower-like nozzle.

符号の説明Explanation of symbols

10 真空チャンバ、12 基板固定部、14,64 基板、15 ダミー基板、16 移動レール、18 るつぼ(蒸着源)、20 ヒータ、22 ケーブル、24 ヒータ電源部、26,76,86 X線射出器、28,78,88 X線検出器、30 制御装置、40 モータ、50,66,90 マスク、52 モニタ部(膜厚測定部)、60 (縦型)成膜室、70 (縦型)蒸着源、80 シャワー状ノズル、600 縦型成膜装置、800 気相成長型成膜装置。   10 vacuum chamber, 12 substrate fixing part, 14, 64 substrate, 15 dummy substrate, 16 moving rail, 18 crucible (deposition source), 20 heater, 22 cable, 24 heater power supply unit, 26, 76, 86 X-ray injector, 28, 78, 88 X-ray detector, 30 controller, 40 motor, 50, 66, 90 mask, 52 monitor unit (film thickness measuring unit), 60 (vertical type) film forming chamber, 70 (vertical type) evaporation source 80 Shower nozzle, 600 Vertical film forming apparatus, 800 Vapor growth type film forming apparatus.

Claims (11)

基板上への材料層の堆積厚測定方法であって、
基板又は基板近傍の所定箇所に設けられた堆積厚モニタ領域上と、前記基板上とに材料を堆積して材料層を形成し、
前記堆積厚モニタ領域にX線光を照射し、この材料層からのX線反射波を検出し、
検出したX線反射波の強度に基づいて、基板上に形成された材料層の堆積厚さを測定することを特徴とする堆積厚測定方法。
A method for measuring a deposition thickness of a material layer on a substrate, comprising:
A material layer is formed by depositing a material on the deposition thickness monitor region provided at a predetermined location near the substrate or the substrate and on the substrate,
Irradiating the deposition thickness monitor region with X-ray light, detecting an X-ray reflected wave from the material layer;
A deposition thickness measurement method, comprising: measuring a deposition thickness of a material layer formed on a substrate based on the detected intensity of an X-ray reflected wave.
基板上への材料層の形成方法であって、
基板又は基板近傍の所定箇所に設けられた堆積厚モニタ領域上と、前記基板上とに材料を堆積して材料層を形成し、
前記堆積厚モニタ領域にX線光を照射し、この材料層からのX線反射波を検出し、
検出したX線反射波の強度に基づいて、基板上に形成された材料層の堆積厚さを測定し、測定結果に応じて、堆積速度を制御することを特徴とする材料層の形成方法。
A method for forming a material layer on a substrate, comprising:
A material layer is formed by depositing a material on the deposition thickness monitor region provided at a predetermined location near the substrate or the substrate and on the substrate,
Irradiating the deposition thickness monitor region with X-ray light, detecting an X-ray reflected wave from the material layer;
A method for forming a material layer, comprising: measuring a deposition thickness of a material layer formed on a substrate based on the detected intensity of an X-ray reflected wave; and controlling a deposition rate according to the measurement result.
請求項2に記載の材料層の形成方法において、
前記材料層の堆積に際し、前記材料層を蒸着によって形成する蒸着源における蒸着材料の加熱状態又は前記蒸着源と前記基板との相対的な走査速度の少なくとも一方を制御することを特徴とする材料層の形成方法。
In the formation method of the material layer of Claim 2,
When depositing the material layer, at least one of a heating state of a vapor deposition material in a vapor deposition source for forming the material layer by vapor deposition or a relative scanning speed of the vapor deposition source and the substrate is controlled. Forming method.
請求項3に記載の材料層の形成方法において、
前記堆積厚モニタ領域は、基板又は基板近傍において互いに離れて複数設けられ、それぞれの堆積厚モニタ領域における堆積厚に基づいて、前記蒸着源の加熱分布を制御することを特徴とする材料層の形成方法。
In the formation method of the material layer of Claim 3,
