JPH1030171A - Electron beam vacuum depositing device - Google Patents

Electron beam vacuum depositing device

Info

Publication number
JPH1030171A
JPH1030171A JP20776896A JP20776896A JPH1030171A JP H1030171 A JPH1030171 A JP H1030171A JP 20776896 A JP20776896 A JP 20776896A JP 20776896 A JP20776896 A JP 20776896A JP H1030171 A JPH1030171 A JP H1030171A
Authority
JP
Japan
Prior art keywords
electron beam
evaporation
emission current
optical sensor
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20776896A
Other languages
Japanese (ja)
Inventor
Haruo Takahashi
高橋晴夫
Akira Yamaguchi
晃 山口
Shoji Yanagisawa
柳沢昭二
Kokichi Suganuma
菅沼孝吉
Akihisa Yagishita
柳下晃央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSHIN KOGAKU KK
KOSHIN KOGAKU KOGYO KK
Original Assignee
KOSHIN KOGAKU KK
KOSHIN KOGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOSHIN KOGAKU KK, KOSHIN KOGAKU KOGYO KK filed Critical KOSHIN KOGAKU KK
Priority to JP20776896A priority Critical patent/JPH1030171A/en
Publication of JPH1030171A publication Critical patent/JPH1030171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electron beam vacuum depositing device using dielectrics as an evaporating source. SOLUTION: The quantity of light radiated from an evaporating source 5 is measured by a photosensor 7 arranged on the outside of a vacuum depositing chamber. The quantity of light and the evaporating velocity lies in a proportional relation. A telescope 9, a glass pane 10 and a mask 11 are arranged between the photosensor 7 and the evaporating source 5 to check reduction in the light receiving sensitivity of the photosensor 7. As for the output of the photosensor, emission current is controlled via an electron beam controller 14 so as to maintain the photoelectric current standard value treated and set by a center control circuit 15. The relational formula between the photoelectric current standard value of the photosensor and the evaporating velocity or the like are previously inputted into the center control circuit 15. On reference to the information on the evaporating velocity from a crystal sensor, the standard value of photocurrent is corrected. Since the control of the evaporating velocity at a high speed with high precision is made possible and there is no need of exchanging the expensive crystal sensor, continuous vacuum deposition is enabled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘電体を蒸発源とす
る電子ビーム真空蒸着装置に関する。蒸発源の蒸発速度
制御に光電変換素子(以下光センサーと称する)を採用
する。
The present invention relates to an electron beam vacuum evaporation apparatus using a dielectric as an evaporation source. A photoelectric conversion element (hereinafter referred to as an optical sensor) is employed for controlling the evaporation rate of the evaporation source.

【0002】[0002]

【従来の技術】SiO2 やTiO2 等の蒸着膜を造ると
きは,これらの誘電体を蒸発源として用いる場合と,そ
の低級酸化物(SiOやTi2 O3 )あるいはその金属
を蒸発源として真空室内に酸素などを導入し酸化反応さ
せて,最終的にSiO2 やTiO2 を蒸着する場合があ
る。電子ビーム真空蒸着装置内に配置し,蒸発源の上部
のシャッターの開閉により蒸発開始と終了を行う。被蒸
着基板近傍に配置した水晶振動子(以下水晶センサーと
称する)で,蒸着速度や蒸着量をモニターし,電子銃の
エミッション電流制御とシャッターの開閉を行う。誘電
体は電気伝導性がないために電子ビーム照射とともに蒸
発源周辺に静電気ポテンシャルバリヤーが発生する。電
子ビームはこのバリヤーに反射されたりするので蒸発過
程は金属に較べて複雑になる。
2. Description of the Related Art When a deposited film of SiO2 or TiO2 is formed, these dielectrics are used as an evaporation source, and a lower oxide (SiO or Ti2 O3) or a metal thereof is used as an evaporation source and oxygen is introduced into a vacuum chamber. There is a case where SiO2 or TiO2 is finally deposited by causing an oxidation reaction. It is placed in an electron beam vacuum evaporation apparatus, and starts and ends evaporation by opening and closing a shutter above the evaporation source. A quartz crystal oscillator (hereinafter, referred to as a quartz sensor) arranged near the substrate to be deposited monitors a deposition rate and a deposition amount, controls emission current of an electron gun, and opens and closes a shutter. Since the dielectric does not have electric conductivity, an electrostatic potential barrier is generated around the evaporation source when the electron beam is irradiated. Since the electron beam is reflected by this barrier, the evaporation process is more complicated than that of metal.

