JPS62103359A - Manufacture of transparent film of interrupting gas - Google Patents

Manufacture of transparent film of interrupting gas

Info

Publication number
JPS62103359A
JPS62103359A JP24207185A JP24207185A JPS62103359A JP S62103359 A JPS62103359 A JP S62103359A JP 24207185 A JP24207185 A JP 24207185A JP 24207185 A JP24207185 A JP 24207185A JP S62103359 A JPS62103359 A JP S62103359A
Authority
JP
Japan
Prior art keywords
film
aluminum
mol
gas
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24207185A
Other languages
Japanese (ja)
Other versions
JPH0699798B2 (en
Inventor
Kenji Hayashi
健二 林
Keijirou Inoue
井上 敬二朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Metallizing Co Ltd
Original Assignee
Toyo Metallizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Metallizing Co Ltd filed Critical Toyo Metallizing Co Ltd
Priority to JP60242071A priority Critical patent/JPH0699798B2/en
Publication of JPS62103359A publication Critical patent/JPS62103359A/en
Publication of JPH0699798B2 publication Critical patent/JPH0699798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly obtain transparent film having a good interruption property for gas at a high speed, by carrying out vapor deposition while maintaining the ratio of average Al vapor deposition quantity to introduced gaseous oxygen quantity per unit time to a specified range, at forming aluminum oxide layer on a plastic film in a vacuum vessel. CONSTITUTION:At coiling the plastic film 5 set in the vacuum vessel 1 to a shaft 4 for coiling the film 5 while running it from a shaft 2 for rewinding the film 5 along a cooling drum 3, high purity Al is vaporized from crucible in a vaporizer 6 connected to heating electric source. Gaseous oxygen is supplied to a range surrounded with a mask 7 from a gas blowing hole 8 through a gas flow rate controller 9 from a gas bomb 10. In this time, aluminum oxide is vapor deposited on the film 5 while maintaining the ratio of the vaporized quantity A(mol/min) to the introduced quantity B(mol/min) to 0.2<=B/A<0.75.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は透明ガス遮断性フィルムの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing a transparent gas barrier film.

更に詳しくは、プラスチックフィルム上に酸化アルミニ
ウム層を形成して成る透明ガス遮断性フィルムの製造方
法に関する。
More specifically, the present invention relates to a method for producing a transparent gas barrier film comprising forming an aluminum oxide layer on a plastic film.

[従来の技術] 従来、透明ガス遮断性フィルムとして、プラスチックフ
ィルム上に酸化硅素を蒸着したもの(特公昭53−12
953>や酸化アルミニウムを蒸着したもの(特開昭5
8−217344>が知られている。
[Prior art] Conventionally, as a transparent gas barrier film, silicon oxide was deposited on a plastic film (Japanese Patent Publication No. 53-12).
953> or vapor-deposited aluminum oxide (Japanese Unexamined Patent Publication No. 5
8-217344> is known.

酸化硅素や酸化アルミニウムなど金属酸化物の蒸着には
、前述の特公昭53−12953や特開昭58−217
344のように金属酸化物自体を加熱蒸発させる方法が
最も一般的であるが、金属酸化物は一般に蒸気圧が低く
蒸発には高温を必要とすることや蒸発速度が小さいとい
う欠点がある。
For vapor deposition of metal oxides such as silicon oxide and aluminum oxide, the aforementioned Japanese Patent Publication No. 53-12953 and Japanese Patent Application Laid-open No. 58-217
The most common method is to heat and evaporate the metal oxide itself, as in No. 344, but metal oxides generally have low vapor pressure, require high temperatures for evaporation, and have a low evaporation rate.

これを改善する方法として、金属アルミニウムを酸素ガ
スを過剰に導入した雰囲気中で加熱蒸発させ、基板上に
酸化アルミニウムとして形成する反応性真空蒸着法が知
られている。この場合、41+302→2Aα203の
反応式で示されるように、蒸発した金属アルミニウムが
令聞酸化して、仝聞酸化アルミニウムを形成するように
、モル比で0.75倍以上の過剰の酸素ガスが供給され
るのが通例でおった。
As a method for improving this, a reactive vacuum evaporation method is known in which metallic aluminum is heated and evaporated in an atmosphere containing an excessive amount of oxygen gas to form aluminum oxide on a substrate. In this case, as shown by the reaction formula 41+302→2Aα203, an excess of oxygen gas of 0.75 times or more in molar ratio is introduced so that the evaporated metal aluminum is oxidized and forms aluminum oxide. It was customary for them to be supplied.

[発明が解決しようとする問題点] ゛しかし、このよ
うな従来の反応性蒸着法による酸化アルミニウムの蒸着
には、次のような問題がおった。すなわち、アルミニウ
ムの蒸発速度が変化すると蒸着中の圧力が大幅に変化し
、付着速度や膜のガス遮断性、光学特性が変化する問題
がめった。しかも、この現象は、アルミニウムの蒸発速
度が速く、プラスチックフィルムの蒸着幅が広くなるほ
ど顕著となり、工業的規模で透明ガス遮断性フィルムを
製造する上で極めて重大な障害となっていた。
[Problems to be Solved by the Invention] ``However, the following problems arose in the vapor deposition of aluminum oxide by such a conventional reactive vapor deposition method. That is, when the evaporation rate of aluminum changes, the pressure during evaporation changes significantly, causing problems such as changes in the deposition rate, gas barrier properties, and optical properties of the film. Moreover, this phenomenon becomes more pronounced as the evaporation rate of aluminum becomes faster and the width of the plastic film is wider, and has become an extremely serious obstacle in producing transparent gas barrier films on an industrial scale.