A plurality of the deposition thickness monitoring regions are provided apart from each other in the substrate or in the vicinity of the substrate, and the heating distribution of the vapor deposition source is controlled based on the deposition thickness in each deposition thickness monitoring region. Method.
請求項2に記載の材料層の形成方法において、
前記基板上に前記材料層を蒸着する蒸着室は、蒸着室外に配置された発光器から射出され前記堆積厚モニタ領域に到達するX線の光路上及び前記材料層から射出され受光器に到達するX線の光路上にそれぞれX線透過窓を備え、
前記材料層を蒸着する間、該X線透過窓を加熱することを特徴とする材料層の形成方法。
In the formation method of the material layer of Claim 2,
A vapor deposition chamber for depositing the material layer on the substrate is emitted from a light emitter disposed outside the vapor deposition chamber and is emitted from an X-ray optical path reaching the deposition thickness monitor region and from the material layer to reach a light receiver. Each has an X-ray transmission window on the X-ray optical path,
A method for forming a material layer, wherein the X-ray transmission window is heated while the material layer is deposited.
請求項1〜請求項5のいずれか1項に記載の方法において、
前記材料層の堆積厚さは、前記X線の前記堆積厚モニタ領域への入射角度を変更しながら、前記X線反射波の干渉によって生ずる前記X線反射波の反射率の振動に基づいて算出することを特徴とする堆積厚測定方法又は材料層の形成方法。
The method according to any one of claims 1 to 5, wherein
The deposition thickness of the material layer is calculated based on the vibration of the reflectance of the X-ray reflected wave caused by the interference of the X-ray reflected wave while changing the incident angle of the X-ray to the deposition thickness monitor region. A method for measuring a deposition thickness or a method for forming a material layer.
請求項1〜請求項6のいずれか1項に記載の方法において、
前記堆積厚モニタ領域へのX線光照射とX線反射波の受光は、前記材料層を形成する成膜室の外で行うことを特徴とする堆積厚測定方法又は材料層の形成方法。
The method according to any one of claims 1 to 6, wherein
The deposition thickness measuring method or the material layer forming method, wherein the deposition thickness monitor region is irradiated with X-ray light and the X-ray reflected wave is received outside a deposition chamber for forming the material layer.
基板上に材料層を堆積形成する形成装置において、
材料層が堆積される基板または基板近傍の所定箇所に設けられた堆積厚モニタ領域に対し、入射角を変えながらX線を照射するX線照射手段と、
前記X線が照射されるモニタ領域からのX線反射波を検出するX線検出手段と、
前記X線検出手段で検出されたX線反射波強度に基づいて堆積厚を測定し、測定結果に基づいて、前記基板上への前記材料層の堆積速度を調整する堆積速度制御手段と、
を有することを特徴とする材料層の形成装置。
In a forming apparatus for depositing a material layer on a substrate,
X-ray irradiation means for irradiating the substrate on which the material layer is deposited or a deposition thickness monitor region provided at a predetermined location near the substrate while irradiating X-rays while changing the incident angle;
X-ray detection means for detecting an X-ray reflected wave from a monitor region irradiated with the X-ray;
A deposition rate control unit that measures the deposition thickness based on the X-ray reflected wave intensity detected by the X-ray detection unit, and adjusts the deposition rate of the material layer on the substrate based on the measurement result;
An apparatus for forming a material layer, comprising:
請求項8に記載の形成装置において、
