WO2003012160A1 - High frequency ion plating vapor deposition system - Google Patents

High frequency ion plating vapor deposition system Download PDF

Info

Publication number
WO2003012160A1
WO2003012160A1 PCT/JP2001/006601 JP0106601W WO03012160A1 WO 2003012160 A1 WO2003012160 A1 WO 2003012160A1 JP 0106601 W JP0106601 W JP 0106601W WO 03012160 A1 WO03012160 A1 WO 03012160A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
frequency
ring
ion plating
vacuum
Prior art date
Application number
PCT/JP2001/006601
Other languages
French (fr)
Japanese (ja)
Inventor
Fumio Matsumura
Original Assignee
Asahi Optronics, Ltd.
Sun Instruments, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Optronics, Ltd., Sun Instruments, Inc. filed Critical Asahi Optronics, Ltd.
Priority to PCT/JP2001/006601 priority Critical patent/WO2003012160A1/en
Publication of WO2003012160A1 publication Critical patent/WO2003012160A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma

Definitions

  • the present invention relates to a high-frequency ion plating vapor deposition apparatus using a high-frequency ring, and more particularly to a vapor deposition apparatus and a vapor deposition method capable of efficiently producing a high-performance optical dielectric vapor deposition film.
  • FIG. 7 is a diagram showing a basic configuration of a conventional high-frequency ion plating vapor deposition apparatus.
  • the high-frequency ion plating deposition apparatus 51 shown in FIG. 7 is provided with a vacuum bell jar 53 that can maintain the inside of the apparatus in a substantially vacuum state.
  • a vapor deposition substrate dome 57 is disposed in the upper part of the vacuum bell jar 53, and the vapor deposition substrate 55 to be vapor deposited is fixed thereon.
  • a deposition source 59 is arranged in the lower part of the vacuum peruger 53.
  • a high-frequency ring 63 is disposed between the evaporation source 59 and the evaporation substrate dome 57.
  • the diameter of the high-frequency ring 63 is only slightly smaller than the inner diameter of the vacuum peruger 53.
  • the high frequency power from the high frequency power supply 61 is applied to one end of the high frequency ring 63.
  • the conventional high-frequency ion-plating vapor deposition apparatus 51 is configured as described above, whereby plasma is generated in the vacuum peruger 53 to ionize the vapor-deposited substance, thereby being ionized.
  • Deposited material 6 5 is attached to the vapor deposition substrate 55 fixed on the vapor deposition substrate dome 57 by the negative self-bias electric field generated in the vapor deposition substrate dome 57.
  • the conventional technique when compared with a vacuum deposition method using other ions, such as an argon plasma gun method, the conventional technique has a problem that the ionization rate of the deposited material is as low as 5% or less. Further, the adhesive force of the vapor deposition material at the time of film formation is determined by the negative self-bias electric field of the vapor deposition substrate dome 57, but there is a problem that it is small.
  • An object of the present invention is to improve the uniformity and efficiency of ionization of a deposition substance in a vacuum peruger in order to solve the above-mentioned problems of the conventional example.
  • Another object of the present invention is to provide a high-frequency ion plating deposition apparatus capable of forming a uniform and good deposited film on a deposition substrate.
  • a high-frequency ion plating deposition apparatus for performing deposition on a deposition substrate (15) in a vacuum peruger (13), wherein the deposition substrate (15) is supported.
  • the deposition substrate dome (17) to be formed, one or more deposition sources (19) arranged opposite to the deposition substrate dome (17), and a position substantially immediately above each of the deposition sources (19), respectively.
  • a first high-frequency ring (23) having both ends connected to a first high-frequency power supply (21); and a vapor deposition substrate dome (17) provided in close proximity to the first high-frequency ring (23).
  • a high-frequency ion plating / evaporation apparatus comprising: a second high-frequency ring (27) having both ends connected to a second high-frequency power supply (25).
  • the impedance matching state between the high-frequency power supply and the high-frequency ring can be kept constant regardless of the degree of vacuum of the vacuum peruger, and the intensity of the induced magnetic field generated by the high-frequency ring can be maintained. Therefore, a uniform and favorable desired vapor-deposited film can be formed on the vapor-deposited substrate.
  • a dielectric material such as silicon dioxide or aluminum oxide may be melt-adhered to the first high frequency ring (23) and the second high frequency ring (27).
  • the high frequency ion plating deposition apparatus of the inductive coupling type By configuring the high frequency ion plating deposition apparatus of the inductive coupling type in this way, it is possible to suppress the material of the high frequency ring from being ionized by electric discharge. In addition, since the material of the high-frequency ring can be prevented from adhering to the deposition substrate, a good deposited film can be formed.
  • the high-frequency ion plating deposition apparatus may include a plurality of deposition sources, and may further include a thickness gauge for measuring the thickness of the deposited film corresponding to each deposition source.
  • the film thickness gauge may be a quartz film thickness meter provided on the upper part of the vacuum peruger (13), or the upper part or the lower part or both of the vacuum perger (13) It may be an optical film thickness meter provided in.
  • the high-frequency ion plating deposition apparatus may include an ion beam gun and a neutralizer on a lower portion or a side surface of the vacuum bell jar.
  • an ion beam gun is provided in this manner, it can be used as an ion source for cleaning a deposition substrate before deposition and for making the refractive index of a deposition film uniform. If a neutralizer is provided, ions can be neutralized when cleaning the substrate with an ion beam gun.
  • an argon plasma gun may be provided on a side surface of the vacuum peruger.
  • FIG. 1 is a diagram showing a basic configuration of a high-frequency ion plating vapor deposition apparatus according to a first embodiment.
  • FIG. 2 is a diagram showing a configuration of a high-frequency ion plating / evaporating apparatus according to a second embodiment.
  • the configuration shown in FIG. 1 is further provided with an ion beam gun, a neutralizer, and an argon pump. This indicates that Razmagan has been placed.
  • FIG. 3 is a diagram showing an example of mounting a quartz film thickness gauge on a vacuum peruger.
  • FIG. 4 is a diagram showing an example of mounting an optical film thickness meter.
  • FIG. 5 is a diagram showing an example of mounting an optical film thickness meter.
  • FIG. 6 is a diagram showing a mounting example of an optical film thickness meter.
  • FIG. 7 is a diagram showing a basic configuration of a conventional high frequency ion plating vapor deposition apparatus.
  • FIG. 1 is a diagram showing a basic configuration of a high-frequency ion plating / evaporating apparatus 11 according to a first embodiment.
  • high-frequency ion plating deposition equipment 1 As shown in Fig. 1, high-frequency ion plating deposition equipment 1
  • Numeral 1 has a vacuum peruger 13 as a vacuum vessel capable of maintaining the inside in a substantially vacuum state, and a vapor deposition substrate dome 17 is arranged in the upper part of the vacuum peruger 13.
  • the vapor deposition substrate dome 17 is an example of a supporting means for supporting the vapor deposition substrate 15 to be vapor deposited.
  • a vapor deposition source 19 is arranged in the lower part of the vacuum peruger 13.
  • the deposition source 19 is an example of a discharging unit for discharging a deposition material.
  • a small first high-frequency ring 23 is provided between the evaporation source 19 and the evaporation substrate dome 17 and immediately above the evaporation source 19. Both ends of the first high-frequency ring 23 are connected to a high-frequency power supply 21 to receive high-frequency power.
  • high-frequency electric power having an electric energy of 1.5 KW and an industrial frequency of 1.356 MHz is used, but this is merely an example for easy understanding of the explanation. Therefore, the high frequency power is not limited to this, and various power amounts and frequencies can be used according to the purpose.
  • an electron gun, resistance heating, or the like can be used as the evaporation source 19.
  • a dielectric material not only possess such as a metallic material or a semiconductor material, ion deposition may possibly be any material, for example, S i O 2, P 2 0 5 , B 2 0 3, T a 2 ⁇ 5, N b 2 0 5, T i 0 2, G e O 2 , such as Ru can be utilized.
  • FIG. 1 shows only one evaporation source 19, a plurality of evaporation sources may be arranged. In that case, it will be possible to perform multi-source simultaneous vapor deposition in which films are simultaneously formed from a plurality of vapor deposition sources. For example, when four evaporation sources 19 are arranged, quaternary simultaneous evaporation can be performed.