【0003】[0003]

【発明が解決しようとする課題】水晶センサー2の表面
に堆積が始まらないと蒸発速度の測定はできない。シャ
ッターが閉じている予備加熱の段階では蒸発速度は推定
値である。実際にシャッターが開いた時の蒸発速度が著
しく所望値と異なる場合がある。特に昇華性のSiO2
等の場合にはエミッション電流を一定に保っても蒸発速
度は一定にはならない。この対策として,シャッターが
閉じている時でも蒸発速度をモニターすべく水晶センサ
ーで蒸発源を覗く手法が検討されている。しかし,この
手法では水晶センサーにかなり大量の蒸発物質が付着す
るためすぐに飽和周波数に達してしまい長時間の蒸着に
は不適である。シャッターが開いてから水晶センサーに
よるエミッション電流のフィードバック制御を行うが,
第6図の点線曲線のように安定するまで時間を要する。
同曲線のC点はシャッターが開いた時,D点は水晶セン
サーによる制御開始時を示す。このように,シャッター
が開いた直後に蒸発速度が所望値より著しく異なると,
膜の物理的性質や膜の厚みに大きな影響を及ぼす。
Unless deposition starts on the surface of the quartz sensor 2, the evaporation rate cannot be measured. At the stage of preheating in which the shutter is closed, the evaporation rate is an estimated value. The evaporation rate when the shutter is actually opened may be significantly different from the desired value. Especially sublimable SiO2
In such a case, the evaporation rate does not become constant even if the emission current is kept constant. As a countermeasure, a method of monitoring the evaporation source with a quartz sensor to monitor the evaporation rate even when the shutter is closed is being studied. However, in this method, a considerably large amount of evaporating substance adheres to the quartz sensor, so that the saturation frequency is reached immediately, which is not suitable for long-time deposition. After the shutter is opened, feedback control of the emission current by the quartz sensor is performed.
It takes time to stabilize as shown by the dotted curve in FIG.
Point C of the same curve indicates when the shutter is opened, and point D indicates when control by the quartz sensor is started. Thus, if the evaporation rate is significantly different from the desired value immediately after the shutter opens,
It has a significant effect on the physical properties and thickness of the film.

【0004】水晶センサーによる方法は蒸発物質の付着
量が多くなると,水晶センサー2に一旦付着した膜が剥
がれたり,水晶センサー自体に発振不良が生じる。この
時は自動蒸着工程を停止あるいはその後すべて電子銃の
エミッション電流を一定にして蒸着を続行する方法が採
られる。このため高価ではあるが水晶センサーを頻繁に
交換している。また,水晶センサー2の蒸発速度の算出
は,付着量に従って変化する発振周波数をある一定の時
間間隔で差分をとり,その周波数差から蒸発速度を演算
するために約0.5秒のタイムラグが発生する。高速制
御には不向きと言われている。
In the method using the quartz sensor, when the amount of the evaporated substance increases, the film once attached to the quartz sensor 2 is peeled off, or oscillation failure occurs in the quartz sensor itself. At this time, a method of stopping the automatic vapor deposition process or thereafter continuing the vapor deposition while keeping the emission current of the electron gun constant is adopted. For this reason, although expensive, the quartz sensor is frequently replaced. In calculating the evaporation rate of the quartz sensor 2, a difference of the oscillation frequency that changes according to the amount of adhesion is obtained at certain time intervals, and a time lag of about 0.5 seconds is generated in order to calculate the evaporation rate from the frequency difference. I do. It is said to be unsuitable for high-speed control.

【0005】[0005]

【課題を解決するための手段】ビーム照射で昇温した蒸
発源表面から放射される光量を光センサーにて検出し,
この出力情報が,予め設定した基準値を保つように,電
子銃のエミッション電流を制御し,水晶センサーからの
蒸発速度値を参照して上記基準値を変更する。「蒸発速
度と蒸発源の放射する光量とは比例関係にある」との知
得から,本発明は光センサーで蒸発速度を監視しエミッ
ション電流をリアルタイム制御する。シャッターが閉じ
た予備加熱時にも蒸発速度を所望値に維持できる。
Means for Solving the Problems The amount of light emitted from the surface of the evaporation source heated by beam irradiation is detected by an optical sensor,
The emission current of the electron gun is controlled so that this output information maintains a preset reference value, and the reference value is changed with reference to the evaporation rate value from the quartz sensor. From the knowledge that "the evaporation rate and the amount of light emitted from the evaporation source are proportional," the present invention monitors the evaporation rate with an optical sensor and controls the emission current in real time. The evaporation rate can be maintained at a desired value even during preheating with the shutter closed.