前記材料層を形成する蒸着室内には、前記材料層を蒸着によって形成する蒸着源が配置され、前記蒸着源における蒸着材料の加熱状態又は前記蒸着源と前記基板との相対的な走査速度の少なくとも一方を制御することで堆積速度を制御する制御部を備えることを特徴とする材料層の形成装置。
The forming apparatus according to claim 8.
In the vapor deposition chamber for forming the material layer, a vapor deposition source for forming the material layer by vapor deposition is disposed, and at least a heating state of the vapor deposition material in the vapor deposition source or a relative scanning speed of the vapor deposition source and the substrate is provided. An apparatus for forming a material layer, comprising: a control unit that controls a deposition rate by controlling one of the two.
請求項9に記載の形成装置において、
前記堆積厚モニタ領域は、基板又は基板近傍において互いに離れて複数設けられ、それぞれの堆積厚モニタ領域における堆積厚に基づいて、前記蒸着源の加熱分布を制御することを特徴とする材料層の形成装置。
The forming apparatus according to claim 9, wherein
A plurality of the deposition thickness monitoring regions are provided apart from each other in the substrate or in the vicinity of the substrate, and the heating distribution of the vapor deposition source is controlled based on the deposition thickness in each deposition thickness monitoring region. apparatus.
請求項8〜請求項10のいずれか1項に記載の形成装置において、
前記材料層を形成する蒸着室内には、
前記蒸着室外に配置された前記X線照射器から射出され前記堆積厚モニタ領域に到達するX線の光路上及び前記材料層から射出され前記X線検出器に到達するX線反射波の光路上にそれぞれX線透過窓を備え、
さらに、前記窓部を加熱する加熱部を有することを特徴とする材料層の形成装置。
The forming apparatus according to any one of claims 8 to 10,
In the vapor deposition chamber for forming the material layer,
On the optical path of X-rays emitted from the X-ray irradiator disposed outside the vapor deposition chamber and reaching the deposition thickness monitor region and on the optical path of X-ray reflected waves emitted from the material layer and reaching the X-ray detector Each with an X-ray transmission window,
Furthermore, it has a heating part which heats the said window part, The formation apparatus of the material layer characterized by the above-mentioned.
JP2005050123A 2004-03-03 2005-02-25 Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus Withdrawn JP2005281858A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005050123A JP2005281858A (en) 2004-03-03 2005-02-25 Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus
CNB2005100511760A CN100487948C (en) 2004-03-03 2005-03-02 Method and apparatus for measuring thickness of deposited film and method and apparatus for forming material layer
TW094106193A TWI299758B (en) 2004-03-03 2005-03-02 Method and apparatus for measuring the thickness of deposited film, method and apparatus for forming material layer
KR1020050017176A KR100716704B1 (en) 2004-03-03 2005-03-02 Measurement method of deposition thickness, formation method of material layer, deposition thickness measurement device and material layer formation device
US11/071,276 US20050244570A1 (en) 2004-03-03 2005-03-03 Deposition thickness measuring method, material layer forming method, deposition thickness measuring apparatus, and material layer forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004059236 2004-03-03
JP2005050123A JP2005281858A (en) 2004-03-03 2005-02-25 Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus

Publications (1)

Publication Number Publication Date
JP2005281858A true JP2005281858A (en) 2005-10-13

Family

ID=35180566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050123A Withdrawn JP2005281858A (en) 2004-03-03 2005-02-25 Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus

Country Status (1)

Country Link
JP (1) JP2005281858A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504187A (en) * 2008-09-29 2012-02-16 アプライド マテリアルズ インコーポレイテッド Evaporator for organic material and method for evaporating organic material
JP2015124440A (en) * 2013-12-27 2015-07-06 国立大学法人岩手大学 Small-sized vacuum vapor deposition device for analysis and deposition film analytical method during film formation
WO2015119101A1 (en) * 2014-02-04 2015-08-13 株式会社アルバック Thin film production device, mask set, and thin film production method
JP2017510827A (en) * 2013-12-22 2017-04-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Deposition monitoring system and operation method thereof
JP6548856B1 (en) * 2018-03-08 2019-07-24 堺ディスプレイプロダクト株式会社 Deposition apparatus, deposition method of deposited film, and method of manufacturing organic EL display device
JP2019206759A (en) * 2019-06-25 2019-12-05 堺ディスプレイプロダクト株式会社 Film deposition apparatus, method for depositing vapor deposition film and method for manufacturing organic el display
US10522375B2 (en) 2014-12-19 2019-12-31 Applied Materials, Inc. Monitoring system for deposition and method of operation thereof
CN115011929A (en) * 2021-03-03 2022-09-06 佳能特机株式会社 Film forming apparatus, method of controlling film forming apparatus, and method of manufacturing electronic device
CN115210403A (en) * 2020-03-31 2022-10-18 艾尔法普拉斯株式会社 Vapor deposition control device and display manufacturing method using same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504187A (en) * 2008-09-29 2012-02-16 アプライド マテリアルズ インコーポレイテッド Evaporator for organic material and method for evaporating organic material
JP2017510827A (en) * 2013-12-22 2017-04-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Deposition monitoring system and operation method thereof
JP2015124440A (en) * 2013-12-27 2015-07-06 国立大学法人岩手大学 Small-sized vacuum vapor deposition device for analysis and deposition film analytical method during film formation
WO2015119101A1 (en) * 2014-02-04 2015-08-13 株式会社アルバック Thin film production device, mask set, and thin film production method
JPWO2015119101A1 (en) * 2014-02-04 2017-03-23 株式会社アルバック Thin film manufacturing apparatus, mask set, thin film manufacturing method
US10522375B2 (en) 2014-12-19 2019-12-31 Applied Materials, Inc. Monitoring system for deposition and method of operation thereof
WO2019171545A1 (en) * 2018-03-08 2019-09-12 堺ディスプレイプロダクト株式会社 Film formation device, vapor-deposited film formation method, and organic el display device production method
JP6548856B1 (en) * 2018-03-08 2019-07-24 堺ディスプレイプロダクト株式会社 Deposition apparatus, deposition method of deposited film, and method of manufacturing organic EL display device
US11038155B2 (en) 2018-03-08 2021-06-15 Sakai Display Products Corporation Film formation device, vapor-deposited film formation method, and organic EL display device production method
JP2019206759A (en) * 2019-06-25 2019-12-05 堺ディスプレイプロダクト株式会社 Film deposition apparatus, method for depositing vapor deposition film and method for manufacturing organic el display
CN115210403A (en) * 2020-03-31 2022-10-18 艾尔法普拉斯株式会社 Vapor deposition control device and display manufacturing method using same
CN115210403B (en) * 2020-03-31 2024-02-27 艾尔法普拉斯株式会社 Vapor deposition control device and display manufacturing method using same
CN115011929A (en) * 2021-03-03 2022-09-06 佳能特机株式会社 Film forming apparatus, method of controlling film forming apparatus, and method of manufacturing electronic device
CN115011929B (en) * 2021-03-03 2024-03-26 佳能特机株式会社 Film forming apparatus, method for controlling film forming apparatus, and method for manufacturing electronic device

Similar Documents

Publication Publication Date Title
KR100716704B1 (en) Measurement method of deposition thickness, formation method of material layer, deposition thickness measurement device and material layer formation device
JP2005281858A (en) Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus
JP2005281859A (en) Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus
TWI410604B (en) Deposition apparatus and deposition method using the same
US7959971B2 (en) Film formation method with deposition source position control
US6970532B2 (en) Method and apparatus for measuring thin film, and thin film deposition system
KR101210035B1 (en) Vacuum evaporation coating method and device thereof
TW591202B (en) Dynamic film thickness control device/method and ITS coating method
EP1862788A1 (en) Evaporator for organic material, coating installation, and method for use thereof
KR101496667B1 (en) Vacuum vapor deposition system
KR101487954B1 (en) Film formation apparatus and film formation method
JP2003007462A (en) Organic layer vacuum evaporation equipment
US20130209666A1 (en) Evaporating apparatus and evaporating method
KR102225232B1 (en) Method and apparatus for measuring surface profile
TWI437111B (en) Evaporation apparatus, thin film depositing apparatus and method for feeding source material of the same
CA2225422C (en) Laser surface treatment device and method
KR101488203B1 (en) Film formation apparatus and film formation method
TW201103998A (en) Vacuum evaporation method and apparatus thereof
JP2006176831A (en) Vapor deposition system
WO2004042110A1 (en) Method of forming film on substrate
KR101561702B1 (en) Apparatus and method for measuring state
JP2016222974A (en) Vacuum deposition apparatus
JP6502528B2 (en) Diffusion barrier for oscillating quartz, measuring assembly for measuring deposition rate and method thereof
KR20150114097A (en) Real Time Deposit Thickness Monitoring System and Monitoring Method Thereof
CN109708602B (en) Measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100302