  • a configuration may be adopted in which a quartz film thickness meter is individually provided for each evaporation source.
  • a second second electrode having a diameter larger than the vapor deposition substrate dome 17 is provided between the vapor deposition source 19 and the vapor deposition substrate dome 17, and at a position close to the vapor deposition substrate dome 17, a second second electrode having a diameter larger than the vapor deposition substrate dome 17 is provided.
  • High-frequency rings 27 are provided. Both ends of the second high-frequency ring 27 are connected to a high-frequency power supply 25 so that high-frequency power is applied.
  • the upper part of the vacuum A crystal thickness gauge (see FIG. 3 described later) may be provided. Further, an optical film thickness meter (see FIG. 4 described later) may be provided at the upper part or the lower part or both of the vacuum perugers 13.
  • the first high-frequency ring 23 and the second high-frequency ring 27 each have a surface in which a dielectric material such as silicon dioxide or aluminum oxide is melt-adhered in advance. A ring is used.
  • the high-frequency ion-plating deposition apparatus 11 induces the deposition material 29 evaporated from the deposition source 19 by the magnetic field of the first high-frequency ring 23. It is ionized by the generated plasma. In that sense, the first high-frequency ring 23 will constitute an ionizing means.
  • the plasma induced by the magnetic field of the second high-frequency ring 27 generates a negative self-bias electric field in the vicinity of the dome 17 of the evaporation substrate, and the ionized evaporation material (evaporation material) described above. 29 is attached to the deposition substrate 15 fixed to the deposition substrate dome 17 to vaporize a desired deposition film. In that sense, the second high-frequency ring 27 will use the electric field generating means.
  • the high-frequency power supply 21 is directly connected to the first high-frequency ring 23, and the high-frequency power supply 25 is directly connected to the second high-frequency ring 27. Therefore, it is possible to maintain a constant state of impedance matching between the high-frequency power supply and the high-frequency ring irrespective of the vacuum of the vacuum peruger 13, which is generated by the high-frequency rings 23 and 27. Induced magnetic field strength can be stably maintained.
  • the vicinity of the evaporation substrate dome 17 The intensity of the negative self-biased electric field generated in the second high-frequency ring 27 can be arbitrarily adjusted by the magnitude of the current flowing through the second high-frequency ring 27, and the first high-frequency ring 23 can be used to adjust the evaporation material 2. Since the region where 9 is ionized is small, the degree of uniformity of ionization energy is high, and an arbitrary ionization efficiency can be obtained depending on the magnitude of the current flowing through the first high-frequency ring 23. The adjustment of the current may be performed manually, but control means such as a computer may be used.
  • the material of the high-frequency ring is discharged or discharged. Even when there is a risk of ionization due to the sputtering effect of the plasma and sticking to the deposition substrate, the metal material of the high-frequency ring can be prevented from being absorbed into the deposition film.
  • the second high-frequency ring 27 for generating the self-biased electric field is basically not subject to the limitation of the size in manufacturing.
  • the size of the high-frequency ion plating deposition apparatus can be increased within the range of the power that can be supplied to 25, so that a large amount of deposition substrates can be generated at one time, and efficient deposition processing can be performed. It can be performed.
  • a high-frequency ring is used as the ionization means, but other configurations may be employed as long as the deposition material can be ionized.
  • a high-frequency ring is used as the electric field generating means.
  • another configuration may be adopted as long as a negative self-bias electric field can be generated in the vicinity of the dome 17 of the vapor deposition substrate.
  • FIG. 2 is a view showing a configuration of a high-frequency ion plating / evaporating apparatus 31 according to the second embodiment.
  • an ion beam gun 33, -a neutralizer 35 and an argon plasma gun 37 are added to the configuration shown in FIG.
  • the same or corresponding components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the high-frequency ion plating / evaporating apparatus 31 is characterized in that the ion beam gun 33 and the argon plasma gun 37 are disposed, so that cleaning and evaporation before the evaporation of the evaporation substrate 15 are performed.
  • the point is that it can be used as an auxiliary ion source to make the refractive index of the film uniform.
  • the neutralizer 35 ⁇ neutralizes the ions when cleaning the substrate with the ion beam gun 33.
  • a second high-frequency ring 27 that is arranged close to the dome 17 of the vapor deposition substrate and directly connected to the high-frequency power supply 25. It has an ion beam gun 33, an argon plasma gun 37 and a neutralizer 35.
  • the ion vapor deposition method using only the high-frequency ring is, for example, a vapor deposition method using only an argon plasma gun, or an ion beam method such as an ion beam assisted vapor deposition method.
  • a vapor deposition method using only an argon plasma gun or an ion beam method such as an ion beam assisted vapor deposition method.
  • FIG. 3 is a diagram showing an example of mounting a quartz film thickness gauge on a vacuum peruger.
  • FIG. 3 a central part of a vapor deposition substrate dome 17 and a vapor deposition substrate 15 mounted in a vacuum peruger 13 is cut out, and a crystal thickness meter 39 is arranged there.
  • the crystal film thickness gauge may be protruded from the side surface of the vacuum bell jar 13 without cutting out the dome 17 of the deposition substrate.
  • FIG. 4 to FIG. 6 are diagrams showing examples of mounting an optical film thickness meter.
  • light is made incident through a window glass 43 arranged above the vacuum peruger 13 and is reflected by the film thickness monitor substrate 41. 3 It is arranged so that it can be taken out through the upper window glass 4 3.
  • a window glass 45 serving as a light extraction unit is arranged below the vacuum peruger 13.
  • window glasses 43 and 45 are arranged as light incident portions, and incident light from a light source is made to enter from the window glasses 43 and 45, respectively.
  • This configuration is arranged so that both transmitted light and reflected light can be measured.
  • the input and output of light are performed by directly collimating the light emitted from a light source (not shown) by a lens, or by inputting the emitted light to an optical fiber and an optical fiber collimator.
  • a typical input / output method is, but not limited to, a method for inputting / outputting data.
  • a high-frequency ion plating vapor deposition apparatus for performing vapor deposition on a vapor deposition substrate (15) in a vacuum bell jar (13).
  • a vapor deposition substrate dome (17) supporting the vapor deposition substrate (15), one or more vapor deposition sources (19) opposed to the vapor deposition substrate dome (17), and a plurality of vapor deposition sources (19).
  • the impedance matching between the high-frequency power supply and the high-frequency ring is To maintain a constant state regardless of the degree of vacuum
  • the intensity of the induced magnetic field generated by the high-frequency ring can be stabilized, a uniform and favorable desired vapor-deposited film can be formed on the vapor-deposited substrate.
  • a dielectric material such as silicon dioxide or aluminum oxide is melt-adhered to the first high frequency ring (23) and the second high frequency ring (27), the high frequency ring is obtained. This prevents the material from being ionized by the plasma and prevents the material of the high-frequency ring from adhering to the deposition substrate, so that a good deposited film can be formed.
  • a high-frequency ion plating deposition apparatus is provided with a plurality of deposition sources, and further provided with a thickness gauge for measuring the thickness of a deposited film corresponding to each deposition source, it is possible to use a plurality of deposition sources. Multi-source simultaneous vapor deposition for simultaneous film formation can be performed.
  • an ion beam gun is provided at the bottom or side of the vacuum peruger, it can be used as an ion source for cleaning the vapor deposition substrate before vapor deposition and for making the refractive index of the vapor deposited film uniform.
  • ions can be neutralized when cleaning the substrate with an ion beam gun.
  • an argon plasma gun is provided on the side of the vacuum peruger, it can be used as an ion source for cleaning the evaporation substrate before evaporation and for making the refractive index uniform during evaporation.