【0006】[0006]

【発明の実施の形態】真空蒸着室1内の上部に,被蒸着
基板が多数取り付けられる基板回転ドーム16,下部に
は電子ビーム本体3を配置する。この電子ビーム本体3
の上面には蒸発源5が載置され,磁界制御された電子ビ
ームがその表面に照射される。蒸発物はシャッター4が
開いている時にのみ基板回転ドーム16に到達する。フ
ォトダイオードからなる光センサー7と蒸発源5のあい
だに,望遠鏡8,減光フィルタ9,回転自在な硝子板1
0,そしてマスク11を順次配置する。真空室外に光セ
ンサー7等が設けられているため,蒸着工程に支障をき
たすことなくこれらの部材を交換することができる。光
センサー7の出力は増幅器6を経て中央制御回路15へ
と伝達される。この中央制御回路15は電子ビーム電源
13及びビーム制御器14を管理下におき,水晶センサ
ー2からの蒸発速度信号を処理する蒸発速度制御器19
にも繋がっている。光センサー7からの光電流値と蒸発
源5の蒸発速度との関係式等(基準値群)はこの中央制
御回路15に予め入力される。目的とする蒸発速度に対
応する光電流の基準値がこの中央制御回路15に外部設
定されると,この回路15は電子銃のエミッション電流
をフィードバック制御して常に光電流を基準値に維持す
る。実際の蒸着工程ではこの基準値をその都度微修正す
る必要がある。この場合,先ず中央制御回路15は水晶
センサー2からの蒸発速度情報を基にしてエミッション
電流を制御し,所望の蒸発速度を維持する。この時の光
センサー7の光電流値を新たな基準値として採用する。
水晶センサー2はシャッター(図示せず)で通常は保護
されており,新たな基準値変更の際にのみシャッターが
開いて中央制御回路15に蒸発速度情報を送る。符号1
8は投光器,符号17はこの投光器からの光を受光して
被蒸着基板の膜厚を測定する光学膜厚計,符号20はハ
ロゲンヒーター,符号23は真空フランジ窓である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A substrate rotating dome 16 on which a number of substrates to be deposited are mounted is disposed in an upper portion of a vacuum deposition chamber 1, and an electron beam main body 3 is disposed in a lower portion. This electron beam body 3
An evaporation source 5 is placed on the upper surface of the substrate, and the surface is irradiated with an electron beam whose magnetic field is controlled. The evaporant reaches the substrate rotating dome 16 only when the shutter 4 is open. A telescope 8, a neutral density filter 9, and a rotatable glass plate 1 are provided between an optical sensor 7 composed of a photodiode and an evaporation source 5.
0 and the mask 11 are sequentially arranged. Since the optical sensor 7 and the like are provided outside the vacuum chamber, these members can be replaced without interfering with the vapor deposition process. The output of the optical sensor 7 is transmitted to the central control circuit 15 via the amplifier 6. The central control circuit 15 controls the electron beam power supply 13 and the beam controller 14 and controls the electron beam power supply 13 and the beam controller 14 to process an evaporation rate signal from the quartz sensor 2.
It is also connected to. The relational expression (reference value group) between the photocurrent value from the optical sensor 7 and the evaporation rate of the evaporation source 5 is input to the central control circuit 15 in advance. When a reference value of a photocurrent corresponding to a target evaporation rate is externally set in the central control circuit 15, the circuit 15 always controls the emission current of the electron gun by feedback control to keep the photocurrent at the reference value. In the actual vapor deposition process, it is necessary to finely correct this reference value each time. In this case, first, the central control circuit 15 controls the emission current based on the evaporation rate information from the quartz sensor 2 to maintain a desired evaporation rate. The photocurrent value of the optical sensor 7 at this time is adopted as a new reference value.
The quartz sensor 2 is normally protected by a shutter (not shown). The shutter is opened only when a new reference value is changed, and the evaporation rate information is sent to the central control circuit 15. Sign 1
Reference numeral 8 denotes a light projector, reference numeral 17 denotes an optical film thickness meter that receives light from the light projector and measures the film thickness of the substrate to be deposited, reference numeral 20 denotes a halogen heater, and reference numeral 23 denotes a vacuum flange window.

