JPH076063B2 - Light detection method and device - Google Patents

Light detection method and device

Info

Publication number
JPH076063B2
JPH076063B2 JP61273286A JP27328686A JPH076063B2 JP H076063 B2 JPH076063 B2 JP H076063B2 JP 61273286 A JP61273286 A JP 61273286A JP 27328686 A JP27328686 A JP 27328686A JP H076063 B2 JPH076063 B2 JP H076063B2
Authority
JP
Japan
Prior art keywords
light
thin film
transparent substrate
reflectance
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61273286A
Other languages
Japanese (ja)
Other versions
JPS63128178A (en
Inventor
和夫 井上
邦弘 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61273286A priority Critical patent/JPH076063B2/en
Publication of JPS63128178A publication Critical patent/JPS63128178A/en
Publication of JPH076063B2 publication Critical patent/JPH076063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光を利用する、あるいは二次的に発光を伴な
う真空中での薄膜形成方法において該光を検出する光検
出方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photodetection method and apparatus for detecting light in a thin film forming method in a vacuum which utilizes light or which secondarily emits light. It is a thing.

従来の技術 光を利用する、あるいは二次的に発光を伴なう薄膜形成
時には、この光の波長が薄膜形成材料の原子,分子,イ
オン,ラジカル等に固有のものであり、この光量は薄膜
形成材料の原子,分子,イオン、ラジカル等が空間に存
在している量と相関がある。そのため、薄膜形成状態に
変化がないかを調べる目的でこの光の検出が行なわれて
いる。しかし、薄膜形成時には薄膜形成材料が検出光の
通過する窓(以後、光検出用窓を呼ぶ)にも付着して曇
ってくる。従来は、この光検出用窓の曇りが少なくなる
ように種々の手段を講じていた。例えば、検出光光路上
にシャッタを設けて光検出用窓が曇らないようにし、測
定時にのみシャッタを開くようにしたり、光検出用窓を
光源から遠ざけたり、光検出用窓までに細い検出光用の
導入路を設けたりしていた。又、光検出用窓の曇り量を
検出して出力値を補正したり(特願昭61-12085号)して
いたが、連続的に光検出を行なうには限度があった。光
検出用窓をスパッタして曇りを除く方法もとられてい
た。
2. Description of the Related Art When a thin film is formed using light or accompanied by secondary light emission, the wavelength of this light is unique to atoms, molecules, ions, radicals, etc. of the thin film forming material. There is a correlation with the amount of atoms, molecules, ions, radicals, etc. of the forming material existing in the space. Therefore, this light is detected for the purpose of checking whether the thin film formation state has changed. However, at the time of forming the thin film, the thin film forming material adheres to a window (hereinafter, referred to as a light detection window) through which the detection light passes and becomes cloudy. Conventionally, various measures have been taken to reduce the fogging of the light detection window. For example, a shutter is provided on the optical path of the detection light to prevent the light detection window from being fogged, the shutter is opened only during measurement, the light detection window is moved away from the light source, and the detection light that is thin up to the light detection window is used. There was also an introduction path for people. Further, although the output value was corrected by detecting the amount of fog in the light detection window (Japanese Patent Application No. 61-12085), there was a limit to the continuous light detection. The method of removing the fog by spattering the window for light detection was also taken.

発明が解決しようとする問題点 従来、光検出用窓の曇りを少なくする手段が講じられて
きたが、実際には、光検出用窓の曇り量は薄膜形成時間
に伴なって増加する。また、光検出用窓に付着した薄膜
形成材料を取り除く作業中は薄膜形成ができない。そこ
で、長時間連続の薄膜形成および光検出に問題があり、
量産に向かなかった。
Problems to be Solved by the Invention Conventionally, measures have been taken to reduce the fogging of the light detection window, but in reality, the amount of fogging of the light detection window increases with the thin film formation time. Further, a thin film cannot be formed during the operation of removing the thin film forming material attached to the light detection window. Therefore, there are problems in long-time continuous thin film formation and light detection,
It was not suitable for mass production.

