JPS58167410A - Peparation of argon - Google Patents

Peparation of argon

Info

Publication number
JPS58167410A
JPS58167410A JP57047780A JP4778082A JPS58167410A JP S58167410 A JPS58167410 A JP S58167410A JP 57047780 A JP57047780 A JP 57047780A JP 4778082 A JP4778082 A JP 4778082A JP S58167410 A JPS58167410 A JP S58167410A
Authority
JP
Japan
Prior art keywords
argon
gas
valve
adsorption
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57047780A
Other languages
Japanese (ja)
Other versions
JPH0351646B2 (en
Inventor
Tatsuro Mori
達郎 森
Akira Wakaizumi
若泉 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP57047780A priority Critical patent/JPS58167410A/en
Publication of JPS58167410A publication Critical patent/JPS58167410A/en
Publication of JPH0351646B2 publication Critical patent/JPH0351646B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To prepare argon in high recovery ratio, by washing and regenerating a nitrogen adsorbent with a desorbed O2 gas from an oxygen adsorbent, passing the resultant product Ar gas through the oxygen adsorbent and the nitrogen adsorbent one after another, and washing and regenerating the adsorbents. CONSTITUTION:A mixed gas of Ar with O2 and N2 from an air separation apparatus is introduced from a pipe 1 into a buffer tank 2, pressurized in a compressor 3 and then introduced through an inlet valve (4a) into the first adsorption cylinder (5a) of an adsorption apparatus 5 to adsorb the N in a nitrogen adsorbent (5a-MS) and O in an oxygen adsorbent (5a-CS) and recover the Ar gas, which is then fed through an outlet valve (7a), pipe 8 and flow control valve 9 to a part to be fed. On the other hand, an inlet valve (4b) and outlet valve (7b) of the second adsorption cylinder (5b) after completing the adsorption stage are closed to open a discharge valve 10 and a valve 11 and reduce the pressure to almost atmospheric pressure. The O and N gas in the second adsorption column (5b) are desorbed under reduced pressure and discharged to the outside. A purging valve (13b) is then opened to introduce part of the Ar through a pressure reducing valve 14 and a pipe 15 into the second adsorption cylinder (5b) to wash and regenerate both adsorbents. The Ar gas is then released to the outside. When the Ar gas in the released gas is in a given amount, the gas is returned through a return valve 16 and a pipe 17 to the tank 2.

Description

【発明の詳細な説明】 仁の発−#i吸ll削を利用してアルゴンを含むガスか
らアルゴンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing argon from a gas containing argon by using a suction process.

一般に、アルゴンOIa造は、空気深冷分離装置からア
ルゴン含有量O比軟的多い線素を抜き出し、これを粗ア
ルゴン塔で精留して粗アルゴンとし、この粗アルゴン中
O酸素を脱酸したのち高純アルゴン塔で精留することに
よって行われている。しかし、こO方法は製造設備を多
く公費とし、連転が複雑であり、アルゴンの回収率も十
分でなく、エネルギー的にも不経済であるなどの欠点が
ある。
Generally, in the production of argon OIa, a line element with a relatively large argon content is extracted from an air cryogenic separator, this is rectified in a crude argon column to produce crude argon, and the O oxygen in this crude argon is deoxidized. This is then carried out by rectification in a high-purity argon column. However, this O method has drawbacks such as requiring a large amount of production equipment at public expense, requiring complicated continuous operation, insufficient argon recovery rate, and being uneconomical in terms of energy.

また、上記以外のアルゴン製造法として社、アルゴン、
酸素、窒素OtS合ガスを無加圧状−で2*0*着剤が
充填された吸着塔に導入し、吸着塔で窒素、酸素を歌着
除去し、アルゴンを得る方法カアル、(41WIa昭5
1−122273号公報参贈しかし1CO方法で嬬吸看
剤の再生を真空ポンプを用−た減圧操作による脱着によ
って行っているため、配管抵抗を小さくする必要があり
、配管、弁等を大型化せねはならず、設備費が増加する
不都合がある。また、万−遁転中漏れがあれは真空度が
低下し、脱着性能が低下し、製品アルボ/の[11や(
ロ)収率が低下する。さらに1吸着塔への混合ガスの吸
込みおよび1M品アルゴン圧送のために2台のアルゴン
圧−機を用いており、設備費が高くなり、メンテナンス
に手間を費する欠点がある。
In addition, as an argon production method other than the above,
A method of introducing oxygen and nitrogen OtS gas into an adsorption tower filled with 2*0* adhesive in an unpressurized state, and removing nitrogen and oxygen by the adsorption tower to obtain argon. 5
No. 1-122273 Publication However, since the 1CO method regenerates the adsorbent by desorption by decompression operation using a vacuum pump, it is necessary to reduce the piping resistance, making the piping, valves, etc. larger. This has the disadvantage of increasing equipment costs. In addition, if there is a leak during the transfer, the degree of vacuum will decrease, the attachment and detachment performance will decrease, and the product Albo/[11 and (
b) Yield decreases. Furthermore, two argon pressurizers are used to suck the mixed gas into one adsorption tower and to force-feed 1M argon, which has the disadvantage of increasing equipment costs and requiring time and effort for maintenance.