Abstract

A high frequency ion plating vapor deposition system for applying vapor deposition to a vapor deposition substrate (15) in a vacuum belljar (13), comprising a vapor deposition substrate dome (17) for supporting the vapor deposition substrate (15), one or more vapor deposition source (19) disposed oppositely to the vapor deposition substrate dome (17), a first high frequency ring (23) disposed approximately directly above each vapor deposition source (19) and having opposite end parts connected with a first high frequency power supply (21), and a second high frequency ring (27) disposed proximately to the vapor deposition substrate dome (17) and having opposite end parts connected with a second high frequency power supply (25). According to the arrangement, a desired vapor deposition film can be formed well and uniformly on the vapor deposition substrate.

Description

明 細 書 高周波イオンプレーティ ング蒸着装置 技術分野  Description High frequency ion plating deposition equipment Technical field
本発明は、 高周波リ ングを用いた高周波イオンプレーティ ング 蒸着装置に関し、 特に、 高性能な光学誘電体蒸着膜を効率良く 生 産することが可能な蒸着装置及び蒸着方法に関する。 背景技術  The present invention relates to a high-frequency ion plating vapor deposition apparatus using a high-frequency ring, and more particularly to a vapor deposition apparatus and a vapor deposition method capable of efficiently producing a high-performance optical dielectric vapor deposition film. Background art
従来の高周波リ ングを用いたイオンプレーティ ング蒸着装置と して、 例えば、 第 7図に示すよ うな構成のものが提案されている。 第 7図は、 従来の高周波イオンプレーティ ング蒸着装置の基本 構成を示す図である。 第 7 図に示された高周波イオンプレーティ ング蒸着装置 5 1 には、 内部をほぼ真空状態に維持するこ とがで きる真空べルジャ 5 3備えられている。 その真空べルジャ 5 3 内 の上部には蒸着基板 ドーム 5 7が配置され、 その上に蒸着対象で ある蒸着基板 5 5が固定されるこ とになる。 真空ペルジャ 5 3 内 の下部には蒸着源 5 9が配置される。 蒸着源 5 9 と蒸着基板 ドー ム 5 7 との間には高周波リ ング 6 3が配置される。 高周波リ ング 6 3 の直径は、 真空ペルジャ 5 3 の内径よ り わずかに小さいだけ である。 なお、 高周波リ ング 6 3の一端には高周波電源 6 1 から の高周波電力が印加される。  As a conventional ion-plating deposition apparatus using a high-frequency ring, for example, one having a configuration as shown in FIG. 7 has been proposed. FIG. 7 is a diagram showing a basic configuration of a conventional high-frequency ion plating vapor deposition apparatus. The high-frequency ion plating deposition apparatus 51 shown in FIG. 7 is provided with a vacuum bell jar 53 that can maintain the inside of the apparatus in a substantially vacuum state. A vapor deposition substrate dome 57 is disposed in the upper part of the vacuum bell jar 53, and the vapor deposition substrate 55 to be vapor deposited is fixed thereon. A deposition source 59 is arranged in the lower part of the vacuum peruger 53. A high-frequency ring 63 is disposed between the evaporation source 59 and the evaporation substrate dome 57. The diameter of the high-frequency ring 63 is only slightly smaller than the inner diameter of the vacuum peruger 53. The high frequency power from the high frequency power supply 61 is applied to one end of the high frequency ring 63.
従来の高周波イ オンプレーティ ング蒸着装置 5 1 は、 上記のよ う に構成されるこ とによ り 、 プラズマを真空ペルジャ 5 3内に発 生さるこ とで蒸着物質をイオン化し、 イオン化された蒸着物質 6 5 を蒸着基板 ドーム 5 7 に発生する負の自己バイ アス電界によつ てその蒸着基板 ドーム 5 7上に固定された蒸着基板 5 5 に付着さ せるよ う になつていた。 The conventional high-frequency ion-plating vapor deposition apparatus 51 is configured as described above, whereby plasma is generated in the vacuum peruger 53 to ionize the vapor-deposited substance, thereby being ionized. Deposited material 6 5 is attached to the vapor deposition substrate 55 fixed on the vapor deposition substrate dome 57 by the negative self-bias electric field generated in the vapor deposition substrate dome 57.
しかしながら、 このよ う な従来の高周波イオンプレーティ ング 蒸着装置にあっては、 高周波リ ング 6 3 内に発生するプラズマの 密度が場所によって非常に大き く ばらつく ため、 蒸着基板 ドーム 5 7 の中心部にしか均一な物性を持った蒸着膜を形成するこ とが できないという課題があった。  However, in such a conventional high-frequency ion plating / evaporation apparatus, the density of the plasma generated in the high-frequency ring 63 varies extremely depending on the location, so that the center of the dome 57 of the evaporation substrate dome. However, there was a problem that a deposited film having uniform physical properties could only be formed.
また、 例えば、 アルゴンプラズマガン方式など、 他のイオンを 用いた真空蒸着工法と比較する と、 従来技術では蒸着物質のィォ ン化率が 5 %以下と低いという課題がある。 また、 成膜時におけ る蒸着材料の付着力は、 蒸着基板 ドーム 5 7 の負の自己バイ アス 電界によって決定されるが、 それも小さいという課題があった。  Also, for example, when compared with a vacuum deposition method using other ions, such as an argon plasma gun method, the conventional technique has a problem that the ionization rate of the deposited material is as low as 5% or less. Further, the adhesive force of the vapor deposition material at the time of film formation is determined by the negative self-bias electric field of the vapor deposition substrate dome 57, but there is a problem that it is small.
さ らに、 真空ペルジャ内の真空度が変動する と、 放電によるプ ラズマの発生が停止する可能性が高いという問題があった。 また、 これと同時に高周波リ ングの材料が放電やプラズマのス パッタ効果によってイオン化されてしまい、 蒸着基板 5 5 に付着 してしま う とレ、う問題もあった。  Furthermore, when the degree of vacuum in the vacuum peruger fluctuates, there is a high possibility that generation of plasma due to electric discharge is stopped. At the same time, the material of the high-frequency ring is ionized by the discharge or the sputtering effect of plasma, and there is a problem that it adheres to the deposition substrate 55.
本発明は、 上述した従来例による問題点を解消するため、 真空 ペルジャ内における蒸着物質のイオン化の均一性と効率を高める こ と 目的とする。  An object of the present invention is to improve the uniformity and efficiency of ionization of a deposition substance in a vacuum peruger in order to solve the above-mentioned problems of the conventional example.
また、 本発明は、 蒸着基板上に均一かつ良好な蒸着膜を形成す るこ とができる高周波イオンプレーティ ング蒸着装置を提供する こ とを目的とする。  Another object of the present invention is to provide a high-frequency ion plating deposition apparatus capable of forming a uniform and good deposited film on a deposition substrate.
発明の開示 本発明の第 1 の観点によれば、 真空ペルジャ ( 1 3 ) 内で蒸着 基板 ( 1 5 ) に蒸着を施すための高周波イオンプレーティ ング蒸 着装置において、 前記蒸着基板 ( 1 5 ) を支持する蒸着基板 ドー ム ( 1 7 ) と、 蒸着基板 ドーム ( 1 7 ) に対向配置された一以上 の蒸着源 ( 1 9 ) と、 各前記蒸着源 ( 1 9 ) の略直上近辺にそれ ぞれ配置され、 その両端部が第 1 の高周波電源 ( 2 1 ) に接続さ れてなる第 1 の高周波リ ング ( 2 3 ) と、 前記蒸着基板 ドーム ( 1 7 ) に近接して設けられ、 その両端部が第 2の高周波電源 ( 2 5 ) に接続されてなる第 2の高周波リ ング ( 2 7 ) とを備えるこ とを 特徴とする高周波イオンプレーティ ング蒸着装置を提供する。 Disclosure of the invention According to a first aspect of the present invention, there is provided a high-frequency ion plating deposition apparatus for performing deposition on a deposition substrate (15) in a vacuum peruger (13), wherein the deposition substrate (15) is supported. The deposition substrate dome (17) to be formed, one or more deposition sources (19) arranged opposite to the deposition substrate dome (17), and a position substantially immediately above each of the deposition sources (19), respectively. A first high-frequency ring (23) having both ends connected to a first high-frequency power supply (21); and a vapor deposition substrate dome (17) provided in close proximity to the first high-frequency ring (23). A high-frequency ion plating / evaporation apparatus comprising: a second high-frequency ring (27) having both ends connected to a second high-frequency power supply (25).
この構成によ り 、 高周波電源と高周波リ ングのイ ンピーダンス 整合状態が真空ペルジャの真空度に関係なく 一定の状態を維持す るこ とができ、 また、 高周波リ ングによって発生する誘導磁界強 度を安定化できるので、 蒸着基板上に均一かつ良好な所望の蒸着 膜を形成するこ とができる。  With this configuration, the impedance matching state between the high-frequency power supply and the high-frequency ring can be kept constant regardless of the degree of vacuum of the vacuum peruger, and the intensity of the induced magnetic field generated by the high-frequency ring can be maintained. Therefore, a uniform and favorable desired vapor-deposited film can be formed on the vapor-deposited substrate.
なお、 前記第 1 の高周波リ ング ( 2 3 ) および前記第 2 の高周 波リ ング ( 2 7 ) に、 二酸化ケイ素、 酸化アルミ ニ ウム等の誘電 体材料を溶融付着させてもよい。  A dielectric material such as silicon dioxide or aluminum oxide may be melt-adhered to the first high frequency ring (23) and the second high frequency ring (27).