本発明は、以上の問題点を考慮して、光を利用する、あ
るいは二次的に発光を伴なう真空中での透明基板上への
薄膜形成において、光検出用窓が常に曇らず再現性のあ
る正確な光検出量を長時間連続に得ることを目的とす
る。
In consideration of the above problems, the present invention reproduces a light detection window without clouding when a thin film is formed on a transparent substrate using light or in a vacuum accompanied by secondary light emission. The purpose is to obtain a precise and accurate light detection amount continuously for a long time.

問題点を解決するための手段 本発明は、以上の問題点を解決するために、薄膜形成時
に使用する光、あるいは二次的に発生する光を薄膜形成
する透明基板を通して受光する位置に光検出用窓を設置
させるものである。
Means for Solving the Problems In order to solve the above problems, the present invention detects a light used at the time of forming a thin film or a light secondarily generated at a position where the light is received through a transparent substrate forming the thin film. A window is installed.

作用 かかる構成にすることによって光検出用窓に薄膜形成材
料が付着しない。
Action With this configuration, the thin film forming material does not adhere to the light detection window.

また、量産時には同仕様で薄膜形成が行なわれ、かつ、
薄膜形成後には透明基板は新しいものと取り換えられる
ので、光検出器での検出値のバラツキは各基板間で非常
に小さい。従って、常に再現性のある正確な光検出値が
得られる。
Also, during mass production, a thin film is formed with the same specifications, and
Since the transparent substrate is replaced with a new one after the thin film is formed, the variation in the detection value of the photodetector is very small among the substrates. Therefore, a reproducible and accurate light detection value can always be obtained.

実施例 第1図は本発明の光検出装置の第1の実施例を示す構成
ブロック図である。第1図において、1は薄膜形成装置
であり、一例として直流スパッタ装置を示している。薄
膜形成装置1には、ターゲット11,陽極12があり真空下
で両間に高電圧を印加するとグロー放電が生じる。この
グロー放電により、放電空間に導入されたガスがプラズ
マ14の状態になる。一般にはガスとしてアルゴンが用い
られ、このプラズマ14中で正イオンとなってターゲット
表面に衝突する。そして、スパッタされた粒子が陽極12
上に配置された透明基板13に沈着して薄膜が形成され
る。
First Embodiment FIG. 1 is a block diagram showing the configuration of a first embodiment of the photodetector of the present invention. In FIG. 1, reference numeral 1 is a thin film forming apparatus, and a DC sputtering apparatus is shown as an example. The thin film forming apparatus 1 has a target 11 and an anode 12, and glow discharge occurs when a high voltage is applied between them under vacuum. Due to this glow discharge, the gas introduced into the discharge space becomes plasma 14 state. Generally, argon is used as a gas, and positive ions are generated in the plasma 14 to collide with the target surface. The sputtered particles then form the anode 12
A thin film is formed by depositing on the transparent substrate 13 arranged above.

このプラズマ14の一部の検出光2は透明基板13を通り光
検出用窓16を通って光検出器3に到達する。ここで光検
出用窓16が曇らないように防着カバー17を設けている。
防着カバー17は透明基板13を支持している陽極12との隙
間が小さい程よい。光検出器3は分光器31,光電管32,電
流増幅器33から構成される。分光器31は回折格子やプリ
ズム及びレンズ、スリットから構成され、波長の異なる
光を分離する。分離された後、検出したい波長の光のエ
ネルギーを光電管32で電流値に変換され、電流増幅器33
で増幅されて出力される。
A part of the detection light 2 of the plasma 14 passes through the transparent substrate 13 and the light detection window 16 to reach the photodetector 3. Here, an anti-adhesion cover 17 is provided so that the light detection window 16 does not become cloudy.
It is preferable that the deposition-inhibiting cover 17 has a smaller gap with the anode 12 supporting the transparent substrate 13. The photodetector 3 includes a spectroscope 31, a phototube 32, and a current amplifier 33. The spectroscope 31 includes a diffraction grating, a prism, a lens, and a slit, and separates lights having different wavelengths. After separation, the energy of the light of the wavelength to be detected is converted into a current value by the phototube 32, and the current amplifier 33
It is amplified by and output.