本発明の目的は、上記欠点のないもの、すなわち、アル
ミニウムの蒸発速度が変化しても、蒸着雰囲気の圧力変
動が殆どなく、したがって、膜の付着速度やガス遮断性
が幅方向、長手方向に均一であり、かつ、透明性の高い
透明ガス遮断性フィルムの製造方法を提供することにあ
る。
The object of the present invention is to avoid the above-mentioned drawbacks, that is, even if the evaporation rate of aluminum changes, there is almost no pressure fluctuation in the evaporation atmosphere, so that the deposition rate and gas barrier properties of the film are improved in the width and length directions. An object of the present invention is to provide a method for producing a transparent gas barrier film that is uniform and highly transparent.

[問題点を解決するための手段] すなわち本発明は、真空槽内に酸素を導入しながらアル
ミニウムを加熱蒸発ざU、プラスチックフィルム基体上
に酸化アルミニ「クムから成る層を形成し、透明ガス遮
断性フィルムを製造する方法において、単位時間当りの
平均のアルミニウム蒸発量A[モル7分]と単位時間当
りの酸素ガス導人足B[モル7分]との比(B/A)を
0.2≦B/A<0.75 に保持しなから蒸着を行なうことを特徴とする透明ガス
遮断性フィルムのI!A遣方法で必る。
[Means for Solving the Problems] That is, the present invention heats and evaporates aluminum while introducing oxygen into a vacuum chamber, forms a layer of aluminum oxide on a plastic film substrate, and creates a transparent gas barrier. In the method for producing a plastic film, the ratio (B/A) of the average amount of aluminum evaporated per unit time A [mol 7 minutes] to the oxygen gas conductor foot B per unit time [mol 7 minutes] is set to 0. This is necessary in the I!A method of producing a transparent gas barrier film, which is characterized in that vapor deposition is carried out while maintaining 2≦B/A<0.75.

以下、本発明を図面を用いて詳細に説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明の一実施例を示す反応性真空蒸着装置
の模式図である。
FIG. 1 is a schematic diagram of a reactive vacuum deposition apparatus showing one embodiment of the present invention.

真空容器1内に設置されたフィルム巻取軸2に巻かれた
プラスチックフィルム5は、−30°C〜10’Cに冷
却された冷却ドラム3に沿って走行しながらフィルム巻
取軸4に巻き取られる。
The plastic film 5 wound around the film winding shaft 2 installed in the vacuum container 1 is wound around the film winding shaft 4 while running along the cooling drum 3 cooled to -30°C to 10'C. taken.

同時に、加熱電源に接続された蒸発器6内のルツボから
、アルミニウムが蒸発され、酸素ボンベ10から、ガス
流■制御装置9を通してガス吹出口8から、マスク7で
囲まれた領域に酸素ガスが供給される。蒸発した°アル
ミニウムとMiガスが反応し、プラスチックフィルム5
の表面に酸化アルミニウムが作製される。本発明でいう
酸化アルミニウムとは、no、Af1202およびA0
203を示すが、好ましくは八〇、203が良い。酸化
アルミニウム中に微辺の金属や他の金属酸化物を含んで
いても良い。
At the same time, aluminum is evaporated from the crucible in the evaporator 6 connected to the heating power source, and oxygen gas is supplied from the oxygen cylinder 10 to the area surrounded by the mask 7 through the gas flow controller 9 and the gas outlet 8. Supplied. The evaporated aluminum and Mi gas react, and the plastic film 5
Aluminum oxide is produced on the surface of. Aluminum oxide in the present invention refers to no, Af1202 and A0
203 is shown, but 80,203 is preferable. Aluminum oxide may contain minute metals or other metal oxides.

アルミニウムを加熱−蒸発する方法としては、抵抗加熱
、高周波誘導加熱、電子ビーム加熱、レゾ−ビーム加熱
等の方法が用いられる。不純物の混入が少なく、かつ、
大面積にわたって高速蒸着ができる点では、高周波誘導
加熱および電子ビーム加熱が好ましい。
As a method for heating and evaporating aluminum, methods such as resistance heating, high frequency induction heating, electron beam heating, and reso beam heating are used. Less contamination with impurities, and
High-frequency induction heating and electron beam heating are preferred in that high-speed vapor deposition can be performed over a large area.

アルミニウムとしては、不純物が少なく純度が99%以
上、望ましくは99.5%以上のものが好ましい。
As aluminum, it is preferable to use aluminum with few impurities and a purity of 99% or more, preferably 99.5% or more.