このよ う に誘導結合方式の高周波イオンプレーティ ング蒸着装 置を構成すれば、 高周波リ ングの材料が放電によってイオン化さ れるこ とを抑制できる。 また、 高周波リ ングの材料が蒸着基板に 付着するこ とを抑制できるため、 良好な蒸着膜を形成するこ とが できる。  By configuring the high frequency ion plating deposition apparatus of the inductive coupling type in this way, it is possible to suppress the material of the high frequency ring from being ionized by electric discharge. In addition, since the material of the high-frequency ring can be prevented from adhering to the deposition substrate, a good deposited film can be formed.
さ らに、 高周波イオンプレーティ ング蒸着装置は、 複数の蒸着 源を備え、 さ らに各蒸着源に対応して、 蒸着膜の膜厚を計測する 膜厚計を備えてもよい。 このよ う に構成する こ とで、 複数の蒸着源から同時に成膜する 多元同時蒸着を行う こ とができる。 Further, the high-frequency ion plating deposition apparatus may include a plurality of deposition sources, and may further include a thickness gauge for measuring the thickness of the deposited film corresponding to each deposition source. With this configuration, it is possible to perform multi-source simultaneous vapor deposition in which films are simultaneously formed from a plurality of vapor deposition sources.
なお、 前記膜厚計は、 前記真空ペルジャ ( 1 3 ) の上部に設け られた水晶膜厚計であってもよいし、 また、 前記真空ペルジャ ( 1 3 ) の上部も しく は下部またはその両方に設けられた光学式膜厚 計であってもよレ、。  The film thickness gauge may be a quartz film thickness meter provided on the upper part of the vacuum peruger (13), or the upper part or the lower part or both of the vacuum perger (13) It may be an optical film thickness meter provided in.
さ らに、 高周波イオンプレーティ ング蒸着装置は、 前記真空べ ルジャの下部も しく は側面に、 イオンビームガンおよびニュー ト ラライザを備えてもよい。  Further, the high-frequency ion plating deposition apparatus may include an ion beam gun and a neutralizer on a lower portion or a side surface of the vacuum bell jar.
このよ う に、 イオンビームガンを備えれば、 蒸着基板の蒸着前 の洗浄、 および蒸着膜の屈折率を均一化するためのイオン源と し て利用するこ とができる。 また、 ニュー トラライザを備えれば、 イオンビームガンによる基板洗浄の際にイオンを中性化するこ と ができる。  If an ion beam gun is provided in this manner, it can be used as an ion source for cleaning a deposition substrate before deposition and for making the refractive index of a deposition film uniform. If a neutralizer is provided, ions can be neutralized when cleaning the substrate with an ion beam gun.
さ らに、 前記真空ペルジャの側面に、 アルゴンプラズマガンを 備えてもよい。  Further, an argon plasma gun may be provided on a side surface of the vacuum peruger.
このよ う に構成すれば、 蒸着基板の蒸着前の洗浄、 および蒸着 膜の屈折率を均一化するためのイオン源と して利用するこ とがで きる。 図面の簡単な説明  With this configuration, it can be used as an ion source for cleaning a vapor deposition substrate before vapor deposition and for making the refractive index of a vapor deposited film uniform. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 第 1 の実施形態に係る高周波イオンプレーティ ング 蒸着装置の基本構成を示す図である。  FIG. 1 is a diagram showing a basic configuration of a high-frequency ion plating vapor deposition apparatus according to a first embodiment.
第 2図は、 第 2 の実施形態に係る高周波イオンプレーティ ング 蒸着装置の構成を示す図であり 、 と り わけ、 第 1 図に示した構成 にさ らにイオンビームガンとニュー トラライザおよびアルゴンプ ラズマガンを配置したことを示している。 FIG. 2 is a diagram showing a configuration of a high-frequency ion plating / evaporating apparatus according to a second embodiment. In particular, the configuration shown in FIG. 1 is further provided with an ion beam gun, a neutralizer, and an argon pump. This indicates that Razmagan has been placed.
第 3 図は、 水晶膜厚計の真空ペルジャへの実装例を示す図であ る。  FIG. 3 is a diagram showing an example of mounting a quartz film thickness gauge on a vacuum peruger.
第 4図は、 光学式膜厚計の実装例を示す図である。  FIG. 4 is a diagram showing an example of mounting an optical film thickness meter.
第 5 図は、 光学式膜厚計の実装例を示す図である。  FIG. 5 is a diagram showing an example of mounting an optical film thickness meter.
第 6図は、 光学式膜厚計の実装例を示す図である。  FIG. 6 is a diagram showing a mounting example of an optical film thickness meter.
第 7 図は、 従来の高周波イオンプレーティ ング蒸着装置の基本 構成を示す図である。 発明を実施するための最良の形態  FIG. 7 is a diagram showing a basic configuration of a conventional high frequency ion plating vapor deposition apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を添付図面に示した実施形態に基づいて詳細に説 明する。  Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
(第 1 の実施形態) (First Embodiment)
第 1 図は、 第 1 の実準形態に係る高周波イオンプレーティ ング 蒸着装置 1 1 の基本構成を示す図である。  FIG. 1 is a diagram showing a basic configuration of a high-frequency ion plating / evaporating apparatus 11 according to a first embodiment.
第 1 図に示すよ う に、 高周波イオンプレーティ ング蒸着装置 1 As shown in Fig. 1, high-frequency ion plating deposition equipment 1
1 は、 内部をほぼ真空状態に維持するこ とができる真空容器と し ての真空ペルジャ 1 3 を有し、 その真空ペルジャ 1 3 内の上部に は蒸着基板 ドーム 1 7が配置されている。 蒸着基板 ドーム 1 7 に は、 蒸着対象である蒸着基板 1 5 を支持するための支持手段の一 例である。 Numeral 1 has a vacuum peruger 13 as a vacuum vessel capable of maintaining the inside in a substantially vacuum state, and a vapor deposition substrate dome 17 is arranged in the upper part of the vacuum peruger 13. The vapor deposition substrate dome 17 is an example of a supporting means for supporting the vapor deposition substrate 15 to be vapor deposited.
また、 真空ペルジャ 1 3 内の下部には、 蒸着源 1 9 が配置され る。 蒸着源 1 9 は蒸着物質を放出するための放出手段の一例であ る。 当該蒸着原 1 9 と蒸着基板 ドーム 1 7 との間であって、 蒸着 源 1 9の直上近傍に小型の第 1 の高周波リ ング 2 3が設けられる。 第 1 の高周波リ ング 2 3 の両端部は高周波電源 2 1 に接続され、 高周波電力を印加される よ うになっている。 例えば、 ここでは電 力量が 1 . 5 KWで、 1 3 . 5 6 MH z の工業周波数を有する高 周波電力を用いたが、 これは説明をわかり易くするための単なる 例示に過ぎない。 従って、 高周波電力は、 これに限定されるもの ではなく 、 目的に応じて各種の電力量および周波数を用いるこ と が可能である。 Further, a vapor deposition source 19 is arranged in the lower part of the vacuum peruger 13. The deposition source 19 is an example of a discharging unit for discharging a deposition material. A small first high-frequency ring 23 is provided between the evaporation source 19 and the evaporation substrate dome 17 and immediately above the evaporation source 19. Both ends of the first high-frequency ring 23 are connected to a high-frequency power supply 21 to receive high-frequency power. For example, here, high-frequency electric power having an electric energy of 1.5 KW and an industrial frequency of 1.356 MHz is used, but this is merely an example for easy understanding of the explanation. Therefore, the high frequency power is not limited to this, and various power amounts and frequencies can be used according to the purpose.
と ころで、 蒸着源 1 9 と しては、 電子銃や抵抗加熱等を利用す るこ とができる。 また、 その蒸着材料と しては、 誘電体材料のみ ならず、 金属材料や半導体材料など、 イオン蒸着が可能であれば いかなる材料であっても良く 、 例えば、 S i O2、 P 205、 B 203、 T a 25、 N b 205、 T i 02、 G e O2 などを利用することができ る。 Here, an electron gun, resistance heating, or the like can be used as the evaporation source 19. Also, as its vapor deposition material, a dielectric material not only possess, such as a metallic material or a semiconductor material, ion deposition may possibly be any material, for example, S i O 2, P 2 0 5 , B 2 0 3, T a 2 〇 5, N b 2 0 5, T i 0 2, G e O 2 , such as Ru can be utilized.
なお、 第 1 図では、 蒸着源 1 9 が 1 つしか描かれていていない が、 複数の蒸着源を配置しても、 もちろん構わない。 その場合は 複数の蒸着源から同時に成膜する多元同時蒸着を行う こ とが可能 となろ う。 例えば、 蒸着源 1 9 を 4つ配置した場合は、 4元同時 蒸着を行う ことができる。  Although FIG. 1 shows only one evaporation source 19, a plurality of evaporation sources may be arranged. In that case, it will be possible to perform multi-source simultaneous vapor deposition in which films are simultaneously formed from a plurality of vapor deposition sources. For example, when four evaporation sources 19 are arranged, quaternary simultaneous evaporation can be performed.
また、 図示していないが、 各蒸着源に個別に水晶膜厚計を具備 するよ うに構成しても良い。  Further, although not shown, a configuration may be adopted in which a quartz film thickness meter is individually provided for each evaporation source.
さて、 本実施形態では、 蒸着源 1 9 と蒸着基板 ドーム 1 7 との 間であって、 蒸着基板 ドーム 1 7 に近接した位置に、 蒸着基板 ド ーム 1 7 の径よ り も大きい第 2の高周波リ ング 2 7 が設けられて いる。 第 2の高周波リ ング 2 7の両端部は、 高周波電源 2 5 に接 続され、 高周波電力が印加されるよ うになっている。  By the way, in the present embodiment, between the vapor deposition source 19 and the vapor deposition substrate dome 17, and at a position close to the vapor deposition substrate dome 17, a second second electrode having a diameter larger than the vapor deposition substrate dome 17 is provided. High-frequency rings 27 are provided. Both ends of the second high-frequency ring 27 are connected to a high-frequency power supply 25 so that high-frequency power is applied.