【0007】[0007]

【実施例】第2図は蒸発源5に昇華性物質であるSiO
2 を採用した時の電子ビームのエミッション電流の変
化,光センサー7の光電流の変化,水晶センサー2の蒸
発速度信号変化を示すグラフである。第1図の望遠鏡8
は外してある。光電流値はエミッション電流値にほぼリ
アルタイムで応答している。水晶センサー蒸発速度信号
の応答はこの光電流よりはかなり遅い。光電流は水晶セ
ンサーよりも約300ミリ秒早く,エミッション電流に
対する遅れは僅かに100ミリ秒以内である。第3図
は,蒸発源5に融解性物質であるTiO2 を採用した時
の各変化を示すグラフである。各変化曲線は第2図と略
同じ特性を呈する。光電流の方が水晶センサーよりも約
500ミリ秒早く応答している。
FIG. 2 shows that the evaporation source 5 is made of SiO which is a sublimable substance.
2 is a graph showing a change in the emission current of the electron beam, a change in the photocurrent of the optical sensor 7, and a change in the evaporation rate signal of the quartz sensor 2 when 2 is adopted. Telescope 8 in FIG.
Has been removed. The photocurrent value responds to the emission current value almost in real time. The response of the quartz sensor evaporation rate signal is much slower than this photocurrent. The photocurrent is about 300 milliseconds faster than the quartz sensor and the delay to the emission current is only within 100 milliseconds. FIG. 3 is a graph showing each change when TiO2 which is a melting substance is used as the evaporation source 5. Each change curve exhibits substantially the same characteristics as in FIG. The photocurrent responds about 500 milliseconds faster than the quartz sensor.

【0008】光電流値が基準値を維持するようにエミッ
ション電流を制御した時の各出力強度グラフが第4図で
ある。第4図(a)は蒸発源5がSiO2 ,第4図
(b)は蒸発源5がTiO2 の場合である。A点はエミ
ッション電流ON,B点は光電流制御開始,C点はシャ
ッター4を開いた時を示す。水晶センサー2にシャッタ
ー(図示せず)を配置してある時はシャッター4が開く
と同時にこのシャッターも開く。水晶センサー2からの
蒸発速度信号も確認のため併せて同図に点線曲線として
記入した。光電流を設定基準値に維持することで,蒸発
源5の蒸発速度は所望値に維持された。本発明の蒸発源
の光量検出方式は基準値が正しく設定されれば優れた蒸
発速度制御システムであることが実証された。更に特筆
すべきは,シャッター4が開くC点前の予備加熱状態の
時でも蒸発速度をフィートバック制御できる点である。
従来の水晶センサー2によるエミッション電流制御方式
では,シャッター4が開く前の予備加熱は経験データに
よる統計処理であった。昇華性物質であるSiO2 の場
合,蒸発源の周囲に形成される静電気バリヤーに電子ビ
ームは反射するので,予備加熱は第6図の光電流曲線の
ように安定しない。本発明では点B−C間の光電流は極
めて安定している(第4図)。
FIG. 4 shows each output intensity graph when the emission current is controlled so that the photocurrent value maintains the reference value. FIG. 4A shows the case where the evaporation source 5 is SiO2, and FIG. 4B shows the case where the evaporation source 5 is TiO2. Point A indicates emission current ON, point B indicates start of photocurrent control, and point C indicates when shutter 4 is opened. When a shutter (not shown) is disposed on the quartz sensor 2, the shutter 4 is opened at the same time as the shutter 4 is opened. The evaporation rate signal from the quartz sensor 2 is also shown as a dotted curve in the figure for confirmation. By maintaining the photocurrent at the set reference value, the evaporation rate of the evaporation source 5 was maintained at a desired value. It has been proved that the light amount detection method of the evaporation source of the present invention is an excellent evaporation rate control system if the reference value is set correctly. What is particularly noteworthy is that even in the preheating state before the point C when the shutter 4 opens, the evaporation rate can be controlled by the feedback control.
In the emission current control method using the conventional quartz sensor 2, the preheating before the shutter 4 is opened is a statistical process based on empirical data. In the case of SiO2 which is a sublimable substance, since the electron beam reflects on the electrostatic barrier formed around the evaporation source, the preheating is not stable as shown by the photocurrent curve in FIG. In the present invention, the photocurrent between the points B and C is extremely stable (FIG. 4).