蒸る中のアルミニウムの蒸発量は、水温(辰動式膜厚泪
や、原子吸光式膜厚計によって測定することもできるが
、最も簡便には、ルツボ内へのアルミニウムの充@量(
モル〉と蒸発後のアルミニウムの残量(モル〉の差を、
蒸着時間(分)で除した単位時間当りの平均アルミニウ
ム蒸発MA [モル7分]であられすことができ、本発
明ではこの値で規定される。アルミニウム1モルは、重
量で26.9815qである。
The amount of aluminum evaporated during steaming can be measured by measuring the water temperature (by measuring the amount of aluminum in the crucible (
The difference between the amount of aluminum remaining after evaporation (mol) and the amount of aluminum remaining after evaporation (mol) is
It can be expressed as the average aluminum evaporation MA per unit time divided by the deposition time (minutes) [mol 7 minutes], and is defined by this value in the present invention. One mole of aluminum weighs 26.9815q.

酸素ガスノ導入mは、ガス流量制御装置により制御され
る。単位時間当りの酸素ガス導入量は、アルミニウムの
蒸着中に導入したkW累ガス恭(モル)を蒸着時間(分
)で除した、単位時間当りの酸素ガス導入量B[モル7
分]で与えられる。
The oxygen gas introduction m is controlled by a gas flow rate control device. The amount of oxygen gas introduced per unit time is calculated as the amount of oxygen gas introduced per unit time B [mol 7
minutes].

酸素ガス1モルとは、標準状態(1気圧、0°C)の体
積で22.420である。
One mole of oxygen gas has a volume of 22.420 under standard conditions (1 atmosphere, 0°C).

酸化アルミニウムの(=J着量や膜のガス遮断性を長手
方向にわたって均一化するには、蒸着中のガス圧力を長
時間にわたって一定にすることか重要であり、このため
には、単位時間当りの平均アルミニウム蒸発mA [モ
ル7分」と単位時間当りの酸素ガス導入量B[モル7分
1との比(B/A>を 0.2≦B/A<0.75 に保持しながら蒸着を行なうことが必要である。
In order to equalize the amount of aluminum oxide deposited (=J) and the gas barrier properties of the film in the longitudinal direction, it is important to keep the gas pressure constant during vapor deposition over a long period of time. The ratio of the average aluminum evaporation mA [mole 7 minutes] to the oxygen gas introduction amount B [mole 7 minutes 1 (B/A>) per unit time was evaporated while maintaining 0.2≦B/A<0.75. It is necessary to do the following.

蒸発したアルミニウムを全mW化アルミニウム(Ag2
O3)に反応させるためには反応式4Aひ+302=2
AQ203で示されるように、モル比で、アルミニウム
の少なくとも0.75倍以上の酸素ガスを導入すること
が必要でおるが、0゜75倍以上の酸素ガスを導入する
と、微小なアルミニウムの蒸発速度変動に対しても、未
反応の酸素ガスのため大きな圧力変動が生じ、このため
、付着膜厚や、ガス遮断性に大幅な変動が生ずる。
The evaporated aluminum is converted into a total mW of aluminum (Ag2
In order to react with O3), use the reaction formula 4A+302=2
As shown in AQ203, it is necessary to introduce oxygen gas in a molar ratio of at least 0.75 times that of aluminum, but if oxygen gas is introduced in a molar ratio of 0.75 times or more, the evaporation rate of minute aluminum will decrease. In response to fluctuations, large pressure fluctuations occur due to unreacted oxygen gas, resulting in large fluctuations in the deposited film thickness and gas barrier properties.

B/Ab’io、2未満では透明性の不足した膜となり
やすく、酸素ガスの導入量がわずかに・変動した場合に
、透明性の低下した酸化アルミニウム層が形成されるこ
とになり、包装材料の製造方法としては好ましくない。
If B/Ab'io is less than 2, the film tends to lack transparency, and if the amount of oxygen gas introduced is slightly changed, an aluminum oxide layer with reduced transparency will be formed, and the packaging material It is not preferred as a manufacturing method.

B/Aが0.2以上で0.75未満の場合に透明性が高
く、長手方向にもガス遮断性が均一な透明ガス遮断性フ
ィルムが製造できる。更に好ましい範囲は0.3以上0
.7以下でおる。
When B/A is 0.2 or more and less than 0.75, a transparent gas barrier film with high transparency and uniform gas barrier properties in the longitudinal direction can be produced. A more preferable range is 0.3 or more
.. Stay below 7.

酸素導入W(B)がアルミニウムの蒸発ff1(A>の
0.75倍未満であっても、透明性の良い、酸化アルミ
ニウム膜が形成できる理由としては、次のことが挙げら
れる。蒸発器から蒸発したアルミニウムは、蒸発器の形
状に依存して、上方向に一定の膜厚分布をもって付着す
る。一般に、蒸発したアルミニウムの10〜60%がプ
ラスチックフィルムに付着し、残りはマスク7ヤ真空容
器1の内壁等に付着する。一方、導入される酸素ガスは
、マスク7に囲まれる基体近傍に供給されるため、大部
分はこの周辺でアルミニウムと反応し、開化アルミニウ
ムとなり、マスク7の範囲外には少量しか拡散しない。
The reason why a highly transparent aluminum oxide film can be formed even if the oxygen introduction W (B) is less than 0.75 times the aluminum evaporation ff1 (A>) is as follows. The evaporated aluminum adheres upward with a constant film thickness distribution depending on the shape of the evaporator.Generally, 10-60% of the evaporated aluminum adheres to the plastic film, and the rest is deposited in the mask 7 or vacuum vessel. 1. On the other hand, since the introduced oxygen gas is supplied near the base surrounded by the mask 7, most of it reacts with aluminum around this area and becomes chemical aluminum, which is outside the range of the mask 7. It diffuses only a small amount.