また、 第 1 図には示していないが、 真空ペルジャ 1 3の上部に 水晶膜厚計 (後述の第 3 図参照) を配置してもよい。 また、 真空 ペルジャ 1 3の上部も しく は下部またはその両方に光学式膜厚計 (後述の第 4図参照) を備えるよ うに構成しても良い。 Although not shown in FIG. 1, the upper part of the vacuum A crystal thickness gauge (see FIG. 3 described later) may be provided. Further, an optical film thickness meter (see FIG. 4 described later) may be provided at the upper part or the lower part or both of the vacuum perugers 13.
そして、 本第 1 の実施形態では、 第 1 の高周波リ ング 2 3およ び第 2 の高周波リ ング 2 7 の表面に、 事前に二酸化ケイ素や酸化 アルミニウム等の誘電体材料を溶融付着した高周波リ ングを用い ている。  In the first embodiment, the first high-frequency ring 23 and the second high-frequency ring 27 each have a surface in which a dielectric material such as silicon dioxide or aluminum oxide is melt-adhered in advance. A ring is used.
このよ う に構成された、 第 1 の実施形態に係る高周波イオンプ レーティ ング蒸着装置 1 1 は、 蒸着源 1 9 よ り蒸発した蒸着物質 2 9 を第 1 の高周波リ ング 2 3の磁界で誘導発生するプラズマに よ りイオン化する。 その意味で、 第 1 の高周波リ ング 2 3はィォ ン化手段を構成するこ とになろう。  The high-frequency ion-plating deposition apparatus 11 according to the first embodiment configured as described above induces the deposition material 29 evaporated from the deposition source 19 by the magnetic field of the first high-frequency ring 23. It is ionized by the generated plasma. In that sense, the first high-frequency ring 23 will constitute an ionizing means.
これと 同時に、 第 2の高周波リ ング 2 7 の磁界で誘導発生する プラズマによって蒸着基板 ドーム 1 7 の近傍に負の自 己バイ アス 電界を発生させ、 上記のイオン化された蒸着物質 (蒸着材料) 2 9 を蒸着基板 ドーム 1 7 に固定された蒸着基板 1 5 に付着させて 所望の蒸着膜を蒸著させる。 その意味で、 第 2 の高周波リ ング 2 7は、 電界発生手段をこ うせいするこ とになろ う。  At the same time, the plasma induced by the magnetic field of the second high-frequency ring 27 generates a negative self-bias electric field in the vicinity of the dome 17 of the evaporation substrate, and the ionized evaporation material (evaporation material) described above. 29 is attached to the deposition substrate 15 fixed to the deposition substrate dome 17 to vaporize a desired deposition film. In that sense, the second high-frequency ring 27 will use the electric field generating means.
以上述べたよ う に、 本第 1 の実施形態によれば、 高周波電源 2 1 から第 1 の高周波リ ング 2 3、 および高周波電源 2 5から第 2 の高周波リ ング 2 7に直接接続されているため、 高周波電源と高 周波リ ングのイ ンピーダンス整合状態が真空ペルージャ 1 3の真 空度に関係なく 一定の状態を維持するこ とが可能とな り 、 高周波 リ ング 2 3 , 2 7 によって発生する誘導磁界強度を安定的に維持 することができる。  As described above, according to the first embodiment, the high-frequency power supply 21 is directly connected to the first high-frequency ring 23, and the high-frequency power supply 25 is directly connected to the second high-frequency ring 27. Therefore, it is possible to maintain a constant state of impedance matching between the high-frequency power supply and the high-frequency ring irrespective of the vacuum of the vacuum peruger 13, which is generated by the high-frequency rings 23 and 27. Induced magnetic field strength can be stably maintained.
また、 本第 1 の実施形態によれば、 蒸着基板 ドーム 1 7 の近傍 に発生する負の自己バイアス電界強度を第 2の高周波リ ング 2 7 に流す電流の大き さで任意に調整するこ とができ、 かつ第 1 の高 周波リ ング 2 3 によ り蒸着物質 2 9がイオン化される領域が小さ いこ とから、 イオン化エネルギーの均一度が高く なり 、 第 1 の高 周波リ ング 2 3 に流す電流の大き さによって、 任意のイオン化効 率を得る こ とができる。 この電流の調整は、 手動で行ってもよい が、 コンピュータなどの制御手段を用いてもよい。 Further, according to the first embodiment, the vicinity of the evaporation substrate dome 17 The intensity of the negative self-biased electric field generated in the second high-frequency ring 27 can be arbitrarily adjusted by the magnitude of the current flowing through the second high-frequency ring 27, and the first high-frequency ring 23 can be used to adjust the evaporation material 2. Since the region where 9 is ionized is small, the degree of uniformity of ionization energy is high, and an arbitrary ionization efficiency can be obtained depending on the magnitude of the current flowing through the first high-frequency ring 23. The adjustment of the current may be performed manually, but control means such as a computer may be used.
さ らに、 本第 1 の実施形態によれば、 第 1 の高周波リ ング 2 3 および第 2の高周波リ ング 2 7 に事前に二酸化ケイ素を溶融付着 したので、 高周波リ ングの材料が放電やプラズマのスパッタ効果 によ りイオン化して蒸着基板に付着する恐れがある場合でも、 高 周波リ ングの金属材料が蒸着膜に吸収されるの防止するこ とがで きる。  Further, according to the first embodiment, since silicon dioxide is melt-adhered to the first high-frequency ring 23 and the second high-frequency ring 27 in advance, the material of the high-frequency ring is discharged or discharged. Even when there is a risk of ionization due to the sputtering effect of the plasma and sticking to the deposition substrate, the metal material of the high-frequency ring can be prevented from being absorbed into the deposition film.
また、 本第 1 の実施形態によれば、 自己バイアス電界を発生さ せる第 2 の高周波リ ング 2 7は、 基本的には製造上の大き さの制 限を受けないこ とから、 高周波電源 2 5 が供給可能なパワーの範 囲で高周波イオンプレーティ ング蒸着装置を大型化するこ とがで きるため、 1度に大量の蒸着基板を生成するこ とが可能となり 、 効率の良い蒸着処理を行う こ とができる。  Further, according to the first embodiment, the second high-frequency ring 27 for generating the self-biased electric field is basically not subject to the limitation of the size in manufacturing. The size of the high-frequency ion plating deposition apparatus can be increased within the range of the power that can be supplied to 25, so that a large amount of deposition substrates can be generated at one time, and efficient deposition processing can be performed. It can be performed.
なお、 第 1 の実施形態では、 二つの高周波リ ングを備える例を 示したが、 これは説明を簡単にするためであり 、 もちろん、 3つ 以上のリ ングを設けてもよい。  Note that, in the first embodiment, an example in which two high-frequency rings are provided has been described. However, this is for the sake of simplicity. Of course, three or more rings may be provided.
また、 イオン化手段と して高周波リ ングを用いているが、 もち ろん蒸着物質をイオン化できる ものであれば他の構成を採用して もよレ、。  In addition, a high-frequency ring is used as the ionization means, but other configurations may be employed as long as the deposition material can be ionized.
また、 電界発生手段と して、 高周波リ ングを用いているが、 も ちろん蒸着基板 ドーム 1 7付近に負の自 己バイ アス電界を発生で きるものであれば他の構成を採用してもよい。 In addition, a high-frequency ring is used as the electric field generating means. Of course, another configuration may be adopted as long as a negative self-bias electric field can be generated in the vicinity of the dome 17 of the vapor deposition substrate.
(第 2 の実施形態) (Second embodiment)
第 2図は、 第 2の実施形態に係る高周波イオンプレーティ ング 蒸着装置 3 1 の構成を示す図である。 第 2 の実施形態では、 第 1 図の構成にイオンビームガン 3 3 と - ユ ー トラライザ 3 5および アルゴンプラズマガン 3 7 を追加したものである。 なお、 第 2図 において、 第 1 図と同一物または相当物については、 同一符号を 付して説明を省略する。  FIG. 2 is a view showing a configuration of a high-frequency ion plating / evaporating apparatus 31 according to the second embodiment. In the second embodiment, an ion beam gun 33, -a neutralizer 35 and an argon plasma gun 37 are added to the configuration shown in FIG. In FIG. 2, the same or corresponding components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
本第 2の実施形態に係る高周波イオンプレーティ ング蒸着装置 3 1 の特徴は、 イオンビームガン 3 3およびアルゴンプラズマガ ン 3 7 を配置しているので、 蒸着基板 1 5 の蒸着前の洗浄と蒸着 膜の屈折率を均一化するための補助的なイオン源と して利用する こ とができる点にある。 また、 ニュー ト ラライザ 3 5 ·は、 イオン ビームガン 3 3 よる基板洗浄を行う際にイオンを中性化するもの である。  The high-frequency ion plating / evaporating apparatus 31 according to the second embodiment is characterized in that the ion beam gun 33 and the argon plasma gun 37 are disposed, so that cleaning and evaporation before the evaporation of the evaporation substrate 15 are performed. The point is that it can be used as an auxiliary ion source to make the refractive index of the film uniform. The neutralizer 35 · neutralizes the ions when cleaning the substrate with the ion beam gun 33.