【0009】第5図は望遠鏡8を利用して光電流により
エミッション電流制御を行った時の光電流出力図であ
る。第5図(a)は蒸発源5にTiO2 を採用した場合
である。周囲からの迷光を防いでより正確に光量を計測
できるため,エミッション電流のフィードバック制御精
度は向上している。同図の光電流波形は殆ど直線に近
い。(第3,4図の光電流波形は簡略化のため直線とし
て記入してあるが,実際には微量なギザギザの連続であ
る)。望遠鏡8を使用して蒸発源5の拡大像を光センサ
ー7に与え,光センサー7は蒸発源5の表面から放射さ
れる光のみを効率良く取り込むことができるので,装置
が大型化して蒸発源が遠くなるケースや,周囲にハロゲ
ンランプ等の別の発光体がある場合でも光センサー7の
感度低下を招くことはない。なお,マスク11を使用す
ることで同じように光センサー7への迷光を低減でき
る。
FIG. 5 is a photocurrent output diagram when emission current control is performed by photocurrent using the telescope 8. FIG. 5 (a) shows a case where TiO2 is used for the evaporation source 5. FIG. Since the amount of light can be measured more accurately by preventing stray light from the surroundings, the feedback control accuracy of the emission current is improved. The photocurrent waveform in the figure is almost a straight line. (The photocurrent waveforms in FIGS. 3 and 4 are drawn as straight lines for the sake of simplicity, but are actually a series of minute jagged edges). A magnified image of the evaporation source 5 is given to the optical sensor 7 using the telescope 8, and the optical sensor 7 can efficiently take in only the light radiated from the surface of the evaporation source 5; Does not cause a decrease in the sensitivity of the optical sensor 7 even when the distance is far or when there is another illuminant such as a halogen lamp in the surroundings. By using the mask 11, stray light to the optical sensor 7 can be reduced in the same manner.

【0010】第5図(b)は蒸発源5にSiO2 を採用
した時の実施例である。シャッター4が開くまでの予備
加熱(B点からC点)の間は予め設定された光電流基準
値を目標にしてエミッション電流をフィードバック制御
し,シャッター4が開いた時(C点)には水晶センサー
2からの蒸発速度情報を基にして所望の蒸発速度に対応
する基準値に変更する(D点)。以後はこの修正された
基準値を基にしてエミッション電流を制御する。この再
設定後は水晶センサー2からの情報は不要となる。 長
時間の蒸着工程中に,光センサー7と蒸発源5とのあい
だの窓硝子板に徐々に蒸発物が付着し,光センサー7へ
の光量が僅かであるが変化する。SiO2 の屈折率は硝
子に近いためにさしたる光量変化はないが,TiO2 の
屈折率は高いために無視できない。それ故,光センサー
7の光電流基準値を約十分毎に再設定する。その都度,
水晶センサー2の手前に配置したシャッター(図示せ
ず)を2秒程開いて再設定する。
FIG. 5B shows an embodiment in which SiO 2 is used as the evaporation source 5. During preheating (points B to C) until the shutter 4 opens, the emission current is feedback-controlled with the target of the preset photocurrent reference value, and when the shutter 4 opens (point C), The reference value corresponding to the desired evaporation rate is changed based on the evaporation rate information from the sensor 2 (point D). Thereafter, the emission current is controlled based on the corrected reference value. After this resetting, the information from the crystal sensor 2 becomes unnecessary. During the long-time deposition process, the evaporant gradually adheres to the window glass plate between the optical sensor 7 and the evaporation source 5, and the amount of light to the optical sensor 7 changes slightly. Since the refractive index of SiO2 is close to that of glass, there is no significant change in the amount of light, but the refractive index of TiO2 is high and cannot be ignored. Therefore, the photocurrent reference value of the optical sensor 7 is reset every approximately ten minutes. Each time,
The shutter (not shown) arranged in front of the quartz sensor 2 is opened for about 2 seconds and reset.