このため、基体上にのみ酸−化アルミニウム膜を形成す
るためには、モル比でアルミニウム蒸発量の0.2倍以
上の酸素ガスの供給で十分であり、仮にこの状態でアル
ミニウムの蒸発速度が減少しても、未反応の酸素ガスは
マスク周辺や真空容器内壁に蒸着されるアルミニウムと
反応し、真空系内の圧力変動が制御される。この結果、
真空槽内の圧力変化は少なく、このため酸化アルミニウ
ム層のガス遮断性はフィルムの長手方向にわたって均一
となる。
Therefore, in order to form an aluminum oxide film only on the substrate, it is sufficient to supply oxygen gas at a molar ratio of at least 0.2 times the amount of aluminum evaporated. Even if the oxygen gas decreases, unreacted oxygen gas reacts with aluminum deposited around the mask and on the inner wall of the vacuum chamber, thereby controlling pressure fluctuations within the vacuum system. As a result,
There is little pressure change in the vacuum chamber, so the gas barrier properties of the aluminum oxide layer are uniform over the length of the film.

本発明で用いられるプラスチックフィルムとしては、特
に限定を受けないが、代表的なものとしては次のものが
挙げられる。
The plastic film used in the present invention is not particularly limited, but typical examples include the following.

ポリエチレン、ポリプロピレン、ポリブテンなどのポリ
オレフィン、ポリエチレンテレフタレート、ポリブチレ
ンチレフタレ−1〜、ポリエチレン−2,6−ナフタレ
−1〜などのポリエステル、ナイロン6、ノーイロン1
2などのポリアミド、ポリ塩化ビニル、ポリ塩化ビニリ
デン、エチレン酢酸・ビニル共重合体、ポリスチレン、
ポリカーボネー1−、ポリアクリロニ1〜リル、ポリサ
ルフォン、ボリフェニレンオキリーイド、芳香族ポリア
ミド、ポリイミド、ポリアミドイミド、セルロース、酢
酸セルロースなどおよび、これらの共重合体や、他の有
殿物との共重合体であっても良い。これらのプラスチッ
クフィルムは未延伸、−軸延伸、二軸延伸のいずれでも
良いが、寸法安定性や(浅域特性およびガス遮断性の安
定性の点から二軸延伸されたものが好ましい。また、プ
ラスチックフィルム中に公知の添加剤、例えば帯電防止
剤、間化防止剤、滑剤、着色防止剤、紫外線吸収剤、可
塑剤、着色剤などが添加されていても良い。
Polyolefins such as polyethylene, polypropylene, and polybutene, polyesters such as polyethylene terephthalate, polybutylene ethylene terephthalate-1~, polyethylene-2,6-naphthalate-1~, nylon 6, and Nylon 1
2 and other polyamides, polyvinyl chloride, polyvinylidene chloride, ethylene acetate/vinyl copolymer, polystyrene,
Polycarbonate 1-, polyacryloni-1-lyl, polysulfone, polyphenylene oxylide, aromatic polyamide, polyimide, polyamideimide, cellulose, cellulose acetate, etc., copolymers thereof, and copolymers with other precipitates. It may be a combination. These plastic films may be unstretched, -axially stretched, or biaxially stretched, but biaxially stretched ones are preferred from the viewpoint of dimensional stability (shallow area characteristics and stability of gas barrier properties). Known additives such as antistatic agents, anti-blurring agents, lubricants, anti-coloring agents, ultraviolet absorbers, plasticizers, colorants, etc. may be added to the plastic film.

本発明のプラスチックは、透明であることが好ましく、
白色光線での全光線透過率が少なくとも40%以上、好
ましくは60%以上、更に好ましくは70%以上、最も
好ましくは80%以上であることが望ましい。着色剤な
ど公知の添加剤は、この範囲を損わない程度に添加され
るのが望ましい。また、酸化アルミニウムの形成に先立
ち、プラスチックフィルムに公知の表面処理、例えばコ
ロナ放電処理、火災処理、プラズマ処理、グロー放電処
理、粗面化処理や、有は物や無機物およびこれらの混合
物のアンカーロー1〜処理が施されても良い。
The plastic of the present invention is preferably transparent,
It is desirable that the total light transmittance in white light is at least 40% or more, preferably 60% or more, more preferably 70% or more, and most preferably 80% or more. Known additives such as colorants are desirably added to an extent that does not impair this range. In addition, prior to the formation of aluminum oxide, the plastic film may be subjected to known surface treatments such as corona discharge treatment, fire treatment, plasma treatment, glow discharge treatment, surface roughening treatment, or anchoring treatment of organic or inorganic materials or mixtures thereof. 1 to processing may be performed.

本発明による透明ガス遮断性フィルムは、酸素や水蒸気
に対する遮断性が優れ、かつ、透明性が高いため、内容
物の変質を防ぐことができ透視性か良いため、食品、薬
品、電気部品、繊維製品、プラスチック部品等の包装材
料に用いることができる。
The transparent gas barrier film according to the present invention has excellent barrier properties against oxygen and water vapor, and is highly transparent, so it can prevent the contents from deteriorating and has good transparency. It can be used as packaging material for products, plastic parts, etc.