この発明は上記事情に龜みてなされたもので、設備が簡
単で運転が容易であり、エネルギー消費が少なく、シか
もアルゴンの(ロ)収率の^いアルゴンの製造方法を提
供することを目的とするものである。
This invention was made in view of the above circumstances, and the purpose is to provide a method for producing argon that is simple in equipment, easy to operate, consumes little energy, and has a high yield of argon. That is.

以下、図面を参照して仁の発明を詳しく説鴫する。Hereinafter, Jin's invention will be explained in detail with reference to the drawings.

図面はこの発明のアルゴンの製造方法の一例を示すもの
である。
The drawings show an example of the method for producing argon according to the present invention.

ある糧の空気除籍分離1KIIにおいては、振品窒木採
取量を最大とし、かつ製品酸素をも採取する装置がある
。この空気分離装置からの廃カスIfi窒素、酸素、ア
ルゴンを主成分とする混合ガスであり、原料空気中のア
ルゴン社#1とんどがこの廃ガスに含有される。例えば
、アルゴン15%、酸素4う修、窒素hoso組成のこ
の廃ガスが原料ガスとして管1かもバッファータンク2
に導入される。そして、圧縮機3によって約51に加圧
されて、大口弁4番を経て、第1吸着塔5mおよび幕g
Wk着塔sbよりなる吸着装置150絽l吸着塔51に
導入される。lk着塔5&および5bの入口負に鉱窒素
を吸着するモレキュラーシーブスが充填ぎれ(窒素吸着
筒S a−MSオヨヒ5 b−M8 )、出口11Kt
!酸素を吸着するカーボンシープスが充填され(酸素吸
着筒!5a−O8、!1)−051)、両吸着剤が混り
合わないように通気性の多孔質板などで形成された仕切
板8m、6bが設けられて−る。加圧状−でSZa着塔
s1に導入された原料ガス社、まず窒素吸着筒5a−M
8のモレ午エラーシープスによって窒素が、ついで酸素
吸着筒5m−011のカーボンシープスフによって酸素
がそれぞれ吸着除去されて製品アルゴンとなり、出  
  □ロ弁71、管8、流量調整弁9を経て供給先に送
られる。
In a certain type of air removal separation 1KII, there is a device that maximizes the amount of oxygen collected and also collects product oxygen. The waste gas Ifi from this air separation device is a mixed gas whose main components are nitrogen, oxygen, and argon, and most of the argon #1 in the raw air is contained in this waste gas. For example, this waste gas with a composition of 15% argon, 4% oxygen, and 4% nitrogen may be used as the raw material gas in pipe 1 or in buffer tank 2.
will be introduced in Then, it is pressurized to about 51 cm by the compressor 3, passes through the large mouth valve No. 4, and goes to the first adsorption tower 5 m and the curtain g.
150 liters of adsorption equipment consisting of a Wk adsorption tower sb is introduced into an adsorption tower 51. The molecular sieves that adsorb ore nitrogen are full at the inlet of lk deposition towers 5& and 5b (nitrogen adsorption column Sa-MS Oyohi 5b-M8), and the exit 11Kt
! It is filled with carbon sheeps that adsorbs oxygen (oxygen adsorption cylinder!5a-O8,!1)-051), and a partition plate of 8m is made of a porous air-permeable plate to prevent both adsorbents from mixing. , 6b are provided. The raw material gas introduced into the SZa deposition tower s1 under pressure is first introduced into the nitrogen adsorption column 5a-M.
Nitrogen is adsorbed and removed by the 8-mole hour error sheet, and then oxygen is adsorbed and removed by the carbon sheet cloth of the oxygen adsorption column 5m-011 to become the product argon, which is then released.
□It is sent to the supply destination via the flow valve 71, the pipe 8, and the flow rate adjustment valve 9.