【0011】光センサー7手前のフランジ21内に回動
自在な硝子板10とマスク11が配置されている(第7
図)。マスク11との併用により蒸発物が付着した硝子
板10をノブ22を介して回動し,光センサー7への光
量を一定化する。硝子板10をスライド可能にして適宜
交換する方式でも良い。第8図は真空蒸着室1内に光セ
ンサー7を配置した実施例である。望遠鏡8と光センサ
ー7の後部にハーメチックフランジ24を配置し,光セ
ンサー7からの信号線を室外に導いている。
A rotatable glass plate 10 and a mask 11 are arranged in a flange 21 in front of the optical sensor 7 (seventh embodiment).
Figure). The glass plate 10 on which the evaporant is adhered is rotated via the knob 22 in combination with the mask 11, and the light amount to the optical sensor 7 is made constant. A method in which the glass plate 10 is slidably replaced as appropriate may be used. FIG. 8 shows an embodiment in which the optical sensor 7 is disposed in the vacuum evaporation chamber 1. A hermetic flange 24 is arranged at the rear of the telescope 8 and the optical sensor 7 to guide a signal line from the optical sensor 7 to the outside.

【0012】[0012]

【発明の効果】要するに,本発明は電子ビームを照射さ
れた蒸発源5の光量を測定する光センサー7を真空蒸着
室外に配置し,この測定値が中央制御回路15内に記憶
された所望の蒸発速度対応値(基準値)を維持するよう
に,エミッション電流を制御するため,従来の水晶セン
サー方式に較べて高速・高精度に所望の蒸発速度を維持
できる。そして,光電流の基準値を水晶センサー2から
の蒸発速度情報も基にして適宜修正するため,蒸発速度
の高精度は長時間蒸着工程中も維持される。高価の水晶
センサー2は通常はシャッターにて保護されているた
め,交換不要になる。
In short, according to the present invention, the optical sensor 7 for measuring the light quantity of the evaporation source 5 irradiated with the electron beam is disposed outside the vacuum evaporation chamber, and the measured value is stored in the central control circuit 15 as desired. Since the emission current is controlled so as to maintain the value corresponding to the evaporation rate (reference value), the desired evaporation rate can be maintained at higher speed and with higher precision than the conventional quartz sensor system. Then, since the reference value of the photocurrent is appropriately corrected based on the evaporation rate information from the quartz sensor 2, the high accuracy of the evaporation rate is maintained even during the long-time deposition process. Since the expensive quartz sensor 2 is usually protected by a shutter, there is no need to replace it.

【図面の簡単な説明】[Brief description of the drawings]

【第1図】電子ビーム真空蒸着装置の概略説明図であ
る。
FIG. 1 is a schematic explanatory view of an electron beam vacuum evaporation apparatus.

【第2図】二酸化珪素を蒸発源に使用した時の電子銃の
エミッション電流変化に対する光電流と水晶センサー蒸
発速度信号の出力曲線を示すグラフ図である。
FIG. 2 is a graph showing output curves of a photocurrent and a crystal sensor evaporation rate signal with respect to a change in emission current of an electron gun when silicon dioxide is used as an evaporation source.

【第3図】二酸化チタンを蒸発源に使用した時のエミッ
ション電流に対する光電流と水晶センサーの出力グラフ
図である。
FIG. 3 is a graph showing an output current of a quartz sensor and a photocurrent with respect to an emission current when titanium dioxide is used as an evaporation source.

【第4図】光電流を設定基準値に維持すべくエミッショ
ン電流をフィードバック制御した実施例の各出力値のグ
ラフ図である。
FIG. 4 is a graph of each output value of an embodiment in which the emission current is feedback-controlled to maintain the photocurrent at a set reference value.

【第5図】(a)は望遠鏡を使用して蒸発源の拡大像を
光センサーに送る実施例の光電流基準値を基にしてエミ
ッション電流を制御した場合の各出力グラフ図であり,
(b)は光電流の基準値を水晶センサーからの蒸発速度
情報で修正する実施例の各出力グラフ図である。
FIG. 5 (a) is an output graph diagram when an emission current is controlled based on a photocurrent reference value of an embodiment in which an enlarged image of an evaporation source is sent to an optical sensor using a telescope;
(B) is each output graph figure of the Example which corrects the reference value of a photocurrent with the evaporation rate information from a quartz sensor.