[作用] 本発明に基づく透明ガス遮断性フィルムの製造方法によ
れば、広幅、高速蒸着の要求される工業的規模で、ガス
遮断性が高く、かつ、長手方向に均一性の良い透明ガス
遮断性フィルムが1qられる。
[Function] According to the method for producing a transparent gas barrier film based on the present invention, a transparent gas barrier film with high gas barrier properties and good uniformity in the longitudinal direction can be produced on an industrial scale that requires wide-width and high-speed vapor deposition. 1q of sexual film is collected.

また、酸素ガス導入量が少ないため、蒸着中の圧力が低
く、アルミニウムの平均自由工程が長くなり付着収率も
向上する。
Furthermore, since the amount of oxygen gas introduced is small, the pressure during vapor deposition is low, the mean free path of aluminum is lengthened, and the deposition yield is also improved.

以下、実施例を用いて説明する。This will be explained below using examples.

[特性の測定方法コ 本発明における特性の測定には、次の方法を用いた。[How to measure characteristics] The following method was used to measure the characteristics in the present invention.

(イ) 酸素透過率 ASTM  D−3985に準じて、酸素透過率測定装
置(セダンコン1〜ロールズ社製、0X−TRANlo
o)を用いて測定した。
(a) Oxygen permeability measurement device (Sedancon 1 to Rolls, 0X-TRANlo) in accordance with ASTM D-3985.
o).

(ロ) 光線透過率 積分球式へイズメータ(日本精密光学製、5EP−H−
3)を使用し、白色光源(JIS  Z−8701で規
定されるA光〉ての透過率を測定した。
(b) Light transmittance integrating sphere type haze meter (manufactured by Nippon Seimitsu Kogaku, 5EP-H-
3), the transmittance of a white light source (light A specified in JIS Z-8701) was measured.

[実施例] 実施例に 軸延伸ポリエチレンテレフタレー1〜フィルム(厚さ1
2μm)を幅200mm、長さ6000mのロール状と
し、第1図に示す反応性蒸着装置の巻出軸に装着した。
[Example] Examples include axially stretched polyethylene terephthalate 1 to film (thickness 1
2 μm) was formed into a roll having a width of 200 mm and a length of 6000 m, and was attached to an unwinding shaft of a reactive vapor deposition apparatus shown in FIG.

純度99.9%のアルミニウムを高周波誘導加熱電源に
接続した蒸発器に1 kq(37,06モル)充填し、
真空容器を1X10−41・−ルに排気した市と、冷却
ドラムに冷媒を通し、−20°Cに冷却した。
1 kq (37.06 mol) of aluminum with a purity of 99.9% was charged into an evaporator connected to a high-frequency induction heating power source.
The vacuum vessel was evacuated to 1×10 −41 μl and cooled to −20° C. by passing a refrigerant through a cooling drum.

次いで、まず高周波誘導加熱電源により、蒸発器を加熱
し、アルミニウムの蒸発量が毎分約10゜8Q(0,4
0モル)になるように調整し、続いてフィルムを100
m/分の速度で走行させ、次いで、ガス流■制御装置(
エステツク(株)、マスフローコントローラ5EC51
0>により、ガス吹出口から純度99.9%の酸素ガス
を、標準状態の体積に換算して毎分4.0ff(0,1
8モル)導入しながら、フィルム上に酸化アルミニウム
膜を形成した。電離真空計−(アネルバ(株)NI−1
0>により測定した圧力は約3X10−41〜−ルであ
った。
Next, the evaporator is heated by a high-frequency induction heating power source, and the amount of aluminum evaporated is approximately 10°8Q (0.4Q) per minute.
0 mol), and then the film was adjusted to 100 mol.
m/min, and then the gas flow controller (
Estech Co., Ltd., mass flow controller 5EC51
0>, oxygen gas with a purity of 99.9% is released from the gas outlet at a rate of 4.0 ff per minute (0,1
8 mol), an aluminum oxide film was formed on the film. Ionization vacuum gauge - (ANELVA Co., Ltd. NI-1)
The pressure measured by 0> was approximately 3.times.10@-41 ~-.

アルミニウムの蒸発量を、酸素ガス流量を制御し、圧力
を記録しながら50分間蒸着を続けたが、装置をとめ、
巻きとったフィルムを取り出した。
Evaporation was continued for 50 minutes while controlling the amount of aluminum evaporated, controlling the oxygen gas flow rate, and recording the pressure, but the device was stopped.
I took out the rolled film.

蒸発器内のアルミニウムの残量を測定したところ、46
0q (17,05モル)であった。アルミニウムの全
蒸着最は540Cl (20,01モル)であり、車位
置4間当りの平均アルミニウム蒸発量(A>は0.4モ
ル/分であった。
When I measured the amount of aluminum remaining in the evaporator, it was 46.
0q (17.05 mol). The total amount of aluminum deposited was 540 Cl (20.01 mol), and the average amount of aluminum evaporated per 4 car positions (A>) was 0.4 mol/min.