この時、他方の第21&着塔5bは吸着剤の再生段階に
ある。すなわち、吸着段階が終了したのち、入口弁4b
、出口弁7bか閉じられ、排出弁10、弁11が開かれ
、第2吸着塔5bはほぼ大気圧まで減圧される。これに
よって、帛2吸着塔5b内のカーボンシープスおよびそ
レキュラーシーブスに吸着されていた酸素、窒素Fi減
圧脱寓され、塩5b内の残留ガスとともに排出弁101
)、管12、弁11を通り、外部に放出される。この際
、第2吸着塔sbの出口翻のカーボンシーブスから脱着
した酸素社入口餉のモレキュラーシーブスを洗滌する仁
とになり、モレキュ2−シーブスの再生が先行するξと
になる。ついで、パージ弁13bが開かれ、製品アルゴ
ンの一部が減圧弁14、管15を経て、第2吸着塔5b
の出口負から第2吸層塔sbに導入され、カーボンシー
ブスおよびモレキエラーシーブスの洗滌脱着が行われる
。力−ボンシープスおよびモレキエラーシーブスから脱
着したil集、窒素およびアルゴンよりなる廃ガスは、
第2吸着塔5bから排出弁10bl経て、管12、弁1
it−通り放出されるが、洗に再生が迩むにっレテ、烏
ガス中o**5tFi酸素漉皺に比べて、先に減少する
。これは上述のようにモレキュラーシー1スの洗滌が、
カーボンシープスからの脱着験嵩によって先行されるた
めである。そして、廃ガス中に電素分が少量になり、ア
ルゴン分が決められた含有率になると、弁11が閉じら
れ、廃ガス鉱員し弁16、管17を経て、バッファータ
ンク2に返送される。これによって、実質的にアルゴン
と1kIlcよりなる廃ガスが原料系統に返送されるこ
とになり、アルゴンのロスが鍛小限となる。
At this time, the other No. 21 & landing tower 5b is in the stage of regenerating the adsorbent. That is, after the adsorption stage is completed, the inlet valve 4b
, the outlet valve 7b is closed, the discharge valve 10 and the valve 11 are opened, and the pressure of the second adsorption tower 5b is reduced to approximately atmospheric pressure. As a result, the oxygen and nitrogen Fi adsorbed on the carbon sheep and its regular sieves in the second adsorption tower 5b are depressurized, and the discharge valve 101 is removed together with the residual gas in the salt 5b.
), pipe 12 and valve 11 to be released to the outside. At this time, the carbon sieves at the outlet of the second adsorption tower sb are used to wash the molecular sieves at the oxygen company inlet that have been desorbed, and the regeneration of the molecular sieves is preceded by ξ. Then, the purge valve 13b is opened, and a part of the product argon passes through the pressure reducing valve 14 and the pipe 15, and is transferred to the second adsorption tower 5b.
The carbon sieves and molecular sieves are introduced into the second absorption tower sb from the negative outlet, where the carbon sieves and molecular sieves are washed and desorbed. The waste gas consisting of il, nitrogen and argon desorbed from force-bond and molecular sieves is
From the second adsorption tower 5b through the discharge valve 10bl, pipe 12, valve 1
Although it is released as it is, it decreases first compared to o**5tFi oxygen filtration in Ogas gas, which is released as soon as regeneration occurs. As mentioned above, this is due to the cleaning of the molecular sheath.
This is because it is preceded by the detachment test volume from carbon sheeps. When the amount of electron in the waste gas becomes small and the content of argon reaches a predetermined content, the valve 11 is closed and the waste gas is returned to the buffer tank 2 via the valve 16 and pipe 17. Ru. As a result, the waste gas consisting essentially of argon and 1kIlc is returned to the raw material system, and the loss of argon is kept to a minimum for forging.

かくして、lI工吸着塔5bの再生は完了し、ついで製
品アルゴンで再加圧されて、次の吸着を待つ仁とになる
。そして、以下2つの吸着塔5a、5blH次切替えて
ゆく仁とにより、製品アルゴンが連続的に得られること
になる。
In this way, the regeneration of the II adsorption tower 5b is completed, and then it is repressurized with product argon and becomes ready for the next adsorption. Then, product argon is continuously obtained by the following two adsorption towers 5a and 5blH which are switched over.