本発明は、透明基板を通して検出光を受光しているた
め、光検出用窓に薄膜形成材料が付着して曇る恐れがな
い。又、透明基板に不透明の薄膜を形成する際は光検出
値が薄膜形成に連れて下がるが、同仕様の量産時には各
基板ごとの比較から異常の有無の確認は充分に可能であ
る。
In the present invention, since the detection light is received through the transparent substrate, there is no fear that the thin film forming material will adhere to the light detection window and become cloudy. In addition, when an opaque thin film is formed on a transparent substrate, the light detection value decreases as the thin film is formed, but when mass-producing the same specifications, it is possible to sufficiently confirm the presence or absence of abnormalities by comparing each substrate.

さらに第1図では検出光2の光路が変更されていない
が、反射鏡を用いることにより光路変更は可能であり、
従って光検出器3の位置は自由に変えられる。又、第1
図では透明基板13を回転させる機構がないが、透明基板
13を回転させてもよい。この場合、透明基板13の支持部
には一部をつないでドーナツ状に穴を設ければよい。
Further, although the optical path of the detection light 2 is not changed in FIG. 1, it is possible to change the optical path by using a reflecting mirror.
Therefore, the position of the photodetector 3 can be freely changed. Also, the first
Although there is no mechanism to rotate the transparent substrate 13 in the figure,
13 may be rotated. In this case, the support portion of the transparent substrate 13 may be partially connected to form a donut-shaped hole.

スパッタ等一方向から薄膜形成材料が飛んでくる場合は
透明基板13とターゲット11間に陽極12とターゲット11間
を遮断しないようにシャッタを設ければ、プラズマ14を
消さずに透明基板13を取り換えられる。これは、プラズ
マ14を発生させるのに要する時間と真空圧が一定になる
までに要する時間が省けて量産時には有効である。この
場合、薄膜形成装置1に隣接して透明基板13を供給する
真空室が必要である。光CVD等化学反応を利用した薄膜
形成の場合は、化学反応を止めるために流入ガスを止め
るか光を消す必要があり、透明基板13の取り換えごとに
定常状態に到達するのに時間を要するため、上記のよう
な時間の短縮はできない。
If the thin film forming material flies from one direction such as sputtering, a transparent substrate 13 can be replaced without erasing the plasma 14 by providing a shutter between the transparent substrate 13 and the target 11 so as not to block the anode 12 and the target 11. To be This is effective in mass production because the time required to generate the plasma 14 and the time required for the vacuum pressure to become constant can be omitted. In this case, a vacuum chamber for supplying the transparent substrate 13 is required adjacent to the thin film forming apparatus 1. In the case of thin film formation using a chemical reaction such as photo CVD, it is necessary to stop the inflowing gas or turn off the light in order to stop the chemical reaction, and it takes time to reach a steady state each time the transparent substrate 13 is replaced. However, the time cannot be shortened as described above.

第2図は本発明の光検出装置の第2の実施例を示す構成
ブロック図である。第2図ではプラズマ14の一部の検出
光2は透明基板13を通り、フィルタ34で検出波長光のみ
が通過し、集光レンズ35で集光し光ファイバ36によって
導びかれ集光レンズ37で平行光にして検出器3へ導びか
れる。光検出器3では光電管32により光のエネルギーを
電流値に変換し、電流増幅器33で増幅されて出力され
る。
FIG. 2 is a constitutional block diagram showing a second embodiment of the photodetector of the present invention. In FIG. 2, a part of the detection light 2 of the plasma 14 passes through the transparent substrate 13, only the detection wavelength light passes through the filter 34, is condensed by the condenser lens 35, is guided by the optical fiber 36, and is condensed by the condenser lens 37. Is collimated and guided to the detector 3. In the photodetector 3, the phototube 32 converts light energy into a current value, which is amplified by the current amplifier 33 and output.

第2の実施例では光ファイバー36で検出光を導びいてい
るため、光検出器3の位置を自由に選べる利点がある。
本実施例ではフィルタ34を光ファイバー36の前に置いて
いるが、光ファイバー36の後でもよい。又、本実施例で
は同一波長のみの光検出を目的としてフィルタ34を用い
ることにより光検出器3内の分光器31をなくして簡素化
している。もちろん、フィルタ34を除いて分光器31を入
れてもよい。
Since the detection light is guided by the optical fiber 36 in the second embodiment, there is an advantage that the position of the photodetector 3 can be freely selected.
Although the filter 34 is placed before the optical fiber 36 in this embodiment, it may be provided after the optical fiber 36. Further, in the present embodiment, the filter 34 is used for the purpose of detecting the light of the same wavelength only, so that the spectroscope 31 in the photodetector 3 is eliminated and simplified. Of course, the spectroscope 31 may be inserted except for the filter 34.