【第6図】蒸発源に二酸化珪素を使用した従来方式の水
晶センサー出力制御方式に於ける水晶センサー蒸発速度
信号出力と参考としての光電流の出力グラフ図である。
FIG. 6 is an output graph of a crystal sensor evaporation rate signal output and a photocurrent as a reference in a conventional crystal sensor output control system using silicon dioxide as an evaporation source.

【第7図】硝子板とマスクの配置状況を説明する説明図
である。
FIG. 7 is an explanatory diagram illustrating the arrangement of a glass plate and a mask.

【第8図】真空蒸着室内に光センサーを配置した実施例
の説明図である。
FIG. 8 is an explanatory view of an embodiment in which an optical sensor is arranged in a vacuum evaporation chamber.

【符号の説明】[Explanation of symbols]

1 真空蒸着室 2 水晶センサー 3 電子ビーム 4 シャッター 5 蒸発源 6 増幅器 7 光センサー 8 望遠鏡 9 減光フィルタ 10 硝子板 11 マスク 12 レコーダー 13 電子ビーム電源 14 ビーム制御器 15 中央制御回路 16 基板回転ドーム 17 光学膜厚計 18 投光器 19 蒸発速度制御器 23 真空フランジ窓 24 ハーメチックフランジ DESCRIPTION OF SYMBOLS 1 Vacuum vapor deposition chamber 2 Crystal sensor 3 Electron beam 4 Shutter 5 Evaporation source 6 Amplifier 7 Optical sensor 8 Telescope 9 Light reduction filter 10 Glass plate 11 Mask 12 Recorder 13 Electron beam power supply 14 Beam controller 15 Central control circuit 16 Substrate rotating dome 17 Optical film thickness meter 18 Floodlight 19 Evaporation rate controller 23 Vacuum flange window 24 Hermetic flange

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅沼孝吉 神奈川県秦野市本町3丁目4番地7号 (72)発明者 柳下晃央 神奈川県横浜市都筑区佐江戸町653番地1 号 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kokichi Suganuma 3-4-7 Honcho, Hadano-shi, Kanagawa Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電子ビームを照射された蒸発源5の光量
を測定する光センサー7を真空蒸着室外あるいは室内に
配置し,この測定値が中央制御回路15内に記憶された
所望の蒸発速度対応値を維持するように,電子銃のエミ
ッション電流を制御する,電子ビーム真空蒸着装置。
An optical sensor for measuring the light amount of an evaporation source irradiated with an electron beam is disposed outside or inside a vacuum evaporation chamber, and the measured value is stored in a central control circuit for a desired evaporation rate. An electron beam vacuum evaporation system that controls the emission current of the electron gun to maintain the value.
【請求項2】 ビーム照射で昇温した蒸発源表面から放
射される光量を光センサー7にて検出し,この出力情報
が,予め設定した基準値を保つように,エミッション電
流を制御し,水晶センサーからの蒸発速度値を参照して
上記基準値を修正する,電子ビーム真空蒸着装置。
2. An optical sensor 7 detects the amount of light radiated from the surface of the evaporation source heated by the beam irradiation, and controls the emission current so that the output information keeps a preset reference value. An electron beam vacuum vapor deposition device that corrects the above reference value with reference to the evaporation rate value from a sensor.
【請求項3】 蒸発源から放射される光量を検出する光
センサー7と,この光センサーからの光電流を予め設定
した基準値に維持する中央制御回路15と,この中央制
御回路の管理下にあって蒸発源に照射される電子ビーム
のエミッション電流を調節するビーム制御器14とから
なり,上記基準値は水晶センサーからの蒸発速度情報を
基にして予め設定あるいは随時変更される,電子ビーム
真空蒸着装置。
3. An optical sensor 7 for detecting the amount of light radiated from the evaporation source, a central control circuit 15 for maintaining the photocurrent from the optical sensor at a preset reference value, and under the control of the central control circuit. And a beam controller 14 for adjusting the emission current of the electron beam irradiated to the evaporation source. The reference value is set or changed as needed based on the evaporation rate information from the quartz sensor. Evaporation equipment.
【請求項4】 蒸着開始までの予備加熱時には,予め設
定された基準値を光センサー7からの光電流が維持する
ように,電子銃のエミッション電流を制御して蒸発源5
を加熱し,蒸着開始後には水晶センサー2からの蒸発速
度情報を基にしてエミッション電流を制御し,この時の
光電流値を新たな基準値に変更し,以後は,光センサー
7の光電流がこの変更された基準値を維持するようにエ
ミッション電流を制御する,請求項2または3記載の電
子ビーム真空蒸着装置。
4. During preheating before the start of vapor deposition, the emission current of the electron gun is controlled by controlling the emission current of the electron gun so that the photocurrent from the optical sensor 7 maintains a preset reference value.
Is heated, and after starting the vapor deposition, the emission current is controlled based on the evaporation rate information from the quartz sensor 2, the photocurrent value at this time is changed to a new reference value, and thereafter, the photocurrent of the photosensor 7 is changed. 4. The electron beam vacuum vapor deposition apparatus according to claim 2, wherein the control unit controls the emission current so as to maintain the changed reference value.
【請求項5】 マスク11あるいは望遠鏡8を光センサ
ー7の手前に配置した,請求項1または2または3記載
の電子ビーム真空蒸着装置。
5. The electron beam vacuum vapor deposition apparatus according to claim 1, wherein the mask 11 or the telescope 8 is arranged in front of the optical sensor 7.
【請求項6】 光センサー7と蒸発源とのあいだに,回
転あるいはスライド可能な硝子板10を配置してなる,
請求項1または2または3記載の電子ビーム真空蒸着装
置。
6. A rotatable or slidable glass plate 10 is arranged between an optical sensor 7 and an evaporation source.
The electron beam vacuum vapor deposition apparatus according to claim 1, 2 or 3.
JP20776896A 1996-07-18 1996-07-18 Electron beam vacuum depositing device Pending JPH1030171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20776896A JPH1030171A (en) 1996-07-18 1996-07-18 Electron beam vacuum depositing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20776896A JPH1030171A (en) 1996-07-18 1996-07-18 Electron beam vacuum depositing device