このようなアルゴンの製造方法において社、各吸着塔I
sa%sbの入口側に窒素を吸着するモレキエツーシー
プスを、出口111KII!素を吸着するカーボンシー
プスを ”           充積したので、これ
らa着剤の再生時、カーボンシ−プスから減圧説看し、
たwk素によってモレキュラーシーブスが洗滌脱Nされ
るため、製品アルゴンの洗滌に用いられる量が少なくな
り、製品アルゴンのロスが少なくなる。また、モレキュ
ラーシーブスを入口負に配置したことによって、上述の
ようにモレキエラーシーブスからの窺累脱島が先行する
ため、脱着の初期においてほとんどの窒素が1&着塔5
a、5bから排出され、吸着路内はアルゴンと酸素のみ
となる@製品アルゴン中には少量のM素の混入が許容さ
れるため、(例え#′!浴勧川ア用ゴンとする場合など
)カーボンシープスの製品アルゴンによる洗滌脱着を完
全に行う必要がなくなり、洗滌用アルゴン量がすくなく
てすむとともに、洗滌用アルゴンの大部分を戻し弁16
、管17を通してバッファータンク2に返送で右るため
、アルゴンの損失が極めて少なくなる。さらに、4圧縮
機1台によって動力のすべてをまかなっているので、l
#c蓋が簡単となり、設備費も低く、メンテナンスも容
易となる。
In this argon production method, each adsorption tower I
Molekie two sheeps that adsorbs nitrogen on the inlet side of sa%sb, outlet 111KII! Since the carbon sheeps adsorbing element was filled, when regenerating these a-adhesives, the pressure was reduced from the carbon sheeps,
Since the molecular sieves are washed to remove N by the wk element, the amount of product argon used for washing is reduced, and the loss of product argon is reduced. In addition, by arranging the molecular sieves at the negative entrance, the desorption from the molecular sieves occurs first, as described above, so that most of the nitrogen is removed from the 1 &
a, 5b, and only argon and oxygen are present in the adsorption path.@Because a small amount of M element is allowed to be mixed into the product argon (for example, when #'! is used as a bath gas argon) ) Carbon Sheeps product It is no longer necessary to completely wash and desorb with argon, the amount of argon for washing can be reduced, and most of the argon for washing can be returned to the return valve 16.
Since the argon is returned to the buffer tank 2 through the pipe 17, loss of argon is extremely small. Furthermore, all of the power is provided by one 4-compressor, so l
#c The lid is simple, equipment costs are low, and maintenance is easy.

なお、上記実施例で社、1個の吸着塔内にモレキエツー
シーブスとカーボンシープスとを混り金な−ようにして
充填しているが、これに限らずモレキエラーシーブスと
、カーボンシープスとを別moa着筒に充填しこれら吸
着筒を配管で連結して吸着塔としてもよい、tた、吸着
剤としては、モレキュラーシーブス、カーボンシープス
に限定されず、他O窒素阪着剤、例えばゼオライトなど
や他O酸素吸着剤も用いることができる。
In the above embodiment, one adsorption tower is filled with molecular sieves and carbon sheep, but the present invention is not limited to this. The adsorbent may be packed in a separate MOA cylinder and these adsorption cylinders can be connected with piping to form an adsorption tower.The adsorbent is not limited to molecular sieves and carbon sheeps, but can also be used as an adsorbent. Agents such as zeolites and other O-oxygen adsorbents can also be used.

以上説明したように、この発明のアルゴンの製造方法に
よれば、アルゴンの回収率が高められるとともに製造装
置が簡素化され、設備費用も低く、連転が容易となり、
メンテナンスも簡単となる。
As explained above, according to the argon production method of the present invention, the recovery rate of argon is increased, the production equipment is simplified, the equipment cost is low, continuous operation is easy,
Maintenance is also easier.

また、従来の精留法のように冷却、加熱を繰り返す必要
がなく、エネルギー消費も少なく、鮭済性に富むなどの
利点が得られる。
In addition, unlike conventional rectification methods, there is no need for repeated cooling and heating, and there are advantages such as low energy consumption and excellent salmon processing properties.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、ζO発ij!oアルゴンの製造方法の一例を示
す系統図である。 3・・・・・圧m機、艶・・・・・吸看妓瞳、5&・・
・・・絽1吸看塔、5b・・・・・第2吸着塔、6・間
仕切板、】1・・・・・弁、14・・・・・減圧弁、1
6・・・・・戻し弁、17・・・・・管。 出拙入日本M素株式会社 γ、−)
The drawings are from ζO! FIG. 2 is a system diagram showing an example of a method for producing o-argon. 3... pressure m machine, luster... sucking pupil, 5 &...
... 1 absorption tower, 5b ... 2nd adsorption tower, 6. Partition plate, ] 1 ... Valve, 14 ... Pressure reducing valve, 1
6...Return valve, 17...Pipe. Derived from Japan M Soto Co., Ltd. γ, -)

Claims (1)