一方、単位時間当りの酸素ガスの導入1(B)は、±1
. O% (7) 精度T−4ff /分(0,18−
Eル/分)に維持されていた。B/Aの値は0.45で
ある。
On the other hand, the introduction of oxygen gas per unit time 1 (B) is ±1
.. O% (7) Accuracy T-4ff/min (0,18-
The temperature was maintained at 100 mph (El/min). The value of B/A is 0.45.

この後、巻きとったフィルムを100mおきにサンプリ
ングし、酸素透過率と光線透過率を測定した。光線透過
率は全て85〜88%であった。
Thereafter, the wound film was sampled every 100 m, and the oxygen transmittance and light transmittance were measured. All light transmittances were 85-88%.

酸素透過率の測定結果を、蒸着中の圧力測定値とともに
第2図に示す。
The measurement results of oxygen permeability are shown in FIG. 2 together with the pressure measurements during vapor deposition.

なお、使用したベースフィルム単体の酸素透過率は15
8 cc/ 1T12−24hr、光線透過率は88%
であった。
The oxygen permeability of the base film used alone was 15.
8 cc/1T12-24hr, light transmittance is 88%
Met.

また、蒸着膜をESCAスペクトロメータ(島津製作所
(株)製、ESCA750〉で分析し、Aa2pのスペ
ク1〜ルの結合エネルギーから酸化アルミニウムは八〇
、203であることを確めた。
Further, the deposited film was analyzed with an ESCA spectrometer (manufactured by Shimadzu Corporation, ESCA750), and it was confirmed that the aluminum oxide was 80.203 from the binding energy of Aa2p spectra 1 to 1.

実施例2 実施例1において、酸素ガス流量を5.6σ/分(0,
25モル/分)とした以外は、実施例1と同一の方法で
、二軸延伸ポリエチレンテレフタシー1〜フイルム上に
酸化アルミニウム(八〇203)を形成し、透明ガス遮
断性フィルムを形成した。蒸着中の圧力は3×10〜4
X10’1−−ルの範囲でおった。50分間蒸着後の蒸
発器内のアルミニウム残量は480Clであった。
Example 2 In Example 1, the oxygen gas flow rate was set to 5.6σ/min (0,
Aluminum oxide (80203) was formed on the biaxially oriented polyethylene terephthalate film 1 to 1 to form a transparent gas barrier film in the same manner as in Example 1, except that the amount of polyethylene terephthalate (25 mol/min) was changed to 25 mol/min). The pressure during vapor deposition is 3×10~4
It was in the range of X10'1--. The amount of aluminum remaining in the evaporator after 50 minutes of vapor deposition was 480 Cl.

この結果、蒸着時間中の全アルミニウム蒸発量は520
g(19,27モル)でおり、単位時間当りの平均アル
ミニウム蒸発量(A)は0.39モル/分でめった。
As a result, the total amount of aluminum evaporated during the deposition time was 520
g (19.27 mol), and the average aluminum evaporation amount (A) per unit time was 0.39 mol/min.

一方、単位時間当りの酸素ガス導入ff1(B)は±1
.0%の精度で5.6α/分(0,25モル/分〉に維
持されていた。B/Aの値は0.64である。
On the other hand, oxygen gas introduction ff1(B) per unit time is ±1
.. It was maintained at 5.6 α/min (0.25 mol/min) with an accuracy of 0%. The value of B/A is 0.64.

この後、実施例1と同様にして100m毎に酸素透過率
と光線透過率を測定した。光線透過率は全て87〜88
%でめった。酸素透過率の測定結果を蒸着中の圧力測定
値とともに第3図に示す。
Thereafter, the oxygen transmittance and light transmittance were measured every 100 m in the same manner as in Example 1. All light transmittances are 87-88
% was rare. The measurement results of oxygen permeability are shown in FIG. 3 together with the pressure measurements during vapor deposition.

比較例1 実施例1において、酸素ガスの流足を7Q/分(0,3
1モル/分)とした以外は実施例1と同一の方法で二軸
延伸ポリエチレンテレフタシー1〜フイルム上に酸化ア
ルミニウム(八〇、203)を形成した。
Comparative Example 1 In Example 1, the flow rate of oxygen gas was set to 7Q/min (0,3
Aluminum oxide (80, 203) was formed on the biaxially oriented polyethylene terephthalate film 1 to 1 in the same manner as in Example 1, except that the amount of polyethylene terephthalate was 1 mol/min).

蒸着中の圧力は、4X10’〜12x 10−41−−
ルの間で大きく変動した。
The pressure during vapor deposition is 4X10' to 12x 10-41--
There was a large variation between the two.

50分間蒸着後の蒸発器内のアルミニウム残量は470
qであった。この結果、蒸着時間中の全アルミニウム蒸
発器は530g(19,6モル)であり、単位時間当り
の平均アルミニウム蒸発量(A)は0.39モル/分で
めった。
The amount of aluminum remaining in the evaporator after 50 minutes of evaporation is 470
It was q. As a result, the total amount of aluminum evaporated during the deposition time was 530 g (19.6 mol), and the average amount of aluminum evaporated per unit time (A) was 0.39 mol/min.

一方、単位時間当りの酸素ガス導入ff1(B)は±1
.0%の精度で70.7分(Oy31モル/分)に維持
されていた。8/Aの値は0.79である。
On the other hand, oxygen gas introduction ff1(B) per unit time is ±1
.. It was maintained at 70.7 min (Oy 31 mol/min) with an accuracy of 0%. The value of 8/A is 0.79.