以上述べたよ う に、 第 2の実施形態によれば、 蒸着源 1 9 の真 上に高周波電源 2 1 に直接接続された個別の第 1 の高周波リ ング 2 3 (こ こでは、 蒸着源および高周波リ ングを 1 つと したが、 複 数個配置しても良い。) と、 蒸着基板 ドーム 1 7 に近接配置され、 高周波電源 2 5 に直接接続された第 2 の高周波リ ング 2 7 とを有 し、 イ オンビームガン 3 3 、 アルゴンプラズマガン 3 7 およびェ ユ ー トラライザ 3 5 を配置している。 この構成によって、 蒸着基 板 1 5の蒸着前の洗浄および蒸着膜の屈折率を均一化する ことが でき、 基板洗浄を行う際にイオンを中性化できることから、 大型 の真空ペルジャ内の蒸着基板 ドームに固定された大面積の蒸着基 板に対して、 極めて効率良く 、 かつ、 低コス トで、 均一な誘電体 蒸着膜を形成するこ とができる。 As described above, according to the second embodiment, the individual first high-frequency rings 23 directly connected to the high-frequency power supply 21 directly above the evaporation source 19 (here, the evaporation source and the Although one high-frequency ring is used, a plurality of high-frequency rings may be arranged.) And a second high-frequency ring 27 that is arranged close to the dome 17 of the vapor deposition substrate and directly connected to the high-frequency power supply 25. It has an ion beam gun 33, an argon plasma gun 37 and a neutralizer 35. With this configuration, it is possible to clean the vapor deposition substrate 15 before vapor deposition and to make the refractive index of the vapor deposition film uniform, and to neutralize ions when cleaning the substrate. An extremely efficient, low-cost, uniform dielectric vapor-deposited film can be formed on a large-area vapor-deposited substrate fixed to the vapor-deposited substrate dome in a vacuum peruger.
また、 第 1 の実施形態のよ う に、 高周波リ ングのみを用いたィ オン蒸着工法は、 例えば、 アルゴンプラズマガンのみを用いた蒸 着方法、 あるいはイオンビームアシス ト蒸着法のよ う なイオンビ ームガンのみを用いた蒸着法と比較する と、 装置の導入コス トぉ よびランニングコス ト と共に低コス トであるとレ、う利点がある。 (第 3の実施形態)  Further, as in the first embodiment, the ion vapor deposition method using only the high-frequency ring is, for example, a vapor deposition method using only an argon plasma gun, or an ion beam method such as an ion beam assisted vapor deposition method. Compared with the vapor deposition method using only a gun, there is an advantage that the cost is low as well as the introduction cost and the running cost of the apparatus. (Third embodiment)
第 3図は、 水晶膜厚計の真空ペルジャへの実装例を示す図であ る。  FIG. 3 is a diagram showing an example of mounting a quartz film thickness gauge on a vacuum peruger.
第 3図において、 真空ペルジャ 1 3内に実装された蒸着基板 ド ーム 1 7および蒸着基板 1 5の中央部分が切り取られ、 そこに水 晶膜厚計 3 9を配置したものである。 また、 図示はしていないが、 この構成の他に蒸着基板 ドーム 1 7 を切り取るこ となく 真空ベル ジャ 1 3の側面から水晶膜厚計を突き出すよ うに構成しても良い。  In FIG. 3, a central part of a vapor deposition substrate dome 17 and a vapor deposition substrate 15 mounted in a vacuum peruger 13 is cut out, and a crystal thickness meter 39 is arranged there. Although not shown, in addition to this configuration, the crystal film thickness gauge may be protruded from the side surface of the vacuum bell jar 13 without cutting out the dome 17 of the deposition substrate.
(第 4の実施形態) (Fourth embodiment)
第 4図から第 6図はは、 光学式膜厚計の実装例を示す図である。 第 4図の実装例では、 真空ペルジャ 1 3の上部に配置した窓ガ ラス 4 3 を介して光を入射させ、 膜厚モニタ基板 4 1 で反射させ た後、 その反射光を再び真空ペルジャ 1 3上部の窓ガラス 4 3 を 介して取り 出すよ う に配置したものである。  FIG. 4 to FIG. 6 are diagrams showing examples of mounting an optical film thickness meter. In the mounting example shown in FIG. 4, light is made incident through a window glass 43 arranged above the vacuum peruger 13 and is reflected by the film thickness monitor substrate 41. 3 It is arranged so that it can be taken out through the upper window glass 4 3.
第 5図の実装例では、 第 4図の場合と同様に真空ペルジャ 1 3 上部に配置された窓ガラス 4 3から光を入射させ、 その透過光を 真空ペルジャ l 3の下部に配置された窓ガラス 4 5 を介して取り 出すよ うに構成したものである。 In the mounting example shown in FIG. 5, light is incident from the window glass 43 placed above the vacuum peruger 13 as in the case of FIG. It is configured to be taken out through a window glass 45 arranged below the vacuum peruger l3.
第 6図の実装例では、 光の取り 出し部である窓ガラス 4 5 を真 空ペルジャ 1 3の下部に配置する。 また、 光の入射部と して窓ガ ラス 4 3 , 4 5 を配置し、 それぞれ光源からの入射光を当該窓ガ ラス 4 3 , 4 5からそれぞれ入射させる。 この構成は、 透過光と 反射光の両方を測定できるよ う に配置したものである。 この場合 の光の入出力は、 不図示の光源から出射される光をレンズによつ てコ リ メー ト して直接行う方法と、 その出射光を光ファィバに入 射させて光ファイバコ リ メータによ り入出力する方法とが代表的 であるが、 必ずしもこれには限定されず、 他の方法を用いて実施 するよ うにしても良い。 産業上の利用可能性  In the mounting example shown in FIG. 6, a window glass 45 serving as a light extraction unit is arranged below the vacuum peruger 13. In addition, window glasses 43 and 45 are arranged as light incident portions, and incident light from a light source is made to enter from the window glasses 43 and 45, respectively. This configuration is arranged so that both transmitted light and reflected light can be measured. In this case, the input and output of light are performed by directly collimating the light emitted from a light source (not shown) by a lens, or by inputting the emitted light to an optical fiber and an optical fiber collimator. A typical input / output method is, but not limited to, a method for inputting / outputting data. Industrial applicability
以上説明したよ う に、 本発明の第 1 の観点によれば、 真空ベル ジャ ( 1 3 ) 内で蒸着基板 ( 1 5 ) に蒸着を施すための高周波ィ オンプレーティ ング蒸着装置において、 前記蒸着基板 ( 1 5 ) を 支持する蒸着基板 ドーム ( 1 7 ) と、 蒸着基板 ドーム ( 1 7 ) に 対向配置された一以上の蒸着源 ( 1 9 ) と、 各前記蒸着源 ( 1 9 ) の略直上近辺にそれぞれ配置され、 その両端部が第 1 の高周波電 源 ( 2 1 ) に接続されてなる第 1 の高周波リ ング ( 2 3 ) と、 前 記蒸着基板 ドーム ( 1 7 ) に近接して設けられ、 その両端部が第 2の高周波電源 ( 2 5 ) に接続されてなる第 2の高周波リ ング ( 2 7 ) とを備えるよ う に高周波イオンプレーティ ング蒸着装置を構 成したので、 高周波電源と高周波リ ングのイ ンピーダンス整合状 態が真空ペルジャの真空度に関係なく 一定の状態を維持するこ と ができ、 また、 高周波リ ングによって発生する誘導磁界強度を安 定化できるので、 蒸着基板上に均一かつ良好な所望の蒸着膜を形 成することができる。 As described above, according to the first aspect of the present invention, there is provided a high-frequency ion plating vapor deposition apparatus for performing vapor deposition on a vapor deposition substrate (15) in a vacuum bell jar (13). A vapor deposition substrate dome (17) supporting the vapor deposition substrate (15), one or more vapor deposition sources (19) opposed to the vapor deposition substrate dome (17), and a plurality of vapor deposition sources (19). The first high-frequency ring (23), which is arranged almost directly above, and both ends of which are connected to the first high-frequency power supply (21), and the vapor deposition substrate dome (17) And a second high-frequency ring (27) whose both ends are connected to a second high-frequency power supply (25). As a result, the impedance matching between the high-frequency power supply and the high-frequency ring is To maintain a constant state regardless of the degree of vacuum In addition, since the intensity of the induced magnetic field generated by the high-frequency ring can be stabilized, a uniform and favorable desired vapor-deposited film can be formed on the vapor-deposited substrate.
なお、 前記第 1 の高周波リ ング ( 2 3 ) および前記第 2 の高周 波リ ング ( 2 7 ) に、 二酸化ケイ素、 酸化アルミ ニウム等の誘電 体材料を溶融付着させれば、 高周波リ ングの材料がプラズマによ つてイオン化されるのを防止し、 高周波 リ ングの材料が蒸着基板 に付着しないよ うにして良好な蒸着膜を形成するこ とができる。 また、 高周波イオンプレーティ ング蒸着装置に、 複数の蒸着源 を備え、 さ らに各蒸着源に対応して、 蒸着膜の膜厚を計測する膜 厚計を備えれば、 複数の蒸着源から同時に成膜する多元同時蒸着 を行う こ とができる。  If a dielectric material such as silicon dioxide or aluminum oxide is melt-adhered to the first high frequency ring (23) and the second high frequency ring (27), the high frequency ring is obtained. This prevents the material from being ionized by the plasma and prevents the material of the high-frequency ring from adhering to the deposition substrate, so that a good deposited film can be formed. In addition, if a high-frequency ion plating deposition apparatus is provided with a plurality of deposition sources, and further provided with a thickness gauge for measuring the thickness of a deposited film corresponding to each deposition source, it is possible to use a plurality of deposition sources. Multi-source simultaneous vapor deposition for simultaneous film formation can be performed.
さ らに、 真空ペルジャの下部も しく は側面にイオンビームガン を備えれば、 蒸着基板の蒸着前の洗浄や蒸着膜の屈折率を均一化 するためのイオン源と して利用することができる。  Furthermore, if an ion beam gun is provided at the bottom or side of the vacuum peruger, it can be used as an ion source for cleaning the vapor deposition substrate before vapor deposition and for making the refractive index of the vapor deposited film uniform.
さ らに、 ニュー トラ ライザを備えれば、 イオンビームガンによ る基板洗浄の際のイオンを中性化するこ とができる。  Furthermore, if a neutralizer is provided, ions can be neutralized when cleaning the substrate with an ion beam gun.
さ らに、 真空ペルジャの側面にアルゴンプラズマガンを備えれ ば、 蒸着基板の蒸着前の洗浄、 および蒸着購の屈折率を均一化す るためのイオン源と して利用するこ とができる。  In addition, if an argon plasma gun is provided on the side of the vacuum peruger, it can be used as an ion source for cleaning the evaporation substrate before evaporation and for making the refractive index uniform during evaporation.