本構成の場合は、曇りを防止されているのは光検出用窓
ではなく、検出光の導光材である光ファイバー等であ
る。
In the case of this configuration, it is not the light detection window that is prevented from being fogged but the optical fiber or the like that is a light guide material for the detection light.

第3図は本発明の光検出装置の第3の実施例を示す構成
ブロック図である。第3図において、第1図と比べて、
膜厚検出器4と補正係数算出回路5が付加されている。
膜厚検出器4は透明基板13上に形成された膜厚を測定す
る装置であり、例えば水晶振動子を用いたものがある。
この膜厚検出器4からの出力に基づいて補正係数算出回
路5で透明基板13上に薄膜が形成されていない場合の光
検出出力値になるように光検出器3内の電流増幅器33の
増幅率を補正するものである。
FIG. 3 is a configuration block diagram showing a third embodiment of the photodetector of the present invention. In FIG. 3, compared with FIG.
A film thickness detector 4 and a correction coefficient calculation circuit 5 are added.
The film thickness detector 4 is a device for measuring the film thickness formed on the transparent substrate 13, and there is, for example, one using a crystal oscillator.
On the basis of the output from the film thickness detector 4, the correction coefficient calculation circuit 5 amplifies the current amplifier 33 in the photodetector 3 so that the photodetection output value is obtained when the thin film is not formed on the transparent substrate 13. It is to correct the rate.

膜厚検出器4は、一般の薄膜形成制御に用いられてお
り、その出力値を利用するため本実施例の実行は容易で
ある。
The film thickness detector 4 is used for general thin film formation control, and the output value thereof is used, so that the present embodiment can be easily executed.

本発明により、光検出用窓が常に曇らず再現性のある正
確な光検出値を長時間連続に得ることができる。
According to the present invention, it is possible to obtain reproducible and accurate light detection values continuously for a long time without the light detection window always being fogged.

第4図は本発明の光検出装置の第4の実施例を示す構成
ブロック図である。第4図において、第1図と比べて、
反射率検出器6,電流増幅器7,補正係数算出回路5が付加
されている。反射率検出器6は透明基板13上に薄膜を形
成する際の反射率を測定する装置であり、この反射率検
出器6からの出力を電流増幅器7で増幅してこの出力値
に基づいて補正係数算出回路5で透明基板13上に薄膜が
形成されていない場合の光検出出力値になるように光検
出器3内の電流増幅器33の増幅率を補正するものであ
る。
FIG. 4 is a constitutional block diagram showing a fourth embodiment of the photodetector of the present invention. In FIG. 4, compared with FIG.
A reflectance detector 6, a current amplifier 7, and a correction coefficient calculation circuit 5 are added. The reflectance detector 6 is a device for measuring the reflectance when a thin film is formed on the transparent substrate 13. The output from the reflectance detector 6 is amplified by the current amplifier 7 and corrected based on this output value. The coefficient calculation circuit 5 corrects the amplification factor of the current amplifier 33 in the photodetector 3 so that the photodetection output value is obtained when the thin film is not formed on the transparent substrate 13.

反射率検出器6に用いる光の波長は薄膜形成時に伴なう
光の波長と異なるようにして干渉をなくする必要があ
る。又、反射率6と透明基板13との間にはフィルタを入
れて薄膜形成時に伴なう光の波長をカットした方がよ
い。
It is necessary to make the wavelength of the light used for the reflectance detector 6 different from the wavelength of the light accompanying the thin film formation to eliminate interference. Further, it is preferable to insert a filter between the reflectance 6 and the transparent substrate 13 to cut off the wavelength of light accompanying the thin film formation.

反射率検出器6は、一般に薄膜形成制御に用いられてお
り、その出力値を利用するため本実施例の実行は容易で
ある。本発明により、光検出用窓が常に曇らず再現性の
ある正確な光検出値を長時間連続に得ることができる。
The reflectance detector 6 is generally used for thin film formation control, and the output value thereof is used, so that the present embodiment can be easily executed. According to the present invention, it is possible to obtain reproducible and accurate light detection values continuously for a long time without the light detection window always being fogged.