ひき続ぎ、実施例1と同様にして100m@に酸素透過
率と光線透過率を測定した。光線透過率は全て87〜8
8%であった。酸素透過率の測定結果を蒸着中の圧力測
定値とともに第4図に示す。
Subsequently, the oxygen transmittance and light transmittance were measured at 100 m in the same manner as in Example 1. All light transmittances are 87-8
It was 8%. The measurement results of the oxygen permeability are shown in FIG. 4 together with the pressure measurements during vapor deposition.

[発明の効果] 本発明の透明ガス遮断性フィルムの製造方法に”よれば
、透明でガス遮断性の良いフィルムを、均一性良く、高
速で、かつ支価に製造できる効果がある。
[Effects of the Invention] According to the method for producing a transparent gas barrier film of the present invention, a transparent film with good gas barrier properties can be produced with good uniformity, at high speed, and at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施する反応性蒸着装置の一例を示
す説明図で、第2図〜第4図はそれぞれフィルムの長さ
方向一定間隔ごとの酸素透過率と、蒸着中の圧力測定値
を示す図で、第2,3図は、本発明方法によるもの、第
4図は従来技術によるものである。 1:真空容器   2:フィルム巻出軸3:冷却ドラム
  4:フィルム巻取軸5ニブラスチツクフイルム 6:蒸発器    7:マスク 8:ガス吹出口′ 9:ガス流皇制御装置10:酸素ボ
ンベ
Fig. 1 is an explanatory diagram showing an example of a reactive vapor deposition apparatus for carrying out the present invention, and Figs. 2 to 4 show the oxygen permeability at regular intervals in the length direction of the film and the pressure measurement during vapor deposition, respectively. 2 and 3 are values obtained by the method of the present invention, and FIG. 4 is obtained by the prior art. 1: Vacuum container 2: Film unwinding shaft 3: Cooling drum 4: Film winding shaft 5 Niblast film 6: Evaporator 7: Mask 8: Gas outlet' 9: Gas flow control device 10: Oxygen cylinder

Claims (1)

【特許請求の範囲】[Claims] (1)真空槽内に酸素を導入しながらアルミニウムを加
熱蒸発させ、プラスチックフィルム基体上に酸化アルミ
ニウムから成る層を形成し、透明ガス遮断性フィルムを
製造する方法において、単位時間当りの平均アルミニウ
ム蒸発量[モル/分]と単位時間当りの酸素ガス導入量
B[モル/分]との比(B/A)を 0.2≦B/A<0.75 に保持しながら蒸着を行なうことを特徴とする透明ガス
遮断性フィルムの製造方法。
(1) In a method of manufacturing a transparent gas barrier film by heating and evaporating aluminum while introducing oxygen into a vacuum chamber to form a layer of aluminum oxide on a plastic film substrate, the average aluminum evaporation rate per unit time is The vapor deposition is carried out while maintaining the ratio (B/A) between the amount [mol/min] and the amount B [mol/min] of oxygen gas introduced per unit time at 0.2≦B/A<0.75. A method for producing a transparent gas barrier film.
JP60242071A 1985-10-29 1985-10-29 Method for producing transparent gas barrier film Expired - Lifetime JPH0699798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242071A JPH0699798B2 (en) 1985-10-29 1985-10-29 Method for producing transparent gas barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242071A JPH0699798B2 (en) 1985-10-29 1985-10-29 Method for producing transparent gas barrier film

Publications (2)

Publication Number Publication Date
JPS62103359A true JPS62103359A (en) 1987-05-13
JPH0699798B2 JPH0699798B2 (en) 1994-12-07

Family

ID=17083847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242071A Expired - Lifetime JPH0699798B2 (en) 1985-10-29 1985-10-29 Method for producing transparent gas barrier film

Country Status (1)