Publications (1)

Publication Number Publication Date
JPH1030171A true JPH1030171A (en) 1998-02-03

Family

ID=16545218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20776896A Pending JPH1030171A (en) 1996-07-18 1996-07-18 Electron beam vacuum depositing device

Country Status (1)

Country Link
JP (1) JPH1030171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100637191B1 (en) 2004-11-19 2006-10-23 삼성에스디아이 주식회사 Deposition apparatus
JP2007077413A (en) * 2005-09-09 2007-03-29 Sumitomo Electric Ind Ltd Film deposition control method, film deposition control device, and film deposition apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100637191B1 (en) 2004-11-19 2006-10-23 삼성에스디아이 주식회사 Deposition apparatus
JP2007077413A (en) * 2005-09-09 2007-03-29 Sumitomo Electric Ind Ltd Film deposition control method, film deposition control device, and film deposition apparatus

Similar Documents

Publication Publication Date Title
JPS5844961B2 (en) Film thickness control or monitoring equipment
SE515115C2 (en) Method and apparatus for applying and monitoring thin films and their thickness on a disc-shaped substrate
GB738592A (en) A method and devices for the formation of deposits by evaporation
JPH06302897A (en) Laser device, its operation method and application
JPH1030171A (en) Electron beam vacuum depositing device
WO2023079770A1 (en) Device for controlling film formation, film forming device, and film forming method
JPH07180055A (en) Vacuum film forming device
JPS6328862A (en) Method for controlling film thickness
JPS5948786B2 (en) Molecular beam crystal growth method
JP4701937B2 (en) Deposition equipment
Uhov et al. Method of the coating thickness and transmittance control during the film deposition process
JPH028368A (en) Automatic film-forming equipment
JPH0346386A (en) Thickness controlling method and device for reflection preventive film
JPS61174380A (en) Photo cvd thin film forming device
JPH01320408A (en) Thin film monitor using laser and film thickness measuring method
JPH0625851A (en) Device for controlling thickness of formed film
JPH1062129A (en) Film thickness measuring method
JPS63176462A (en) Vapor depositing device by laser beam
JP2000171630A (en) Formation of multilayered optical thin film
JPH076063B2 (en) Light detection method and device
CN116676582A (en) Direct light control system and method of coating equipment
JPS59229823A (en) Etching method
JPH01306560A (en) Method for controlling vapor-deposited film thickness
JPH0599751A (en) Method for measuring infrared radiation temperature
JP2000161923A (en) Film thickness observing device for film-forming apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

A131 Notification of reasons for refusal

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061027