以上の実施例では電流増幅器を用いているが、出力が電
圧である場合に電圧増幅器を用いればよい。
Although the current amplifier is used in the above embodiments, the voltage amplifier may be used when the output is a voltage.

発明の効果 本発明によって、光検出器に薄膜形成材料が付着しな
い。又、薄膜形成後は新しい透明基板と取り換えられ、
同仕様で透明基板上に薄膜形成を行なうと各基板間での
バラツキは非常に小さいため、常に再現性のある光検出
値が得られる。
According to the present invention, the thin film forming material does not adhere to the photodetector. Also, after forming a thin film, it is replaced with a new transparent substrate,
If a thin film is formed on a transparent substrate with the same specifications, the variation between the substrates is very small, so that a reproducible light detection value can always be obtained.

従って、光検出用窓の曇りをなくする特別な手段がいら
ず経済的であり、また、長時間連続して検出ができるの
で量産に適している。
Therefore, no special means for eliminating the fogging of the light detection window is required, which is economical, and continuous detection can be performed for a long time, which is suitable for mass production.

【図面の簡単な説明】[Brief description of drawings]

第1図から第4図はそれぞれ本発明の第1から第4の実
施例における光検出装置の原理図である。 1……薄膜形成装置、2……検出光、3……光学モニ
タ、4……膜厚モニタ、5……補正係数算出回路、6…
…反射率モニタ、7……電流増幅器、11……ターゲット
(陰極)、12……陽極、13……透明基板、14……プラズ
マ、15……支持部、16……光検出用窓、17……防着カバ
ー、31……分光器、32……光電管、33……電流増幅器、
34……フィルタ、35……集光レンズ、36……光ファイバ
ー、37……集光レンズ。
FIG. 1 to FIG. 4 are principle views of the photo-detecting device in the first to fourth embodiments of the present invention. 1 ... Thin film forming apparatus, 2 ... Detection light, 3 ... Optical monitor, 4 ... Film thickness monitor, 5 ... Correction coefficient calculation circuit, 6 ...
… Reflectance monitor, 7 …… Current amplifier, 11 …… Target (cathode), 12 …… Anode, 13 …… Transparent substrate, 14 …… Plasma, 15 …… Supporting part, 16 …… Light detection window, 17 …… Anti-adhesive cover, 31 …… Spectroscope, 32 …… Phototube, 33 …… Current amplifier,
34 …… filter, 35 …… condenser lens, 36 …… optical fiber, 37 …… condenser lens.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】透明基板上に薄膜を形成する際に使用する
光、あるいは二次的に発生する光の何れかの光を検出す
る方法において、前記透明基板を通して前記光の光量を
検出することを特徴とする光検出方法。
1. A method for detecting light used for forming a thin film on a transparent substrate or light generated secondarily, the amount of the light being detected through the transparent substrate. A light detection method characterized by:
【請求項2】光量の検出出力値を、透明基板上に形成さ
れる薄膜の膜厚を検出した膜厚検出出力で補正すること
を特徴とする特許請求の範囲第1項記載の光検出方法。
2. The light detection method according to claim 1, wherein the detection output value of the light quantity is corrected by the film thickness detection output obtained by detecting the film thickness of the thin film formed on the transparent substrate. .
【請求項3】光量の検出出力値を、薄膜を形成する際に
同時に透明基板からの反射率を検出し、前記反射率検出
出力で補正することを特徴とする特許請求の範囲第1項
記載の光検出方法。
3. The detection output value of the light amount is corrected by detecting the reflectance from the transparent substrate at the same time when the thin film is formed, and correcting the reflectance by the reflectance detection output. Light detection method.
【請求項4】透明基板上に薄膜を形成する際に使用する
光、あるいは二次的に発生する光の何れかの光を検出す
る系において、前記透明基板の該光の光源と反対面側に
該光を取り出す手段を設けたことを特徴とする光検出装
置。
4. In a system for detecting light used for forming a thin film on a transparent substrate or light generated secondarily, a surface of the transparent substrate opposite to the light source. A photo-detecting device, characterized in that a means for extracting the light is provided.
【請求項5】光を取り出す手段の出力に、透明基板上に
形成される薄膜の膜厚を検出する手段と、その膜厚に基
づき、補正を施す手段とを設けたことを特徴とする特許
請求の範囲第4項記載の光検出装置。
5. The output of the means for extracting light is provided with means for detecting the film thickness of a thin film formed on a transparent substrate and means for performing correction based on the film thickness. The photodetector according to claim 4.
【請求項6】薄膜を形成する際に出射する光と異なる波
長の光で透明基板からの反射率を測定する手段と、その
反射率に基づき、薄膜を形成する際に出射される光を受
光する手段からの出力値に補正を施す手段とを設けたこ
とを特徴とする特許請求の範囲第4項記載の光検出装
置。
6. A means for measuring the reflectance from a transparent substrate with light having a wavelength different from the light emitted when forming a thin film, and the light emitted when forming a thin film is received based on this reflectance. 5. The photodetection device according to claim 4, further comprising means for correcting the output value from the means for performing.
JP61273286A 1986-11-17 1986-11-17 Light detection method and device Expired - Lifetime JPH076063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61273286A JPH076063B2 (en) 1986-11-17 1986-11-17 Light detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61273286A JPH076063B2 (en) 1986-11-17 1986-11-17 Light detection method and device