【特許請求の範囲】[Claims] アルゴンと酸素と窒素とを主成分とする混合ガスを原料
ガスとし、■この原料ガスを加圧して菫木吸着剤が充填
された音素&嵩筒から#L素吸盾創が充填された酸素吸
看簡へ順次流して製品アルゴンを得る工程、および上記
mm筒の再生に際し、0両ll1ky11tlIJを減
圧とし、窒素、酸素を脱着させ、鈑素吸着簡からのmm
m素ガスで窒素吸看簡を洗軸再生する工程、θ羨品アル
ゴンの一部をtlに素吸着簡からiif票吸着簡へ順次
流し、#II累吸着筒および!!1素吸着筒を洗I’m
梅生し、洗滌廃ガス中゛の′thll系含有量によって
廃ガスを放出するかまた祉原料ガス系統に返送する工程
の上記■、@、6の工程によってアルゴンを製造するこ
とを%鯨とするアルゴンの製造方法。
A mixed gas containing argon, oxygen, and nitrogen as the main components is used as the raw material gas, and this raw material gas is pressurized to produce oxygen filled with #L elementary absorption shield from the phoneme & bulk cylinder filled with Suragi adsorbent. In the step of obtaining product argon by sequentially flowing it through the argon gasket, and during the regeneration of the above-mentioned argon cylinder, the pressure of 0x11ky11tlIJ is reduced, nitrogen and oxygen are desorbed, and argon is removed from the argon gas cylinder.
In the process of washing and regenerating the nitrogen absorption tube with m elementary gas, a part of the argon from θ is sequentially passed from the elementary absorption tube to the IIF absorption tube in the TL, and the #II cumulative absorption tube and! ! I'm washing the 1-element adsorption cylinder.
It is assumed that argon is produced by the above steps ①, @, 6, which is the process of extracting plums and releasing the waste gas depending on the 'thll content in the cleaning waste gas or returning it to the welfare raw material gas system. Method of producing argon.
JP57047780A 1982-03-25 1982-03-25 Peparation of argon Granted JPS58167410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047780A JPS58167410A (en) 1982-03-25 1982-03-25 Peparation of argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047780A JPS58167410A (en) 1982-03-25 1982-03-25 Peparation of argon

Publications (2)

Publication Number Publication Date
JPS58167410A true JPS58167410A (en) 1983-10-03
JPH0351646B2 JPH0351646B2 (en) 1991-08-07

Family

ID=12784881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047780A Granted JPS58167410A (en) 1982-03-25 1982-03-25 Peparation of argon

Country Status (1)

Country Link
JP (1) JPS58167410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239309A (en) * 1984-05-11 1985-11-28 Seitetsu Kagaku Co Ltd Process for recovering argon
US5547492A (en) * 1994-04-12 1996-08-20 Korea Institute Of Energy Research Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor
US5601634A (en) * 1993-09-30 1997-02-11 The Boc Group, Inc. Purification of fluids by adsorption

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239309A (en) * 1984-05-11 1985-11-28 Seitetsu Kagaku Co Ltd Process for recovering argon
US5601634A (en) * 1993-09-30 1997-02-11 The Boc Group, Inc. Purification of fluids by adsorption
US5547492A (en) * 1994-04-12 1996-08-20 Korea Institute Of Energy Research Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor

Also Published As

Publication number Publication date
JPH0351646B2 (en) 1991-08-07

Similar Documents

Publication Publication Date Title
JPS6132243B2 (en)
US5620501A (en) Recovery of trace gases from gas streams
JP3902416B2 (en) Gas separation method
JPS607920A (en) Separation of mixed gas and its apparatus
JPS58167410A (en) Peparation of argon
KR20050030957A (en) Method of separating target gas
JP7374925B2 (en) Gas separation equipment and gas separation method
JPH10272332A (en) Gas separation device and its operation method
JP3101225B2 (en) Pressure fluctuation adsorption type high purity carbon dioxide production method
JPH09187622A (en) Method for separating and recovering concentrated carbon dioxide
JP3121293B2 (en) Mixed gas separation method by pressure swing adsorption method
JPH07330306A (en) Generation of oxygen by pressure change adsorption separation method
JPH0312307A (en) Method for enriching oxygen
JPS58167411A (en) Preparation of argon
JPS62153388A (en) Concentration of methane
CN106256409A (en) A kind of pressure swing adsorption system
JP2569091B2 (en) Pressure swing adsorption method
JP3561886B2 (en) Pressure fluctuation adsorption separation method
JPS61136419A (en) Selective desorption in pressure swing adsorption
JPS6238281B2 (en)
JP3031797B2 (en) Pressure fluctuation adsorption separation method
JPS6238219A (en) Method for purifying gas
JPH0149530B2 (en)
JPH0517133Y2 (en)
JPH0264004A (en) Pressure swing adsorption type production of high-purity nitrogen and apparatus therefor