Claims

請 求 の 範 囲 The scope of the claims
1 . 真空ペルジャ ( 1 3 ) 内で蒸着基板 ( 1 5 ) に蒸着を施すた めの高周波イオンプレーティ ング蒸着装置において、 1. In a high-frequency ion plating deposition apparatus for depositing a deposition substrate (15) in a vacuum peruger (13),
前記蒸着基板 ( 1 5 ) を支持する蒸着基板 ドーム ( 1 7 ) と、 蒸着基板 ドーム ( 1 7 ) に対向配置された一以上の蒸着源 ( 1 9 ) と、  A deposition substrate dome (17) for supporting the deposition substrate (15), one or more deposition sources (19) arranged opposite to the deposition substrate dome (17),
各前記蒸着源 ( 1 9 ) の略直上近辺にそれぞれ配置され、 その 両端部が第 1 の高周波電源 ( 2 1 ) に接続されてなる第 1 の高周 波リ ング ( 2 3 ) と、  A first high-frequency ring (23), which is disposed near and directly above each of the evaporation sources (19), and whose both ends are connected to a first high-frequency power supply (21);
前記蒸着基板 ドーム ( 1 7 ) に近接して設けられ、 その両端部 が第 2の高周波電源 ( 2 5 ) に接続されてなる第 2の高周波リ ン グ ( 2 7 ) と、  A second high-frequency ring (27) which is provided close to the vapor deposition substrate dome (17), and both ends of which are connected to a second high-frequency power supply (25);
を備えているこ とを特徴とする高周波イオンプレーティ ング蒸 着装置。  A high-frequency ion plating steaming apparatus characterized by comprising:
2. 前記第 1 の高周波リ ング ( 2 3 ) および前記第 2 の高周波リ ング ( 2 7 ) に、 二酸化ケイ素、 酸化アルミ ニウム等の誘電体材 料を溶融付着させたこ と を特徴とする請求の範囲第 1 項に記載の 高周波イオンプレーティ ング蒸着装置。  2. A dielectric material such as silicon dioxide or aluminum oxide is melt-adhered to the first high-frequency ring (23) and the second high-frequency ring (27). 2. The high-frequency ion plating vapor deposition apparatus according to item 1.
3. 蒸着膜の膜厚を計測する膜厚計をさ らに備えるこ とを特徴と する請求の範囲第 1項に記載の高周波イオンプレーティ ング蒸着 装置。 3. The high-frequency ion plating / evaporating apparatus according to claim 1, further comprising a film thickness meter for measuring the film thickness of the deposited film.
4. 前記膜厚計は、 前記真空ペルジャ ( 1 3 ) の上部に設けられ た水晶膜厚計であるこ と を特徴とする請求の範囲第 3項に記載の 高周波イオンプレーティ ング蒸着装置。  4. The high-frequency ion plating apparatus according to claim 3, wherein the film thickness meter is a quartz film thickness meter provided above the vacuum peruger (13).
5. 前記膜厚計は、 前記真空ペルジャ ( 1 3 ) の上部も しく は下 部またはその两方に設けられた光学式膜厚計であるこ と を特徴と する請求の範囲第 3項に記載の高周波イオンプレーティ ング蒸着 5. The thickness gauge is located above or below the vacuum peruger (13). 4. The high-frequency ion plating vapor deposition according to claim 3, characterized in that it is an optical film thickness meter provided in or on a part thereof.
6. さ らにイオンビームガン ( 3 3 ) を備えているこ と を特徴と する請求の範囲第 1項乃至請求の範囲第 5項の何れか一項に記載 された高周波イオンプレーティ ング蒸着装置。 6. The high-frequency ion plating vapor deposition apparatus according to any one of claims 1 to 5, further comprising an ion beam gun (33). .
7. さ らにニュー トラライザ ( 3 5 ) を備えているこ と を特徴と する請求の範囲第 6項に記載された高周波イオンプレーティ ング 蒸着装置。  7. The high frequency ion plating vapor deposition apparatus according to claim 6, further comprising a neutralizer (35).
8. 前記ィオンビームガン ( 3 3 ) は、 前記真空ペルジャ ( 1 3 ) の下部も しく は側面に配置されているこ とを特徴とする請求の範 囲第 6項に記載の高周波イオンプレーティ ング蒸着装置。 8. The high-frequency ion plating according to claim 6, wherein the ion beam gun (33) is disposed on a lower portion or a side surface of the vacuum peruger (13). Evaporation equipment.
9. 前記ニュー トラライザ ( 3 5 ) は、 前記真空ペルジャ ( 1 3 ) の下部も しく は側面に配置されているこ とを特徴とする請求の範 囲第 8項に記載の高周波イオンプレーティ ング蒸着装置。 9. Radio frequency ion plating according to claim 8, characterized in that the neutralizer (35) is arranged on the lower or side of the vacuum peruger (13). Evaporation equipment.
1 0. さ らにアルゴンプラズマガン ( 3 7 ) を備えているこ とを 特徴とする請求の範囲第 1項乃至第 9項に記載された高周波ィォ ンプレーティ ング蒸着装置。  10. The high-frequency ion plating vapor deposition apparatus according to any one of claims 1 to 9, further comprising an argon plasma gun (37).
1 1 . 内部が略真空に維持される真空容器 ( 1 3 ) と、  1 1. Vacuum container (1 3) whose inside is maintained in a substantially vacuum,
前記真空容器 ( 1 3 ) の内部において蒸着基板 ( 1 5 ) を支持 するための支持手段 ( 1 7 ) と、  Support means (17) for supporting the deposition substrate (15) inside the vacuum vessel (13);
前記支持手段 ( 1 7 ) に対向する位置に配置され、 蒸着物質を 放出する放出手段 ( 1 9 ) と、  A discharge means (19) which is arranged at a position facing the support means (17) and discharges a deposition material;
前記支持手段 ( 1 7 ) と前記放出手段 ( 1 9 ) との間であって 前記放出手段 ( 1 9 ) よ り に配置され、 前記放出手段 ( 1 9 ) か ら放出された前記蒸着物質をイオン化するイオン化手段 ( 2 3 ) と、 The vapor deposition material that is disposed between the supporting means (17) and the discharging means (19) and disposed by the discharging means (19), and is discharged from the discharging means (19). Means of ionization (23) When,
前記支持手段 ( 1 7 ) と前記放出手段 ( 1 9 ) との間であって、 前記支持手段 ( 1 7 ) よ り に配置され、 前記支持手段 ( 1 7 ) の 近傍に負の自己バイアス電界を発生させる電界発生手段 ( 2 7 ) と、  A negative self-biased electric field is provided between the support means (17) and the emission means (19), closer to the support means (17), and near the support means (17). Electric field generating means (27) for generating
を備えるこ とを特徴とする蒸着装置。  A vapor deposition device comprising:
1 2. 前記イオン化手段 ( 2 3 ) は、 高周波電力が印加される第 1 のリ ングであり 、 前記蒸着物質は、 前記リ ングの磁界によ り発 生されるプラズマによ りイオン化される こ と を特徴とする請求の 範囲第 1 1項に記載の蒸着装置。  1 2. The ionization means (23) is a first ring to which high-frequency power is applied, and the deposition material is ionized by plasma generated by a magnetic field of the ring. The vapor deposition apparatus according to claim 11, characterized in that:
1 3. 前記第 1 のリ ングの両端は、 第 1 の高周波電源 ( 2 1 ) に 接続され、 高周波電力が印加されるこ と を特徴とする請求の範囲 第 1 2項に記載の蒸着装置。  13. The vapor deposition apparatus according to claim 12, wherein both ends of the first ring are connected to a first high-frequency power supply (21), and high-frequency power is applied. .
1 4. 前記第 1 のリ ングに誘電体材料を付着させたこ と を特徴と する請求の範囲第 1 2項又は第 1 3項に記載の蒸着装置。  14. The vapor deposition apparatus according to claim 12, wherein a dielectric material is attached to the first ring.
1 5. 前記電界発生手段 ( 2 7 ) は、 高周波電力が印加される第 2のリ ングであり 、 前記支持手段 ( 1 7 ) の近傍に発生される負 の自己バイアス電界は、 前記第 2のリ ングの磁界によ り 生じるプ ラズマによって発生されるこ とを特徴とする請求の範囲第 1 1 項 に記載の蒸着装置。  1 5. The electric field generating means (27) is a second ring to which high-frequency power is applied, and the negative self-bias electric field generated near the supporting means (17) is the second ring. The vapor deposition apparatus according to claim 11, wherein the vapor is generated by plasma generated by a magnetic field of the ring.
1 6. 前記第 2のリ ングの両端は、 第 2 の高周波電源 ( 2 5 ) に 接続され、 高周波電力が印加されるこ と を特徴とする請求の範囲 第 1 5項に記載の蒸着装置。  16. The vapor deposition apparatus according to claim 15, wherein both ends of the second ring are connected to a second high-frequency power supply (25), and high-frequency power is applied. .
1 7. 前記第 1 のリ ングに誘電体材料を付着させたこ とを特徴と する請求の範囲第 1 5項又は第 1 6項に記載の蒸着装置。  17. The vapor deposition apparatus according to claim 15, wherein a dielectric material is attached to the first ring.
1 8. 前記支持手段 ( 1 7 ) の近傍に発生される負の自己バイァ ス電界を制御する制御手段をさ らに備えるこ と を特徴とする請求 の範囲第 1 1項に記載の蒸着装置。 1 8. Negative self-bias generated near the support means (17) The vapor deposition apparatus according to claim 11, further comprising control means for controlling a source electric field.
1 9 . 前記制御手段は、 前記発生手段に供給する電流の大き さを 調整するこ とで前記支持手段 ( 1 7 ) の近傍に発生される負の自 己バイ アス電界を制御する こ と を特徴とする請求の範囲第 1 8項 に記載の蒸着装置。  19. The control means controls the negative self-bias electric field generated in the vicinity of the support means (17) by adjusting the magnitude of the current supplied to the generation means. The vapor deposition apparatus according to claim 18, characterized in that:
PCT/JP2001/006601 2001-07-31 2001-07-31 High frequency ion plating vapor deposition system WO2003012160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/006601 WO2003012160A1 (en) 2001-07-31 2001-07-31 High frequency ion plating vapor deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/006601 WO2003012160A1 (en) 2001-07-31 2001-07-31 High frequency ion plating vapor deposition system