Publications (2)

Publication Number Publication Date
JPS63128178A JPS63128178A (en) 1988-05-31
JPH076063B2 true JPH076063B2 (en) 1995-01-25

Family

ID=17525729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61273286A Expired - Lifetime JPH076063B2 (en) 1986-11-17 1986-11-17 Light detection method and device

Country Status (1)

Country Link
JP (1) JPH076063B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663968B2 (en) * 1988-11-16 1994-08-22 日本真空技術株式会社 Optical monitor device
US5985032A (en) * 1995-05-17 1999-11-16 Matsushita Electric Industrial Co., Ltd. Semiconductor manufacturing apparatus
US7726692B2 (en) 2003-12-01 2010-06-01 Honda Motor Co., Ltd. Steering handle and steering system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852475A (en) * 1981-09-24 1983-03-28 Ulvac Corp Method and device for monitoring and measuring thin film in thin film former

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852475A (en) * 1981-09-24 1983-03-28 Ulvac Corp Method and device for monitoring and measuring thin film in thin film former

Also Published As

Publication number Publication date
JPS63128178A (en) 1988-05-31

Similar Documents

Publication Publication Date Title
US3654109A (en) Apparatus and method for measuring rate in flow processes
US5754297A (en) Method and apparatus for monitoring the deposition rate of films during physical vapor deposition
US5880823A (en) Method and apparatus for measuring atomic vapor density in deposition systems
US6646753B2 (en) In-situ thickness and refractive index monitoring and control system for thin film deposition
JP3778996B2 (en) Method for controlling a short etalon Fabry-Perot interferometer used in an NDIR measuring apparatus
US6798499B2 (en) Method of forming optical thin films on substrate at high accuracy and apparatus therefor
US20040255853A1 (en) PECVD reactor in-situ monitoring system
JPH076063B2 (en) Light detection method and device
US11377728B2 (en) Broadband optical monitoring
JP3745790B2 (en) Apparatus and method for manufacturing optical information recording medium
JPH0730201A (en) Method and apparatus for vapor deposition of reflection preventive coating on surface of non-resonant photoamplifier and for inspecting thickness of such coating
JP4830260B2 (en) Film thickness detection method
JPS5948928A (en) Control device of thickness of weak absorption thin film
JP2007093410A (en) Spectrophotometer
JPS59192904A (en) Device for measuring film thickness
JPH0481723B2 (en)
JP3892961B2 (en) Optical thin film manufacturing method
EP1606597B1 (en) Method for determining the voltage sensitivity of the distance between the mirrors of a fabry-perot interferometer
JPS60228674A (en) Method for controlling film thickness
JPS58162805A (en) Method for monitoring vapor deposited film optically
KR20020005314A (en) Revised method for surface photoabsorption measurement
JP2000002660A (en) Calculating method for film thickness in high-frequency glow-discharge emission spectrometry
JPH01306560A (en) Method for controlling vapor-deposited film thickness
JP2970020B2 (en) Method of forming coating thin film
JPH0458139A (en) Infrared optical device