Country Link
JP (1) JPH0699798B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133719U (en) * 1991-05-31 1992-12-11 黄 添財 umbrella
JPH05214135A (en) * 1992-02-06 1993-08-24 Toyobo Co Ltd Transparent gas barrier film
JP2001192808A (en) * 2000-01-11 2001-07-17 Ulvac Japan Ltd METHOD FOR DEPOSITING TRANSPARENT AlOx BARRIER FILM AND PRODUCING SYSTEM THEREFOR
US6296895B1 (en) * 1994-08-04 2001-10-02 Balzers Und Leybold Deutschland Holding Ag Process for the application of a transparent metal oxide layer on a film
DE10255822B4 (en) * 2002-11-29 2004-10-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the vapor deposition of ribbon-shaped substrates with a transparent barrier layer made of aluminum oxide
JP2007002325A (en) * 2005-06-27 2007-01-11 Ulvac Japan Ltd Method for manufacturing film having gas barrier property, and apparatus therefor
WO2007034857A1 (en) * 2005-09-22 2007-03-29 Toray Industries, Inc. Support for magnetic recording medium, and magnetic recording medium
EP1936004A1 (en) 2006-12-23 2008-06-25 HVB Hoch-Vakuum-Beschichtungs GmbH High vacuum coating Transparent barrier films for the packaging industry
JPWO2007122936A1 (en) * 2006-03-28 2009-09-03 東レフィルム加工株式会社 Back protection sheet for solar cell module
GB2536252A (en) * 2015-03-10 2016-09-14 Bobst Manchester Ltd Improved vacuum coater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122498A (en) * 1973-03-27 1974-11-22
JPS5315273A (en) * 1976-07-29 1978-02-10 Toshiba Corp Forming method for transparent thin film of oxide
JPS58167767A (en) * 1982-03-26 1983-10-04 Clarion Co Ltd Formation of thin film
JPS60121613A (en) * 1983-12-05 1985-06-29 コニカ株式会社 Method of forming transparent conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122498A (en) * 1973-03-27 1974-11-22
JPS5315273A (en) * 1976-07-29 1978-02-10 Toshiba Corp Forming method for transparent thin film of oxide
JPS58167767A (en) * 1982-03-26 1983-10-04 Clarion Co Ltd Formation of thin film
JPS60121613A (en) * 1983-12-05 1985-06-29 コニカ株式会社 Method of forming transparent conductive film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133719U (en) * 1991-05-31 1992-12-11 黄 添財 umbrella
JPH05214135A (en) * 1992-02-06 1993-08-24 Toyobo Co Ltd Transparent gas barrier film
US6296895B1 (en) * 1994-08-04 2001-10-02 Balzers Und Leybold Deutschland Holding Ag Process for the application of a transparent metal oxide layer on a film
JP2001192808A (en) * 2000-01-11 2001-07-17 Ulvac Japan Ltd METHOD FOR DEPOSITING TRANSPARENT AlOx BARRIER FILM AND PRODUCING SYSTEM THEREFOR
US7541070B2 (en) 2002-11-29 2009-06-02 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method of vapor-depositing strip-shaped substrates with a transparent barrier layer made of aluminum oxide
DE10255822B4 (en) * 2002-11-29 2004-10-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the vapor deposition of ribbon-shaped substrates with a transparent barrier layer made of aluminum oxide
JP2007002325A (en) * 2005-06-27 2007-01-11 Ulvac Japan Ltd Method for manufacturing film having gas barrier property, and apparatus therefor
JP4666607B2 (en) * 2005-06-27 2011-04-06 株式会社アルバック Method for producing gas barrier film and apparatus for producing the same
WO2007034857A1 (en) * 2005-09-22 2007-03-29 Toray Industries, Inc. Support for magnetic recording medium, and magnetic recording medium
JPWO2007122936A1 (en) * 2006-03-28 2009-09-03 東レフィルム加工株式会社 Back protection sheet for solar cell module
DE102007003766B4 (en) * 2006-12-23 2008-09-11 Hvb Hoch-Vakuum-Beschichtungs Gmbh High Vacuum Coating Transparent barrier films for the packaging industry
DE102007003766A1 (en) * 2006-12-23 2008-06-26 Hvb Hoch-Vakuum-Beschichtungs Gmbh High Vacuum Coating Transparent barrier films for the packaging industry
EP1936004A1 (en) 2006-12-23 2008-06-25 HVB Hoch-Vakuum-Beschichtungs GmbH High vacuum coating Transparent barrier films for the packaging industry
GB2536252A (en) * 2015-03-10 2016-09-14 Bobst Manchester Ltd Improved vacuum coater
GB2536252B (en) * 2015-03-10 2018-10-10 Bobst Manchester Ltd Method of operating a vacuum coater for coating a web

Also Published As

Publication number Publication date
JPH0699798B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
JPS62103359A (en) Manufacture of transparent film of interrupting gas
US7541070B2 (en) Method of vapor-depositing strip-shaped substrates with a transparent barrier layer made of aluminum oxide
JP2570279B2 (en) Packaging film
JP3225632B2 (en) Method for producing transparent gas barrier film
JP2638797B2 (en) Method for manufacturing transparent gas barrier film
JPS62220330A (en) Antistatic gas barrier film
JPH0860346A (en) Method of coating film with transparent metal oxide
JP3689932B2 (en) Gas barrier transparent film
JP2745584B2 (en) Method for producing transparent barrier film
JP2001192808A (en) METHOD FOR DEPOSITING TRANSPARENT AlOx BARRIER FILM AND PRODUCING SYSTEM THEREFOR
JPS60197730A (en) Formation of polyimide film
JPS62101428A (en) Film for packaging
JP5594531B2 (en) Method for producing metal-deposited film
JPS5881967A (en) Method and apparatus for preparing thin film of compound
JPH04165064A (en) Production of transparent gas barrier film
JPH06228743A (en) Vacuum deposition device
JP2001288562A (en) Silicon compound thin film deposition method, and article obtained by using it
US8491971B2 (en) Method of producing gas barrier layer
WO2022118711A1 (en) Method and apparatus for producing transparent gas barrier film
JP3021624B2 (en) Vacuum film forming apparatus and method for manufacturing vapor-deposited film
JP3747953B2 (en) Gas barrier transparent film
JP4717297B2 (en) Aluminum oxide vapor-deposited film and method for producing the same
EP3749796B1 (en) Deposition apparatus for depositing evaporated material and methods therefor
JPH059709A (en) Production of transparent barrier film
JP2003105528A (en) Vapor deposited film of aluminum oxide and method of producing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term