Publications (1)

Publication Number Publication Date
WO2003012160A1 true WO2003012160A1 (en) 2003-02-13

Family

ID=11737606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006601 WO2003012160A1 (en) 2001-07-31 2001-07-31 High frequency ion plating vapor deposition system

Country Status (1)

Country Link
WO (1) WO2003012160A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100913A (en) * 2008-10-24 2010-05-06 Citizen Tohoku Kk Apparatus and method for depositing thin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251269A (en) * 1984-05-25 1985-12-11 Shinku Kikai Kogyo Kk Method and apparatus for ionic plating
JPS63109162A (en) * 1986-10-24 1988-05-13 Res Dev Corp Of Japan Ion plating method and its device
JPH0196823A (en) * 1987-10-08 1989-04-14 Hitachi Maxell Ltd Production of magnetic recording medium
US5164599A (en) * 1991-07-19 1992-11-17 Eaton Corporation Ion beam neutralization means generating diffuse secondary emission electron shower
JPH07180055A (en) * 1993-12-22 1995-07-18 Toshiba Glass Co Ltd Vacuum film forming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251269A (en) * 1984-05-25 1985-12-11 Shinku Kikai Kogyo Kk Method and apparatus for ionic plating
JPS63109162A (en) * 1986-10-24 1988-05-13 Res Dev Corp Of Japan Ion plating method and its device
JPH0196823A (en) * 1987-10-08 1989-04-14 Hitachi Maxell Ltd Production of magnetic recording medium
US5164599A (en) * 1991-07-19 1992-11-17 Eaton Corporation Ion beam neutralization means generating diffuse secondary emission electron shower
JPH07180055A (en) * 1993-12-22 1995-07-18 Toshiba Glass Co Ltd Vacuum film forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100913A (en) * 2008-10-24 2010-05-06 Citizen Tohoku Kk Apparatus and method for depositing thin film

Similar Documents

Publication Publication Date Title
KR100436950B1 (en) Method And Apparatus For Low Pressure Sputtering
KR102389512B1 (en) Linearized Active Radio Frequency Plasma Ion Source
KR101001743B1 (en) Ionized physical vapor deposition apparatus using helical self-resonant coil
US5304407A (en) Method for depositing a film
JP5698652B2 (en) Coaxial microwave assisted deposition and etching system
JP3429391B2 (en) Plasma processing method and apparatus
US20060196766A1 (en) Plasma deposition apparatus and method
JPH07188917A (en) Collimation device
US10573495B2 (en) Self-neutralized radio frequency plasma ion source
JP2000215999A (en) High-grade induction bonding plasma reactor
US5677012A (en) Plasma processing method and plasma processing apparatus
US6468387B1 (en) Apparatus for generating a plasma from an electromagnetic field having a lissajous pattern
EP0546006A1 (en) Ion plating method
US5662741A (en) Process for the ionization of thermally generated material vapors and a device for conducting the process
CA2343562C (en) Plasma source
TW201123298A (en) System and apparatus to facilitate physical vapor deposition to modify non-metal films on semiconductor substrates
JP2946402B2 (en) Plasma processing method and plasma processing apparatus
WO2003012160A1 (en) High frequency ion plating vapor deposition system
JP2001355068A (en) Sputtering apparatus, and deposited film forming method
Felmetsger et al. Dual cathode DC–RF and MF–RF coupled S-Guns for reactive sputtering
JPH09176840A (en) Vacuum coating apparatus
JP4351777B2 (en) Deposition assist deposition apparatus and thin film forming method
JPH0649936B2 (en) Bias spattering device
US5975012A (en) Deposition apparatus
JP2000008159A (en) Vapor deposition device using coaxial type vacuum arc vapor depositing source

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP